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1. Introduction

This paper is devoted to the theory of geodesic mappings. This theory was initiated
by Levi-Civita in [17]. He studied and solved problem about finding metrics of
Riemannian spaces with common geodesics. It is very interesting because these
problems are closely linked to dynamical equations of a mechanical systems.
After that the theory of geodesic mappings, it was further developed by Thomas,
Weyl, Shirokov, Solodovnikov, Sinyukov and others [1, 4–9, 13–15, 19–24, 26, 27,
29, 30, 32, 35, 37–41].
Some authors, see [12,29,30,37], decided to study geodesic mappings on symmet-
ric spaces, which was introduced by Cartan [3].
We note that geodesic and generalized mappings of symmetric, recurrent and gen-
eral recurrent spaces studied many authors, e.g. [2,13,16,18,20–24,29,30,33–37].
In our paper the fundamental equations of geodesic mappings of manifolds with
affine connection onto symmetric manifolds were obtained as closed differential
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equations system of Cauchy type in covariant derivative. The essential number of
parameters on which depend the general solutions was determined too.
We suppose that the studied spaces are simply connected and for their dimension it
pays that n > 2. Next, we will suppose that geometric objects are continuous and
sufficiently differentiable.

2. Geodesic Mappings of Manifolds With Affine Connection

A diffeomorphism f between manifolds An and Ān is geodesic mapping if f
maps any geodesic in An onto a geodesic in Ān.
Let us suppose that An admits geodesic mapping onto Ān and coordinate system
(U, x) at a point p is “common” of f , i.e., image f(p) has the same coordinate
(x1, x2, . . . , xn) such point p.
Let we have the deformation tensor of diffeomorphism f

P hij(x) = Γ̄hij(x)− Γhij(x) (1)

where Γhij(x) and Γ̄hij(x) are components of affine connection An and Ān, respec-
tively.
It is well known [6,29,30,32,37] that diffeomorphism f : An → Ān is geodesic if
and only if in common coordinate system (x1, x2, . . . , xn) the deformation tensor
of connections has the following form

P hij(x) = ψi(x)δhj + ψj(x)δhi (2)

where δhi is the Kronecker symbol and ψi(x) are components of a covector field.
The geodesic mapping is non-trivial if ψi(x) 6≡ 0.
Evidently any manifold with affine connectionAn admit non-trivial geodesic map-
ping onto a certain other manifold with affine connection Ān. This mapping is
determined by the vector field ψ. This proposition does not valid generally if man-
ifold Ān is Riemannian.
We obtained [23], see [30, p. 283], fundamental linear differential equations sys-
tem of Cauchy type for geodesic mappings of spaces with affine connection onto
(pseudo-) Riemannian spaces.

3. Geodesic Mappings of Manifolds With Affine Connection Onto
Symmetric Manifolds

Manifold with affine connection is called (locally) symmetric space, if its curva-
ture tensor is absolutely parallel (P. Shirokov [35], É. Cartan [3], Helgason [10]),
see [29, 30, 32, 37].
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These manifolds are playing important role in the general theory of relativity and
the theory of Killing and general Killing vector fields [32].
We suppose that manifold Ān is symmetric, i.e., we have the following condition

R̄hijk|m(x) = 0 (3)

where R̄hijk(x) is the Riemannian (curvature) tensor Ān, the symbol “ | ” denote a
covariant derivative in Ān.
Because

R̄hijk|m =
∂R̄hijk
∂xm

+ Γ̄hiαR̄
α
ijk − Γ̄αmiR̄

h
αjk − Γ̄αmjR̄

h
iαk − Γ̄αmkR̄

h
ijα

then from formula (1) it follows

R̄hijk|m = R̄hijk,m + P hmαR̄
α
ijk − PαmiR̄hαjk − PαmjR̄hiαk − PαmkR̄hijα (4)

where the symbol “ , ” denote a covariant derivative in An.
Insomuch as manifold Ān is symmetric than from formulas (3) and (4), we obtain

R̄hijk,m = −P hmαR̄αijk + PαmiR̄
h
αjk + PαmjR̄

h
iαk + PαmkR̄

h
ijα. (5)

When An admit geodesic mapping onto Ān formula (2) holds. Then from (5)
follows

R̄hijk,m = 2ψmR̄
h
ijk + ψjR̄

h
imk + ψkR̄

h
ijm − δhmψαR̄αijk. (6)

Between the curvature tensors of An and Ān the following formula

R̄hijk = Rhijk + P hik,j − P hij,k + PαikP
h
jα − PαijP hkα (7)

holds [29, 30, 37].
Using P hij,k = ψi,k(x)δhj + ψj,k(x)δhi and from formula (7) after some calculation
we obtain

R̄hijk = Rhijk − δhj ψi,k + δhkψi,j − δhi ψj,k + δhi ψk,j + δhj ψiψk − δhkψiψj . (8)

Contracting (8) with respect to indices h and k, we get

R̄ij = Rij + nψi,j − ψj,i + (1− n)ψiψj (9)

where Rij and R̄ij are the Ricci tensors on An and Ān, respectively.
Alternating above formula we have

R̄[ij] = R[ij] + (n+ 1) (ψi,j − ψj,i) (10)

where square bracket denote alternating of indices without dividing.
From formula (10) it follows

ψi,j − ψj,i =
1

n+ 1
(R̄[ij] −R[ij]). (11)
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Using formulas (9) and (11) we obtain

ψi,j = ψiψj +
1

n− 1
(R̄ij −Rij)−

1

n2 − 1
(R̄[ij] −R[ij]). (12)

It is clear to see that equations (6) and (12) on the manifold An form a closed
differential equations system of Cauchy type respective unknown functions R̄hijk
and ψi(x), which naturally satisfy the following algebraic conditions

R̄hi(jk) = 0 and R̄h(ijk) = 0 (13)

where brackets denote symmetrization with respect to indices without dividing.
In addition on conditions (13), it must valid conditions for curvature tensor R̄ as
well. These conditions are derived from condition (8) if we exclude ψi,j using
equations (12). Thus the conditions have following form

R̄hijk = Rhijk − δhj
[

1
n−1 (R̄ik −Rik)− 1

n2−1 (R̄[ik] −R[ik])
]

+δhk

[
1

n−1 (R̄ij −Rij)− 1
n2−1 (R̄[ij] −R[ij])

]
+δhi

1
n+1 (R̄[jk] −R[jk]).

(14)

On the base of above mentioned we obtain the following theorem.

Theorem 1. A manifold An admits geodesic mappings onto a symmetric mani-
fold Ān if and only if on An exists solution respective unknown functions R̄hijk and
ψi(x) of a closed differential equations system of Cauchy type

R̄hijk,m = 2ψmR̄
h
ijk + ψjR̄

h
imk + ψkR̄

h
ijm − δhmψαR̄αijk

ψi,j = ψiψj + 1
n−1 (R̄ij −Rij)− 1

n2−1 (R̄[ij] −R[ij]).

with algebraic conditions (14).

We remark that equation (6) is a completely integrable.
By direct substitution, we convince, that from conditions (14) follow conditions (13).
On the base of algebraic properties (14) of unknown functions R̄hijk the general
solution of Theorem 1 depends no more than

n(n+ 1)

essential parameters. For these initial conditions at point x0 it pays, that

ψi(x0) = ψ0
i and R̄ij(x0) = R̄0

ij .
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