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1. Introduction

Differential geometric aspects of submanifolds of manifolds with certain structures
are very fruitful fields for Riemannian geometry. Study of complex submanifolds
immersed in locally conformal Kähler manifolds(for brevity, LCK-manifolds) was
initiated by Vaisman in [12], and more attention was paid to the so called Gener-
alized Hopf manifolds. Further development was made in [4]. Real hypersurfaces
of LCK-manifolds was explored in [2]. We continue to study the immersions of
submanifolds that a tangent space in all points of the submanifolds to be normal to
Lee field.

2. Preliminaries

A Hermitian manifold (M2m, J, g) is called a locally conformal Kähler manifold
(LCK-manifold) if there is an open cover U =

{
Uα

}
α∈A of M2m and a family
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{σα}α∈A of C∞ functions σα : Uα → R so that each local metric

ĝα = e−2σαg|Uα

is Kählerian. An LCK-manifold is endowed with some form ω, so called a Lee
form which can be calculated as [1]

ω =
1

m− 1
δΩ ◦ J or ωi = − 2

n− 2
Jαβ,αJ

β
i .

The form should be closed
dω = 0.

One can compute covariant derivative an almost complex structure with respect of
the Levi-Civita connection of (M2m, J, g) using the formulae

Jki,j =
1

2

(
δkj J

α
i ωα − ωkJij − Jkj ωi + Jkαω

αgij
)
. (1)

Let (M2m, J, g) be a complexm-dimensional Hermitian manifold, g is it’s Hermit-
ian metric, J is it’s complex structure. Consider an immersion of a m-dimensional
manifold M̄k in M2m

Ψ : M̄k −→M2m.

Let ∇ and ∇̄ be operators of covariant differentiations on M2m and M̄k, respec-
tively. Then the Gauss and Weingarten formulas are given by [1, p. 148]

∇XY = ∇̄XY + h(X,Y ) (2)

∇Xξ = −AξX +∇⊥Xξ (3)

respectively, where X and Y are vector fields tangent to M̄k and ξ normal to M̄k.
As usual h(X,Y ) denotes the second fundamental form,∇⊥ the linear connection
induced in the normal bundle E(Ψ) called the normal connection, and Aξ is the
second fundamental tensor at ξ.
Conditions for the integrability of (2) and (3), the so called equations of Gauss,
Codazzi, and Ricci [1, p. 150] are given respectively in the explicit form by

g(R(X,Y )Z,W ) = ḡ(R̄(X,Y )Z,W )

−g(h(X,W ), h(Y, Z)) + g(h(Y,W ), h(X,Z))

{R(X,Y )Z} = (∇̄Xh)(Y,Z)− (∇̄Y h)(X,Z)

g(R(X,Y )ξ, η) = g(R⊥(X,Y )ξ, η)− g([Aξ, Aη]X,Y ).

We call M̄k a CR-submanifold of (M2m, J, g) if M̄k carries a C∞ distribution D
so that

1. D is holomorphic (i.e., Jx(Dx) = Dx) for any x ∈ M̄k

2. the orthogonal complement D⊥ with respect to ḡ = Ψ∗g of D in T (M̄k) is
anti-invariant (i.e., Jx(D⊥x) ⊆ E(Ψ)x) for any x ∈ M̄k) [1, p. 153].
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Let (M̄k, D) be a CR−submanifold of the Hermitian manifold M2m
0 . Set p =

dimCDx and p = dimRD
⊥
x , for any x ∈ M̄k so that 2p + q = k. If q = 0

then M̄k is a complex submanifold, i.e., it is a complex manifold and Ψ is a holo-
morphic immersion. If p = 0 then M̄k is an anti-invariant submanifold (i.e.,
Jx(Tx(M̄k)) ⊆ E(Ψ)x for any x ∈ M̄k). A CR−submanifold (M̄k, D) is
proper if p 6= 0 and q 6= 0. Also (M̄k, D) is generic if q = 2m − k (i.e.,
Jx(Tx(M̄k)) = E(Ψ)x for any x ∈ M̄k). A submanifold M̄k of the complex
manifold (M2m, J) is totally real if

Tx(M̄k) ∩ Jx(Tx(M̄k)) = {0}
for any x ∈ M̄k.

3. Complex Hypersurfaces of LCK-Manifolds

Let submanifold M̄k is immersed in LCK-manifold M2m

Ψ : M̄k −→M2m

so that k = 2p and for any x ∈ M̄2p

Jx(Tx(M̄2p)) = Tx(M̄2p). (4)

Let M̄2p be represented by

xα = xα(y1, . . . , y2p) (5)

where α = 1, . . . , 2m and yi, i = 1, . . . , 2p, are local coordinate systems respec-
tively on M2m and on M̄2p. Then the tangent subspace of M̄2p at each point
x = x(y) is spanned by vectors

Bα
i = ∂ix

α. (6)

If a tensor gαβ is a Riemannian metric of M2m then induced metric of M̄2p take
the form

ḡij = Bα
i gαβB

β
j . (7)

We can define a tensor
Bi
α = Bβ

j ḡ
ijgαβ (8)

where ḡij is a tensor whose matrix is inverse to the matrix of the induced metric
tensor ḡij . Then

Bi
αB

α
j = δij (9)

whereas the operator
P βα = Bi

αB
β
i (10)

defined on Tx(M2m), is a projector on the tangent space Tx(M̄2p). Introducing

J̄ ji = JαβB
j
αB

β
i (11)
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and taking into account (10) and (11) we obtain

J̄ ji J̄
k
j = −δkj .

This means that the affinor J̄ ji , defined on the bundle T (M̄2p) is an almost complex
structure on the manifold M̄2p. On account of (7) and (11) we get also

J̄ jk ḡij J̄
i
l = ḡij

and on this basis to conclude that the metric (7) is Hermitian. One can calculate
the Christoffel symbols for connection ∇̄ with respect to metric ḡij by formulas

Γ̄hjk = Bh
α

(
Bβ
j B

γ
kΓαβγ + ∂jB

α
k

)
.

In the local coordinates (5) the Gauss and Weingarten formulas (2) and (3) can be
written as

∇̄jBα
i = Hij(x)C

α
(x), ∇̄jCα(x) = −H i

j(x)B
α
i + Lj(xy)C

α
(y). (12)

Here Hij(x) are the second fundamental tensors of M̄2p with respect to mutu-
ally orthogonal unit normals Cα(x) to M̄2p, x = 2p+ 1, . . . , 2m, and Lj(xy) =(
∇̄jCα(x)

)
Cβ(y)gαβ .

The covariant derivative of the almost complex structure (11) with respect to the
connection ∇̄x is

∇̄kJ̄ ji =
(
∇̄kJαβ

)
Bj
αB

β
i + Jαβ

(
∇̄kBj

α

)
Bβ
i + JαβB

j
α∇̄kB

β
i .

On account of (12), we obtain

∇̄kJ̄ ji = Bγ
k

(
∇γJαβ

)
Bj
αB

β
i + JαβH

j
k(x)Cα(x)B

β
i + JαβB

j
αHki(x)C

β
(x).

Since immersion of the manifold M̄2p is the complex one hence (4) and the second
and third items in left-hand side are equal to zero. Finally we obtain

∇̄kJ̄ ji = Bγ
kB

j
αB

β
i ∇γJ

α
β . (13)

Let us calculate the Nijenhuis tensor for the manifold M̄2p

N̄h
ij = J̄ ti (∇̄tJ̄hj − ∇̄j J̄ht )− J̄ tj(∇̄tJhi − ∇̄iJ̄ht ).

Substituting (11) and (13) into above equations we have

N̄h
ij = JαβB

t
αB

β
i (Bγ

t B
h
δB

λ
j∇γJδλ −Bλ

j B
h
δB

γ
t ∇λJδγ)

−JαλBt
αB

λ
j (Bγ

t B
h
δB

β
i ∇γJ

δ
β −B

β
i B

h
δB

γ
t ∇βJδγ)

= Bβ
i B

λ
j B

h
δB

t
αB

γ
t

(
Jαβ (∇γJδλ −∇λJδγ)− Jαλ (∇γJδβ −∇βJδγ)

)
.

It is known, that the operator defined in (10) is a projector on the tangent space
Tx(M̄2p). Then we have

N̄h
ij = Bβ

i B
λ
j B

h
δ

(
Jαβ (∇αJδλ −∇λJδα)− Jαλ (∇αJδβ −∇βJδα)

)



Complex and Real Hypersurfaces of Locally Conformal Kähler Manifolds 121

or
N̄h
ij = Bβ

i B
λ
j B

h
δN

δ
βλ.

Here N δ
βλ is the Nijenhuis tensor for the manifold M2m. Since M2m is Hermitian

N δ
βλ ≡ 0. Hence M̄2p is Hermitian too.

Let us take into account that the M2m is an LCK-manifold. Let us substitute (1)
into (13) to obtain

∇̄kJ̄ ji = Bγ
kB

j
αB

β
i ∇γJ

α
β

(14)
= Bγ

kB
j
αB

β
i

1

2

(
δαγ J

δ
βωδ − ωαJβγ − Jαγ ωβ + Jαδ ω

δgβγ
)
.

By virtue of the definitions(6) – (11) and using (14) we obtain

∇̄kJ̄ ji =
1

2

(
δjkJ̄

p
i ω̄p − ω̄

j J̄ik − J̄ jk ω̄i + J̄ jp ω̄
pḡik

)
(15)

where ω̄i = Bγ
i ωγ . Hence, from (15) and according to

dΨ∗ω = Ψ∗dω = 0

the theorem below follows.

Theorem 1. If a complex submanifold M̄2p is immersed in a LCK-manifold M2m

then the immersed manifold M̄2p is a LCK-manifold. Moreover if the Lee field
B = ω# defined in M2m is normal to M̄2p, then the immersed M̄2p is a Kähler
one.

Similar results were presented in [4] but it is important to explore the immersions
also with regard to the position of Ψ(M̄2p) with respect to the Lee field of M2m.
There are limitations. For instance, we have [9]

Theorem 2. Let Mk be k-dimensional (k ≥ 2) CR-submanifold of a Vaisman
manifold M2m. If the anti-Lee field A = −JB = −Jω# is normal to Mk then
Mk is an anti-invariant submanifold of M2m (k ≤ m). Consequently, a Vaisman
manifold admits no proper CR-submanifolds so that Ā = Ψ∗A = 0. In particular,
there are no proper CR-submanifolds of a Vaisman manifold with B ∈ D⊥. Also,
there are no complex submanifolds of a Vaisman manifold normal to the Lee field
B = ω#.

We are concerned with finding conditions under which LCK-manifold M2m admit
immersion of complex submanifolds. Then we obtain the following theorem.

Theorem 3. The LCK-manifold M2m admit immersion of complex hypersurface
M̄2m−2 so that the Lee field B = ω# and the anti-Lee field A = −JB = −Jω#
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are normal to the hypersurface M̄2m−2 if and only if the Lee form ofM2m satisfies
the condition

Φ4(∇Xω(Y )) =
‖ω‖2

2
g(X,Y ).

Here Φ4 is the fourth Obata’s projector

Φ4(ωi,j) =
1

2
(δai δ

b
j + Jai J

b
j )ωa,b.

Proof: Necessity. Let us consider an LCK-manifold M2m. Let θ = ω ◦ J and
A = −JB be respectively the anti-Lee form and the anti-Lee vector field. Then,
we can rewrite (1) as

∇X(J)Y =
1

2

(
θ(Y )X − ω(Y )JX − g(X,Y )A− Ω(X,Y )B

)
and hence we get

∇XA = −J∇B +
1

2

(
‖ω‖2JX + ω(X)− θ(X)B

)
for any X ∈ T (M2m). Let M2m−2 be a complex hypersurface of an M2m. If
B ∈ E(Ψ), then A ∈ E(Ψ) since the immersion is analytic one. Moreover, if
X,Y ∈ T (M2m−2), then [X,Y ] ∈ T (M2m−2) according to the classical Frobe-
nius theorem. Hence

0 = g([X,Y ], A) = g(∇XY,A)− g(∇YX,A)

= −g(Y,∇XA) + g(X,∇YA) (16)

= g(Y, J∇XB)− g(X, J∇YB) + ‖ω‖2Ω(X,Y ).

Rewriting (16) in the local coordinates, we obtain

ωt,jJ
t
i − ωt,iJ tj − ‖ω‖2Jij = 0. (17)

Next, by multiplying equation (17) with J jk we get

ωt,jJ
t
iJ

j
k + ωk,i − ‖ω‖2gik = 0. (18)

We can rewrite finally (18) as

2Φ4(ωi,j)− ‖ω‖2gij = 0

where Φ4 is the fourth Obata’s projector [5]. For instance, applying the operator to
the tensor Qhij means

Φ4(Q
h
ij) =

1

2
(δai δ

b
j + Jai J

b
j )Q

h
ab.

Hence

Φ4(ωi,j) =
‖ω‖2

2
gij . (19)
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Sufficiency. The tangent bundle T (M2m) should satisfy the system since the bun-
dle is normal to both Lee field B and anti-Lee field A, i.e.,

ω = 0, θ = 0. (20)

According to the Frobenius theorem the system (20) is completely integrable if and
only if both the Lee-form and the anti-Lee form identically satisfy the conditions

1) dω ∧ ω ∧ θ = 0
2) dθ ∧ ω ∧ θ = 0.

(21)

Identity (211) is satisfied since M2m is LCK-manifold, hence dω = 0. We have to
explore (212). Let us take the exterior differential of the anti-Lee form θ = ω ◦ J
[14, p. 6]

dθ =
1

2

(
∇k(ωiJ ij)−∇j(ωiJ ik)

)
dxk ∧ dxj

=
1

2

(
ωi,kJ

i
j + ωiJ

i
j,k − ωi,jJ ik − ωiJ ik,j

)
dxk ∧ dxj .

According to (1) we obtain

dθ =
(
ωi,kJ

i
j + ωiJ

i
j,k

)
dxk ∧ dxj

=
(
ωi,kJ

i
j +

1

2
ωkJ

t
jωt −

1

2
‖ω‖2Jjk −

1

2
ωtJ

t
kωj

)
dxk ∧ dxj

=
1

2

(
ωi,kJ

i
j − ωi,jJ ik − ‖ω‖2Jjk + ωkJ

t
jωt − ωtJ tkωj

)
dxk ∧ dxj .

We have also

dθ ∧ ω ∧ θ =
1

2

(
ωi,kJ

i
j − ωi,jJ ik − ‖ω‖2Jjk

+ωkJ
t
jωt − ωtJ tkωj

)
dxk ∧ dxj ∧ ωldxl ∧ ωsJshdxh (22)

=
1

2

(
ωi,kJ

i
j − ωi,jJ ik − ‖ω‖2Jjk

)
dxk ∧ dxj ∧ ωldxl ∧ ωsJshdxh

since the equation

1

2

(
ωkJ

t
jωt − ωtJ tkωj

)
dxk ∧ dxj ∧ ωldxl ∧ ωsJshdxh = 0

is identically satisfied. Hence the equation

ωi,kJ
i
j − ωi,jJ ik − ‖ω‖2Jjk = 0

gives us a sufficient condition that the identity dθ ∧ ω ∧ θ = 0 is satisfied. This
condition coincides with (17) which is equivalent to (19). Hence (212) is satisfied
too. Sufficiency is proved as well. �
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4. Real Hypersurfaces of LCK-Manifolds

Let us recall some necessary definitions. Let M2m−1 be a 2m−1-dimensional
manifold and f , ξ, η be a tensor field of type (1, 1), a vector field and one-form on
M2m−1 respectively. If f , ξ and η satisfy the conditions

1) η(ξ) = 1, 2) f2X = −X + η(X) (23)

for any vector fieldX ∈ X(M2m−1), thenM2m−1 is said to have an almost contact
structure (f, ξ, η) and is called an almost contact manifold [15, p. 252]. From (23)
we have

1) fξ = 0, 2) η(fX) = 0, 3) rank f = 2m− 2. (24)

If an almost contact manifold M2m−1 admits a Riemannian metric tensor field g
such that

1) η(X) = g(ξ,X)
2) g(fX, fY ) = g(X,Y )− η(X)η(Y )

(25)

then M2m−1 is said to have an almost contact metric structure (almost Grayan
structure) (f, ξ, η, g) and is called an almost contact metric manifold [15, p. 254].
One has the following important theorem [11].

Theorem 4. A hypersurface M̄2m−1 in an almost complex manifold M2m has an
almost contact structure.

We explore the case when a hypersurface M̄2m−1 is the maximal integral subman-
ifold of the distribution defined by the equation

ω = 0

where ω is the Lee form of the LCK-manifold M2m. It is obvious that the above
said equation is locally integrable since the form ω is closed. The immersion Ψ :
M̄2m−1 −→M2m is locally represented by the functions

xα = xα(y1, . . . , y2m−1)

where α = 1, . . . , 2m, and yi, i = 1, . . . , 2m − 1 is a coordinate system in M̄2p.
We put

Bα
i = ∂ix

α

which span the tangent hyperplane of M̄2m−1 at each point x = x(y). The
equations (7) – (10) are also satisfied, but we have to take into account that i =
1, . . . , 2m− 1. Gauss and Weingarten equations for a hypersurface can be written
in the form

∇̄jBα
i = HijC

α, ∇̄jCα = −H i
jB

α
i (26)
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where Hij are the second fundamental tensor of M̄2m−1 respect to normal Cα. It
is obvious that Cα = 1

‖ω‖ω
α. According to the latter, and to (26) we obtain

∇̄iωα = ∂i(‖ω‖)Cα − ‖ω‖Bα
t H

t
i . (27)

Therefore

Hki = − 1

‖ω‖
Bα
k ωα,βB

β
i , ∂i(‖ω‖) = Bα

i ωα,βC
β. (28)

Let us define the (1,1) tensor field f , the covariant vector field η and the contravari-
ant vector field ξ in M̄2m−1 as follows

1) f ji = JαβB
j
αB

β
i

2) ηk = 1
‖ω‖B

β
kJ

α
β ωα

3) ξk = − 1
‖ω‖B

k
βJ

β
αωα.

(29)

We see by (29) that the Riemannian metric ḡij = Bα
i gαβB

β
j induced on M̄2m−1

satisfies (23), (24) and (25). Hence (29) and ḡ form on M̄2m−1 an almost contact
metric structure (f, ξ, η, ḡ).
The Nijenhuis tensor N of f -structure [15, p. 386] is given by

Nf (X,Y )
def
= [fX, fY ]− f [X, fY ]− f [fX, Y ] + f2[X,Y ]. (30)

In the local coordinates the tensor (30) can be written in the form

Nk
ij = fkj,tf

t
i − f tj,ifkt − fki,tf tj + f ti,jf

k
t .

Differentiating covariantly (23) we have

fkt,jf
t
i + fkt f

t
i,j = ηi,jξ

k + ηi∇̄jξk.

Hence

Nk
ij = f ti (f

k
j,t − fkt,j)− f tj (fki,t − fkt,j) + ξk(ηi,j − ηj,i) + ηj∇iξk − ηi∇jξk.

If the tensor Nk
ij satisfies to the condition

nkij = Nk
ij + ξk(ηj,i − ηi,j) = 0 (31)

then the almost contact structure is said to be normal [6]. Following [10] we get

nkij = f ti (f
k
j,t − fkt,j)− f tj (fki,t − fkt,j) + ηj∇iξk − ηi∇jξk.
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Substituting (29) into (4) we obtain

nkij = Bt
αJ

α
βB

β
i

(
∇̄t(Bk

γJ
γ
δ B

δ
j )− ∇̄j(Bk

γJ
γ
δ B

δ
t )
)

−Bt
αJ

α
βB

β
j

(
∇̄t(Bk

γJ
γ
δ B

δ
i )− ∇̄i(Bk

γJ
γ
δ B

δ
t )
)

− 1

‖ω‖
Bα
i J

β
αωβ∇̄j

( 1

‖ω‖
Bk
γJ

γ
δ ω

δ
)

+
1

‖ω‖
Bα
j J

β
αωβ∇̄i

( 1

‖ω‖
Bk
γJ

γ
δ ω

δ
)
.

Taking into account (26) – (29) we have

nkij = f tiH
k
t ηj +

1

2
‖ω‖fki ηj − f tjHk

t ηi −
1

2
‖ω‖fkj ηi

−ηi
∂j(‖ω‖)
‖ω‖

ξk +
1

2
‖ω‖fkj ηi + ηi

∂j(‖ω‖)
‖ω‖

ξk + f tjH
k
t ηi

+ηj
∂i(‖ω‖)
‖ω‖

ξk − 1

2
‖ω‖fki ηj − ηj

∂i(‖ω‖)
‖ω‖

ξk − f tiHk
t ηj .

We see also that the condition

nkij = Nk
ij + ξk(ηj,i − ηi,j) = 0

is identically satisfied on M̄2m−1. This means that the theorem is true.

Theorem 5. If a hypersurface M̄2m−1 of a LCK-manifold M2m is an integral
manifold of the distribution defined by the equation

ω = 0

where ω is Lee form of the LCK-manifold M2m then the induced by the immersion
almost contact structure

1) f ji = JαβB
j
αB

β
i

2) ηk = 1
‖ω‖B

β
kJ

α
β ωα

3) ξk = − 1
‖ω‖B

k
βJ

β
αωα

is a normal one.

Let us consider the case when ω satisfies the condition (19). Then from (22) it
follows that dθ ∧ ω ∧ θ = 0 which means

dθ = γ1 ∧ ω + γ2 ∧ θ
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where γ1 and γ2 are some one-forms. According to conditions Ψ∗ω = 0 and
η = 1

‖ω‖Ψ
∗θ we have

dη = d
(

1
‖ω‖Ψ

∗θ
)

= d
(

1
‖ω‖

)
∧Ψ∗θ + 1

‖ω‖Ψ
∗dθ

= d
(

1
‖ω‖

)
∧Ψ∗θ + 1

‖ω‖Ψ
∗(γ1 ∧ ω + γ2 ∧ θ)

= d
(

1
‖ω‖

)
∧Ψ∗θ + 1

‖ω‖Ψ
∗γ1 ∧Ψ∗ω + 1

‖ω‖Ψ
∗γ2 ∧Ψ∗θ

= (Ψ∗γ2 − d(ln ‖ω‖)) ∧ η.
It follows that

dη ∧ η = 0. (32)
Since anM2m is LCK-manifold hence its fundamental form satisfies the condition
dΩ = ω ∧ Ω. Hence on the manifold M̄2m−1 we have

dΩ̄ = dΨ∗Ω = Ψ∗dΩ = Ψ∗(ω ∧ Ω) = Ψ∗ω ∧Ψ∗Ω = 0 (33)

since Ψ∗ω = 0. The condition of normality (31) is also satisfied. The theorem
follows immediately from (31), (32) and (33).

Theorem 6. Let the hypersurface M̄2m−1 of an LCK-manifoldM2m is an integral
manifold of the distribution defined by the equation ω = 0, where ω is Lee form of
the LCK-manifold M2m that satisfies the condition (19). Then the induced by the
immersion almost contact structure

1) f ji = JαβB
j
αB

β
i

2) ηk = 1
‖ω‖B

β
kJ

α
β ωα

3) ξk = − 1
‖ω‖B

k
βJ

β
αωα

is a normal almost contact metric structure for which the conditions

1) dη ∧ η = 0, 2) dΩ̄ = 0, 3) nkij = 0

are fulfilled.

Let us consider another case when an M2m is Vaisman manifold which means that
Lee form satisfies the condition ωi,j = 0. According to (22) we have

dθ =
1

2
‖ω‖2Jjkdxj ∧ dxk

or
dθ(X,Y ) = ‖ω‖2Ω(X,Y ).

Taking into account that for a Vaisman manifold ‖ω‖ = const it follows

dη(X,Y ) =
1

‖ω‖
dΨ∗θ(X,Y ) =

1

‖ω‖
Ψ∗dθ(X,Y )

(34)
= ‖ω‖Ψ∗Ω(X,Y ) = ‖ω‖Ω̄(X,Y ).
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From (28), Theorem 5 and (34) it follows that

Theorem 7. If a hypersurface M̄2m−1 of a LCK-manifold M2m is an integral
manifold of the distribution defined by the equation ω = 0, where ω is Lee form of
the LCK-manifold M2m that satisfies the condition∇Xω(Y ) = 0.

Then the induced by the immersion almost contact structure

1) f ji = JαβB
j
αB

β
i

2) ηk = 1
‖ω‖B

β
kJ

α
β ωα

3) ξk = − 1
‖ω‖B

k
βJ

β
αωα

is a c-Sasakian structure, c = ‖ω‖. Moreover M̄2m−1 is a totally geodesic hyper-
surface in M2m.

Similar results were obtained by Vaisman [13]. Moreover he had proved that if
M2m is conformally flat manifold then M̄2m−1 is a constant curvature manifold.
But we have proved normality of almost contact metric structure in M̄2m−1 which
satisfies the condition ω = 0 in LCK-manifold M2m, for common case.
Taking into account that LCK-manifolds with Lee form which satisfies the condi-
tion

Φ4(∇ω(X,Y )) =
‖ω‖2

2
g(X,Y )

have very particular properties, and we can refer to such LCK-manifolds as Pseudo-
Vaisman manifolds.
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