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Abstract. We study the existence of conservation laws in constrained sys-
tems described by quadratic Lagrangians; the type of which is encountered
in mini-superspace cosmology. As is well known, variational symmetries
lead to conserved quantities that can be used in the classical and quantum
integration of a system. Additionally - and due to the parametrization invari-
ance of such Lagrangians - conditional symmetries defined on phase space
can lead to non-local integrals of motion. The latter may be of importance in
various cosmological configurations. As an example we present the case of
scalar field cosmology with an arbitrary potential.
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1. Introduction

Symmetries at both the classical and the quantum level are of utmost importance in
many physical theories. The same is also true for cosmology, especially in the con-
text of a mini-superspace approximation. That is, when there can be constructed
an equivalent mechanical system which exhibits the same dynamical evolution as
the gravitational one. There is a series of works that deal with symmetries of these
systems and how they are used to derive solutions or constrain the theory under
consideration [2, 12, 13, 15]. When a mini-superspace approximation is adopted a
constrained (or singular) system is obtained, meaning that not all of the equations
of motion are independent. Usually, in the literature, a particular gauge fixing
condition is being applied so as to treat these Lagrangians as regular. However,
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it is proven that such a procedure, when implemented prior to the derivation of
symmetries, may result in losing some of them (see for example the Appendix of
[4]).
The general theory behind the search of symmetries for both the action and the
equations of motion is well known [11, 14] and with slight modifications it can
also be used in the case of constrained systems [3]. Furthermore, it is proven that
all of these symmetries are part of a larger class appearing only in the presence
of constraints. Elements of this latter set lead to conserved quantities that can be
non-local expressions, owed to involving integrals of functions of the configuration
space variables. All aforementioned quantities can be exploited classically for the
derivation of the solution. By following the main path of the canonical quantum
theory, those that correspond to local integrals of motion may be applied at the
quantum level as well. These results have been presented in a series of papers, not
only for cosmological space-times [16] but also for black holes [4–6].
The layout of this paper is the following: In Section 2 we give the process of the re-
duction for the mini-superspace approximation. Then, in Section 3, we present the
main result regarding the variational/Lie-point symmetries of the action/equations
of motion. The Hamiltonian description and the derivation of a larger class of
symmetries is given in Section 4. In Section 5 we give a brief description of how
to apply some of the resulting symmetries at the quantum level. To exhibit how
powerful is the use of the non-local conserved quantities we give an example in
Section 6 involving an FLRW space-time in which a scalar field is minimally cou-
pled to gravity. We manage to fully integrate the system for an arbitrary potential
of the scalar field. In conclusion, we make some final remarks in the discussion.

2. The Mini-Superspace Description

Let us begin by considering Einstein’s general theory of relativity with the line
element of a four dimensional pseudo-Riemannian manifold M = R×Σ given by

ds2 = gαβ(x)dxαdxβ, α, β = 0, ..., 3, x ∈M

where the gαβ are the components of the metric tensor which extremizes the action
functional

S =

∫
M

d4x
√
−gR+ Sm (1)

with g = det gαβ , R the Ricci scalar curvature and Sm the matter contribution to
the action. Einstein’s equations that are satisfied by gαβ are

Rαβ −
1

2
Rgαβ = Tαβ. (2)
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In its most generality, (2) is a system of ten partial differential equations. Four of
them are constraints of the rest six, which means that only two are truly indepen-
dent. This can be traced to the existence of the Bianchi identities stemming from
the invariance of the theory under the group of the four dimensional diffeomor-
phisms.
In many cases, especially when treating cosmological configurations, a certain
number of existing symmetries is adopted for the base manifold. As happens for
example in the case of spatially homogeneous spacetimes, where a three dimen-
sional group of motions acts simply transitively on the spatial slices Σ. The most
general form of the line element in this case is

ds2 = −N(t)2dt2 + γIJ(t)σIi (x)σJj (x)dxidxj (3)

with the one-forms σ’s satisfying

σIi,j − σIj,i = CIJKσ
K
i σ

J
j (4)

and CIJK being the structure constants of the algebra corresponding to the above
mentioned three dimensional group of isometries (all indices in (3) and (4) range
from 1 to 3). The field equations (2), under the ansatz (3), reduce to ordinary
differential equations. What is more, when the (3) is applied at the level of the
action integral (1) and the non-dynamical spatial degrees of freedom are integrated
out, one is left with an action of a mechanical system. The general form of the
corresponding Lagrangian function is

L =
1

2N(t)
Gµν(q)q̇µ(t)q̇ν(t)−N(t)V (q), µ, ν = 1, ..., d (5)

where ˙ = d
dt while the q’s denote the remaining degrees of freedom1. In the con-

figuration space spanned by the q’s, the tensor Gµν is called the mini-superspace
metric. Lagrangian (5) describes a singular system of d + 1 degrees of freedom
(counting in them the lapse function N ) and is invariant under arbitrary time re-
parametrizations of the form t 7→ τ = f(t) where the following transformation
laws apply

N(t)dt = Ñ(τ)dτ, q(t) = q̃(τ).

It is a simple task to check that the action remains form invariant under such a trans-
formation. This invariance is a remnant of the four dimensional diffeomorphism
gauge group of the original gravitational system.
Whenever the corresponding Euler-Lagrange equations of (5)

E0 :=
∂L

∂N
= 0, Eα :=

∂L

∂qα
− d

dt

(
∂L

∂q̇α

)
= 0

1The γIJ ’s and possibly any additional matter field.
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are equivalent to the Einstein equations (2) under the ansatz (3), we say that the
system has a valid mini-superspace description, meaning that its dynamics may be
investigated with the help of the mechanical system given by (5). Equation E0 is
quadratic in the velocities and is a constraint among the Eα’s, of which only d− 1
are truly independent.

3. Variational Symmetries of the Action and Lie-Point Symmetries of
the Equations of Motion

Let us consider point transformations in the space spanned by (t, q,N) with a
corresponding infinitesimal generator of the form

X = χ(t, q,N)
∂

∂t
+ ξα(t, q,N)

∂

∂qα
+ ω(t, q,N)

∂

∂N
· (6)

A transformation of this type is a variational symmetry of the action if it alters the
latter at most by a surface term, i.e., if δ(Ldt) = dF [11]. In infinitesimal form
this is expressed by the criterion

pr(1)X(L) + L
dχ

dt
=

dF

dt
(7)

where pr(1)X is the first prolongation of generator (6) in the jet space containing
the first derivatives of the dependent variables. In general for the k-th derivative
extension we have

pr(k)X = X + Φα
t

∂

∂q̇α
+ Ωt

∂

∂Ṅ
+ . . .+ Φα

tk
∂

∂(∂tkq
α)

+ Ωtk
∂

∂(∂tkN)

Φα
tk =

dk

dtk
(ξα − χq̇α) + χ

dk+1qα

dtk+1

Ωtk =
dk

dtk

(
ω − χṄ

)
+ χ

dk+1N

dtk+1
, k ∈ N∗.

By applying criterion (7) on the Lagrangian (5) we get as a result a symmetry
generator of the form X = X1 +X2, where

X1 = ξα(q)
∂

∂qα
+Nτ(q)

∂

∂N
, X2 = χ(t)

∂

∂t
−Nχ̇(t)

∂

∂N
·

The generator X2 expresses the time re-parametrization invariance of the system,
since χ(t) remains an arbitrary function. On the other hand, X1 is a symmetry
whenever

LξGµν = −
LξV
V

Gµν (8)

where Lξ signifies the Lie derivative with respect to the configuration space vector
ξ = ξα ∂

∂qα ·
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Having obtained the symmetries of the action let us proceed to the Euler-Lagrange
equations. The infinitesimal condition for Lie-point symmetries of the equations
of motion - which states that the action of the generator of the symmetry over the
equations must be zero modulo the equations themselves [11] - is expressed in our
case as

pr(1)X(E0) = T (t, q,N)E0

pr(2)X(Eα)
∣∣
Eα=0

=
(
P κ1α(t, q,N)q̇α + P κ2 (t, q,N)Ṅ + P κ3 (t, q,N)

)
E0

where on the right hand sides appear functions with such dependencies so that
trivial terms do not emerge. By gathering the coefficients involving first derivatives
of the dependent variables we are led to the following result: The vector field
X = X̃1 +X2 is a symmetry generator, with

X̃1 = X1 + c
∂

∂N
= ξα(q)

∂

∂qα
+N(τ(q) + c)

∂

∂N

X2 = χ(t)
∂

∂t
−Nχ̇(t)

∂

∂N
whenever

LξGαβ = −
(
LξV
V

+ c̃

)
Gαβ (9)

and c, c̃ are constants and χ(t) and arbitrary function. We see that the re-parame-
trisation invariance generator X2 also appears in this case. As long as X1 is con-
cerned, by comparing results (8) with (9), we deduce that the second case is larger
and contains the first (as is expected since variational symmetries of the action
form a subgroup of the Lie-point symmetries).
To visualise the result more clearly, it is useful to turn to the constant potential
parametrization. In a constrained system like (5) one can freely re-parameterize the
lapse in an arbitrary way using any function of the configuration space variables.
If we choose a new “lapse” function n = N V (q) we are led to Lagrangian

L̄ =
1

2n(t)
Ḡµν(q)q̇µ(t)q̇ν(t)− n(t) (10)

with Ḡµν = V (q)Gµν . It is a straightforward task to check that (5) and (10) are
equivalent, i.e. the change n 7→ N maps the equations of motions of the latter to
the ones of the former. In that particular parametrization results (8) and (9) become
respectively

LξḠµν = 0 (11a)

LξḠµν = c̃ Ḡµν . (11b)

As we observe by these conditions, in order to have a variational symmetry, ξ must
be a Killing vector of this scaled by the potential mini-supermetric Ḡµν . But, to
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obtain a Lie-point symmetry of the Euler-Lagrange equations, apart from the case
c̃ = 0 one can additionally have a homothetic vector. Consequently, the maximum
number of Noether symmetries is d(d+1)/2, while for Lie-point is the same raised
by one.

4. Hamiltonian Description and Non-Local Symmetries

By following the Dirac-Bergmann [1], [8] algorithm we can write down the Hamil-
tonian for the constrained Lagrangians (5) and (10). For the sake of simplicity,
we choose to work with Lagrangian (10) in the parametrization of the constant
potential. Consequently, we are able to compare with results (11) which are “ge-
ometrized”, in the sense that all the needed information is given with respect to the
scaled by the potential metric Ḡµν .
The total Hamiltonian corresponding to the system described by (10) is

HT = nH+ unpn (12)

with pn ≈ 0 and

H =
1

2
Ḡµνpµpν + 1 ≈ 0

being the primary and secondary constraints respectively. The first of them corre-
sponding to the momentum for the degree of freedom n, which of course is zero
∂L̄
∂ṅµ = 0. The other is the well known quadratic constraint, that is the equation
of motion for n, ∂L̄

∂n = 0, written in phase space variables, where the pµ = ∂L̄
∂q̇µ

are the conjugate momenta. The symbol “≈” denotes a weak equality, i.e. the
corresponding quantities are assigned to zero only after Poisson’s brackets are cal-
culated. For example pn is zero only outside of a Poisson bracket, thus {n, pn} = 1
but {n, p2

n} = 2{n, pn}pn = 2pn ≈ 0.
Let as assume a quantity in phase space, which is at most linear in the momenta,
Q(t, q, p) = A(t, q)α(q)pα + B(t, q). We want to investigate under which condi-
tions, Q is a conditional symmetry, i.e. an integral of motion due to the constraint
H ≈ 0 [10]. In that case, the following condition must hold

Q̇ ≈ 0⇒ ∂Q

∂t
+ {Q,HT } ≈ 0.

It is straightforward to check that this leads to an integral of motion of the form

Q = ξα(q)pα +

∫
n(t)ω(q(t))dt (13)

whenever
LξḠµν = ω(q)Ḡµν .

Henceforth, we can state that all conformal Killing vectors of Ḡµν generate inte-
grals of motion. The Killing vector fields - variational symmetries (11a) - give rise
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to expressions of the form Q = ξαpα, while the proper conformal Killing vectors,
with ω 6= 0, generate non-local conserved quantities given by (13). Among the
latter is of course the Lie-point symmetry (11b) corresponding to the homothetic
vector.

5. Canonical Quantization by Using Symmetries

In the process of canonical quantization one needs to assign operators to the clas-
sical phase space variables that preserve the canonical commutation relations, with
the commutator being related to the classical Poisson brackets by the mapping
{·, ·} −→ − i

~ [·, ·]. We shall follow here the standard procedure of expressing the
momenta as

pα 7−→ p̂α = −i
∂

∂qα
, pn 7−→ p̂n = −i

∂

∂n

(for simplicity we choose to work in ~ = 1 units), while the configuration space
variables will act as multiplication operators . For the Hamiltonian (12) we follow
Dirac’s prescription when dealing with singular systems, which states that con-
strains must annihilate the wave function. For reasons that we will specify later we
choose to perform the quantization in the constant potential parametrization. As a
result one must require

p̂nΨ(q, n) = 0⇒ Ψ = Ψ(q) (14a)

ĤΨ(q) = 0⇒
(
− 1

2|Ḡ|1/2
∂µ(|Ḡ|1/2 Ḡµν∂ν) + 1 +

d− 2

8 (d− 1)
R
)

Ψ = 0 (14b)

where R is the Ricci scalar of the mini-superspace and Ḡ the determinant of the
metric Ḡµν . The first equation (14a) is just the enforcement of the classical pri-
mary constraint pn ≈ 0 and states that the wave function cannot depend on n.
Relation (14b) corresponds to the quadratic constraint H ≈ 0 and it defines the
Wheeler-DeWitt equation in cosmology. For the latter we have chosen a specific
factor ordering for the quadratic terms in the momenta, by adopting the conformal
Laplacian (Yamabe operator). As a result Ĥ, has now the property of commuting
with the quantum analogues of the classical symmetries.
In order to promote to operators the classical linear in the momenta (local) expres-
sions that are constants of motion, we choose the most general form of a first order
Hermitian operator (with a vanishing on the boundary wave function) under the
measure |Ḡ|1/2

Q̂I = − i

2|Ḡ|1/2
(
|Ḡ|1/2 ξαI ∂α + ∂α |Ḡ|1/2 ξαI

)
(15)

with the index I counting the number of these quantities. The Killing vector fields
of Ḡµν , that lead to the classical conserved charges QI = ξαI pα, correspond to the
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simplified expression Q̂I = −i ξαI ∂α and define the eigenequations

Q̂IΨ(q) = κIΨ(q)

that can be used as supplementary conditions to the Wheeler-DeWitt equation
(14b). This is owed to the fact that the Laplacian (and the Yamabe operator in
general) have the property of exactly commuting with the QI ’s as defined by (15)
whenever ξ is a Killing vector of Ḡµν . At this point we have to note that this
becomes possible in the constant potential parametrization, where the local sym-
metries correspond to Killing vector fields of the scaled by the potential mini-
supermetric. It can also be easily verified that, with the previously made choice of
operators, the Poisson algebra of the QI ’s becomes naturally a quantum algebra of
the Q̂I ’s, i.e.,

{QI , QJ} = CMIJQM ⇒ [Q̂I , Q̂J ] = iCMIJQ̂M .

Of course not all of the Killing fields can be forced - through the Q̂I ’s - simulta-
neously over the wave function. The subalgebras that can be imposed are those
whose structure constants satisfy the following integrability criterion

CMIJ κM = 0.

Note that this also allows for non-Abelian algebras [9].

6. A Classical Example of Integrability

We consider a FLRW space-time

ds2 = −N(t)2dt2 + a(t)2

(
1

1− k r2
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
(16)

in the context of Einstein’s general relativity plus a minimally coupled scalar field

S =

∫
d4x
√
−g (R+ ε φ,µφ

,µ + 2V (φ))

with ε = ±1 so that the model can describe a phantom scalar field as well. It can
be seen that the Lagrangian

L =
2a2

n

(
a2V (φ)− 3k

) (
−6ȧ2 + ε a2φ̇2

)
− n (17)

where n is linked to the lapse function via

N =
n

2 a (a2V (φ)− 3k)

correctly reproduces the set of Einstein’s equations (2) under the ansatz (16), with
the energy momentum tensor given by

Tαβ = ε φ,αφ,β −
1

2
(ε φ,κφ,κ − 2V (φ)) gαβ.
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The scaled by the potential mini-supermetric that we can read from (17) is (note
that we have expressed the Lagrangian in the constant potential parametrization):

Gµν = 4 a2
(
a2V (φ)− 3k

)(−6 0
0 ε a2

)
.

This metric - for an arbitrary V (φ) - possess no Killing fields (unless certain con-
ditions are enforced). We shall use a non-local symmetry to integrate the system
of Euler-Lagrange equations, without having to assume a particular form for the
potential. Notice that, due to the fact that the metric is two dimensional, there exist
infinite conformal Killing fields, thus infinite non-local integrals of motion. Let
us chose the vector field ξ = ∂φ which has the corresponding conformal factor
a2V ′(φ)

a2V (φ)−3k
. The following non-local integral of motion can be defined

Q = pφ +

∫
a(t)2n(t)V ′(φ(t))

a(t)2V (φ(t))− 3k
dt =

∂L

∂φ̇
+

∫
a(t)2n(t)V ′(φ(t))

a(t)2V (φ(t))− 3k
dt

=
4 ε a4φ̇

(
a2V (φ)− 3k

)
n

+

∫
a(t)2n(t)V ′(φ(t))

a(t)2V (φ(t))− 3k
dt.

(18)

As a result, the relation Q = κ, where κ is constant holds. However, κ is not
important for the analysis and without loss of generality can be put it equal to zero.
Note that we need only solve this equation and the quadratic constraint ∂L

∂n = 0
to completely integrate the system. The idea now is to fix the gauge by choosing
φ = t (a possibility that is present in time parametrization invariant systems like
the one under consideration). Then, we are able to parameterize the scalar field
potential V (φ) as a function of time. At the same time, we want to perform a
re-parametrization of the “lapse” function n in order to express (18) without the
presence of the integral. In short we introduce a non-constant function h through

n(t) =
2ḣ
(
a2V − 3k

)
a2V̇

·

Without getting into too many details, it can be seen that with the appropriate
parametrization of h(t) and V (t) the general solution can be derived by the two
previously mentioned first order equations [7] and it reads

ds2 =
−eωω̇2

36

(
2 eω−6

∫
(ε/ω̇)dt

(
c̃+ 3 k

∫ exp(6
∫

(ε/ω̇)dt−ω
3 )

ω̇ dt

)
− ke

2ω
3

)dt2

+ eω/3
(

1

1− kr2
dr2 + r2dθ2 + r2 sin2 θdϕ2

) (19)
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with a corresponding the potential

V (t) =
6

eωω̇2

( (
ω̇2 − 6ε

)
eω−6

∫
(ε/ω̇)dt

(
3k

∫
exp

(
6
∫

(ε/ω̇)− ω
3 dt
)

ω̇
dt

+c
)

+ 3ke
2ω
3

) (20)

where c, c̃ are integration constants and ω(t) is a non-constant function of time.
The arbitrariness of the potential is expressed though this arbitrary function. The
solution can be significantly simplified by performing the time transformation

t = φ =

∫ [
1

6 ε

(
S′′(ω)

S′(ω)
+

1

3

)]1/2

dω (21)

where S(ω) = exp
(
12 k

∫
eF (ω)−ω/3dω

)
− 6 c

k · Under (21), the relations (19) and
(20) become

ds2 = −eF (ω)dω2 + eω/3
(

1

1− kr2
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
(22)

and

V (ω) =
1

12
e−F (ω)

(
1− F ′(ω)

)
+ 2 k e−ω/3 (23)

respectively, with F (ω) expressing now the arbitrariness of the potential. For each
function F (ω), line element (22) gives us the space-time that corresponds to the
solution of a minimally coupled scalar field with gravity, having the corresponding
potential given by (23). Thus, by using a non-local symmetry, we were able to
integrate the system without making unnecessary restrictions over the potential.

7. Discussion

In this parer we investigated the conditional symmetries for constrained systems
that usually appear in cosmology after a mini-superspace reduction. The vari-
ational and Lie-point symmetries of the action and of the equations of motion
which are preserved in them are associated with Killing and homothetic vectors
of the scaled by the potential mini-supermetric. However, conditional symmetries
in their full generality are linked to conformal Killing fields of this metric, lead-
ing additionally to non-local expressions that are constants of motion and which
involve integrals of functions of the configuration space variables.
The symmetries corresponding to the Killing vector fields of Ḡµν can also be used
at the quantum level as supplementary conditions of the Wheeler-DeWitt equation.
Given that the kinetic part of the quadratic constraint is expressed with the help of
the Laplacian (or even by the conformal Laplacian), the linear Hermitian opera-
tors corresponding to these fields exactly commute with the Hamiltonian operator.
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Thus, they may utilized to define eigenvalue equations which the solution of the
Wheeler-DeWitt has to satisfy.
At the classical level the same symmetries, together with the larger class corre-
sponding to conformal Killing vectors of Ḡµν can be used to integrate these con-
figurations. It is important to note here that, only for constrained systems there
exists the notion of conditional symmetries, i.e. expressions that are constants of
motion due to constraints. The significance of the non-local integrals of motion at
this level is paramount. We presented an example of a FLRW space-time with a
scalar field minimally coupled to gravity (in reality a larger class of models can cor-
respond to this e.g. f(R), scalar-tensor gravity). There are many works devoted in
the search of integrable models for certain expressions of V (φ). We proved that for
any (smooth enough) potential the system is integrable and we derived the solution
giving the corresponding space-time for each of these functions.
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