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Abstract. These notes describe some links between the group SL2(R), the
Heisenberg group and hypercomplex numbers – complex, dual and double
numbers. Relations between quantum and classical mechanics are clarified
in this framework. In particular, classical mechanics can be obtained as a the-
ory with noncommutative observables and a non-zero Planck constant if we
replace complex numbers in quantum mechanics by dual numbers. Our con-
sideration is based on induced representations which are build from complex-
/dual-/double-valued characters. Dynamic equations, rules of additions of
probabilities, ladder operators and uncertainty relations are also discussed.
Finally, we prove a Calderón–Vaillancourt-type norm estimation for relative
convolutions.
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Introduction

These paper describe some links between the group SL2(R), the Heisenberg group
and hypercomplex numbers. The described relations appear in a natural way with-
out any enforcement from our side. The discussion is illustrated by mathematical
models of various physical systems.
By hypercomplex numbers we mean two-dimensional real associative commuta-
tive algebras. It is known [80], that any such algebra is isomorphic either to com-
plex, dual or double numbers, that is collection of elements a+ ιb, where a, b ∈ R
and ι2 = −1, 0 or 1. Complex numbers are crucial in quantum mechanics (or,



Symmetry, Geometry and Quantization with Hypercomplex Numbers 13

in fact, any wave process), dual numbers similarly serve classical mechanics and
double numbers are perfect to encode relativistic space-time1.
Section 1 contains an easy-reading overview of the rôle of complex numbers in
quantum mechanics and indicates that classical mechanics can be described as a
theory with noncommutative observables and a non-zero Planck constant if we
replace complex numbers by dual numbers. The Heisenberg group is the main
ingredient for both – quantum and classic – models. The detailed exposition of the
theory is provided in the following sections.
Section 2 introduces the group SL2(R) and describes all its actions on two-dimen-
sional homogeneous spaces: it turns out that they are Möbius transformations of
complex, dual and double numbers. We also re-introduce the Heisenberg group in
more details. In particular, we point out Heisenberg group’s automorphisms from
the symplectic action of SL2(R).
Section 3 uses Mackey’s induced representation to construct linear representations
of SL2(R) and the Heisenberg group. We use all sorts (complex, dual and double)
of characters of one-dimensional subgroups to induce representations of SL2(R).
The similarity between obtained representations in hypercomplex numbers is illus-
trated by corresponding ladder operators.
Section 4 systematically presents the Hamiltonian formalism obtained from linear
representations of the Heisenberg group. Using complex, dual and double numbers
we recover principal elements of quantum, classical and hyperbolic (relativistic?)
mechanics. This includes both the Hamilton–Heisenberg dynamical equation, rules
of addition of probabilities and some examples.
Section 5 introduces co- and contra-variant transforms, which are also known un-
der many other names, e.g. wavelet transform. These transforms intertwine the
given representation with left and right regular representations. We use this ob-
servation to derive a connection between the uncertainty relations and analyticity
condition – both in the standard meaning for the Heisenberg group and a new one
for SL2(R). We also obtain a Calderón–Vaillancourt-type norm estimation for in-
tegrated representation.

1. Preview: Quantum and Classical Mechanics

. . . it was on a Sunday that the idea first occurred to me that
ab− ba might correspond to a Poisson bracket.

P.A.M. Dirac

In this section we will demonstrate that a Poisson bracket do not only corresponds
to a commutator, in fact a Poisson bracket is the image of the commutator under a
transformation which uses dual numbers.

1The last case is not discussed much here, see [6] for more details.
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1.1. Axioms of Mechanics

There is a recent revival of interest in foundations of quantum mechanics, which is
essentially motivated by engineering challenges at the nano-scale. There are strong
indications that we need to revise the development of the quantum theory from its
early days.
In 1926, Dirac discussed the idea that quantum mechanics can be obtained from
classical description through a change in the only rule, cf. [19]

. . . there is one basic assumption of the classical theory which is
false, and that if this assumption were removed and replaced by
something more general, the whole of atomic theory would follow
quite naturally. Until quite recently, however, one has had no idea of
what this assumption could be.

In Dirac’s view, such a condition is provided by the Heisenberg commutation rela-
tion of coordinate and momentum variables [19, (1)]

qrpr − prqr = ih. (1)

Algebraically, this identity declares noncommutativity of qr and pr. Thus, Dirac
stated [19] that classical mechanics is formulated through commutative quantities
(“c-numbers” in his terms) while quantum mechanics requires noncommutative
quantities (“q-numbers”). The rest of theory may be unchanged if it does not con-
tradict to the above algebraic rules. This was explicitly re-affirmed at the first
sentence of the subsequent paper [18]

The new mechanics of the atom introduced by Heisenberg may be
based on the assumption that the variables that describe a dynamical
system do not obey the commutative law of multiplication, but satisfy
instead certain quantum conditions.

The same point of view is expressed in his later works [20, p. 26; 21, p. 6].
Dirac’s approach was largely approved, especially by researchers on the mathe-
matical side of the board. Moreover, the vague version – “quantum is something
noncommutative” – of the original statement was lightly reverted to “everything
noncommutative is quantum”. For example, there is a fashion to label any non-
commutative algebra as a “quantum space” [13].
Let us carefully review Dirac’s idea about noncommutativity as the principal source
of quantum theory.

1.2. “Algebra” of Observables

Dropping the commutativity hypothesis on observables, Dirac [19] made the fol-
lowing (apparently flexible) assumption
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All one knows about q-numbers is that if z1 and z2 are two q-numbers,
or one q-number and one c-number, there exist the numbers z1 +
z2, z1z2, z2z1, which will in general be q-numbers but may be c-
numbers.

Mathematically, this (together with some natural identities) means that observables
form an algebraic structure known as a ring. Furthermore, the linear superposition
principle imposes a liner structure upon observables, thus their set becomes an
algebra. Some mathematically-oriented texts, e.g. [23, § 1.2], directly speak about
an “algebra of observables” which is not far from the above quote [19]. It is also
deducible from two connected statements in Dirac’s canonical textbook

1. “the linear operators corresponds to the dynamical variables at that time” [20,
§ 7, p. 26].

2. “Linear operators can be added together” [20, § 7, p. 23].

However, the assumption that any two observables may be added cannot fit into a
physical theory. To admit addition, observables need to have the same dimension-
ality. In the simplest example of the observables of coordinate q and momentum p,
which units shall be assigned to the expression q+ p? Meters or kilos×meters

seconds ? If we
get the value 5 for p + q in the metric units, what is then the result in the imperial
ones? Since these questions cannot be answered, the above Dirac’s assumption is
not a part of any physical theory.

Another common definition suffering from the same problem is used in many ex-
cellent books written by distinguished mathematicians, see for example [26, § 1.1;
83, § 2-2]. It declares that quantum observables are projection-valued Borel mea-
sures on the dimensionless real line. Such a definition permit an instant construc-
tion (through the functional calculus) of new observables, including algebraically
formed [83, § 2-2, p. 63]

Because of Axiom III, expressions such as A2, A3 + A, 1 − A, and
eA all make sense whenever A is an observable.

However, ifA has a physical dimension (is not a scalar) then the expressionA3+A
cannot be assigned a dimension in a consistent manner.

Of course, physical defects of the above (otherwise perfect) mathematical con-
structions do not prevent physicists from making correct calculations, which are in
a good agreement with experiments. We are not going to analyse methods which
allow researchers to escape the indicated dangers. Instead, it will be more benefi-
cial to outline alternative mathematical foundations of quantum theory, which do
not have those shortcomings.
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1.3. Non-Essential Noncommutativity

While we can add two observables if they have the same dimension only, physics
allows us to multiply any observables freely. Of course, the dimensionality of a
product is the product of dimensionalities, thus the commutator [A,B] = AB −
BA is well defined for any two observables A and B. In particular, the commuta-
tor (1) is also well-defined, but is it indeed so important?
In fact, it is easy to argue that noncommutativity of observables is not an essential
prerequisite for quantum mechanics: there are constructions of quantum theory
which do not relay on it at all. The most prominent example is the Feynman path
integral. To focus on the really cardinal moments, we firstly take the popular lec-
tures [24], which present the main elements in a very enlightening way. Feynman
managed to tell the fundamental features of quantum electrodynamics without any
reference to (non-)commutativity: the entire text does not mention it anywhere.
Is this an artefact of the popular nature of these lecture? Take the academic presen-
tation of path integral technique given in [25]. It mentioned (non-)commutativity
only on pages 115–6 and 176. In addition, page 355 contains a remark on noncom-
mutativity of quaternions, which is irrelevant to our topic. Moreover, page 176
highlights that noncommutativity of quantum observables is a consequence of the
path integral formalism rather than an indispensable axiom.
But what is the mathematical source of quantum theory if noncommutativity is
not? The vivid presentation in [24] uses stopwatch with a single hand to explain
the calculation of path integrals. The angle of stopwatch’s hand presents the phase
for a path x(t) between two points in the configuration space. The mathematical
expression for the path’s phase is [25, (2-15)]

φ[x(t)] = const · e(i/})S[x(t)] (2)

where S[x(t)] is the classic action along the path x(t). Summing up contribu-
tions (2) along all paths between two points a and b we obtain the amplitude
K(a, b). This amplitude presents very accurate description of many quantum phe-
nomena. Therefore, expression (2) is also a strong contestant for the rôle of the
cornerstone of quantum theory.
Is there anything common between two “principal” identities (1) and (2)? Seem-
ingly, not. A more attentive reader may say that there are only two common ele-
ments there (in order of believed significance)

1. The non-zero Planck constant }.
2. The imaginary unit i.

The Planck constant was the first manifestation of quantum (discrete) behaviour
and it is at the heart of the whole theory. In contrast, classical mechanics is oftenly
obtained as a semiclassical limit }→ 0. Thus, the non-zero Planck constant looks
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like a clear marker of quantum world in its opposition to the classical one. Regret-
tably, there is a common practice to “chose our units such that } = 1”. Thus, the
Planck constant becomes oftenly invisible in many formulae even being implicitly
present there. Note also, that 1 in the identity } = 1 is not a scalar but a physical
quantity with the dimensionality of the action. Thus, the simple omission of the
Planck constant invalidates dimensionalities of physical equations.
The complex imaginary unit is also a mandatory element of quantum mechanics in
all its possible formulations. It is enough to point out that the popular lectures [24]
managed to avoid any mention of noncommutativity but did uses complex numbers
both explicitly (see the Index there) and implicitly (as rotations of the hand of
a stopwatch). However, it is a common perception that complex numbers are a
useful but manly technical tool in quantum theory.

1.4. Quantum Mechanics from the Heisenberg Group

Looking for a source of quantum theory we again return to the Heisenberg com-
mutation relations (1): they are an important part of quantum mechanics (either
as a prerequisite or as a consequence). It was observed for a long time that these
relations are a representation of the structural identities of the Lie algebra of the
Heisenberg group [26, 35, 36]. In the simplest case of one dimension, the Heisen-
berg group H = H1 can be realised by the Euclidean space R3 with the group
law

(s, x, y) ∗ (s̃, x̃, ỹ) = (s+ s̃+ 1
2ω(x, y; x̃, ỹ), x+ x̃, y + ỹ) (3)

where ω is the symplectic form on R2 [3, § 37], which is behind the entire classical
Hamiltonian formalism

ω(x, y; x̃, ỹ) = xỹ − x̃y. (4)

Here, like for the path integral, we see another example of a quantum notion being
defined through a classical object.
The Heisenberg group is noncommutative since ω(x, y; x̃, ỹ) = −ω(x̃, ỹ;x, y).
The collection of points (s, 0, 0) forms the centre of H, that is (s, 0, 0) commutes
with any other element of the group. We are interested in the unitary irreducible
representations (UIRs) ρ of H in an infinite-dimensional Hilbert space H , that is a
group homomorphism (ρ(g1)ρ(g2) = ρ(g1 ∗ g2)) from H to unitary operators on
H . By Schur’s lemma, for such a representation ρ, the action of the centre shall
be multiplication by an unimodular complex number, i.e., ρ(s, 0, 0) = e2πi}sI for
some real } 6= 0.
Furthermore, the celebrated Stone–von Neumann theorem [26, § 1.5] tells that all
UIRs of H in complex Hilbert spaces with the same value of } are unitary equiva-
lent. In particular, this implies that any realisation of quantum mechanics, e.g. the
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Schrödinger wave mechanics, which provides the commutation relations (1) shall
be unitary equivalent to the Heisenberg matrix mechanics based on these relations.
In particular, any UIR of H is equivalent to a subrepresentation of the following
representation on L2(R2)

ρ}(s, x, y) : f(q, p) 7→ e−2πi(}s+qx+py)f
(
q − }

2y, p+ }
2x
)
. (5)

Here R2 has the physical meaning of the classical phase space with q represent-
ing the coordinate in the configurational space and p—the respective momentum.
The function f(q, p) in (5) presents a state of the physical system as an ampli-
tude over the phase space. Thus, the action (5) is more intuitive and has many
technical advantages [26,36,108] in comparison with the well-known Schrödinger
representation (cf. (75)), to which it is unitary equivalent, of course.
Infinitesimal generators of the one-parameter subgroups ρ}(0, x, 0) and ρ}(0, 0, y)

from (5) are the operators 1
2}∂p − 2πiq and −1

2}∂q − 2πip. For these, we can
directly verify the commutator identity

[−1
2}∂q − 2πip, 1

2}∂p − 2πiq] = ih, where h = 2π}.

Since we have a representation of (1), these operators can be used as a model of
the quantum coordinate and momentum.
For a Hamiltonian H(q, p) we can integrate the representation ρ} with the Fourier
transform Ĥ(x, y) of H(q, p)

H(ρ) =

∫
R2

Ĥ(x, y) ρ}(0, x, y) dx dy (6)

and obtain (possibly unbounded) operatorH(ρ) onL2(R2). This assignment of the
operator H(ρ) (quantum observable) to a function H(q, p) (classical observable)
is known as the Weyl quantization or a Weyl calculus [26, § 2.1]. The Hamilton-
ian H(ρ) defines the dynamics of a quantum observable k(ρ) by the Heisenberg
equation

ih
dk(ρ)

dt
= H(ρ)k(ρ)− k(ρ)H(ρ). (7)

This is sketch of the well-known construction of quantum mechanics from infinite-
dimensional UIRs of the Heisenberg group, which can be found in numerous
sources [26, 36, 59].

1.5. Classical Noncommutativity

Now we are going to show that the priority of importance in quantum theory shall
be shifted from the Planck constant towards the imaginary unit. Namely, we de-
scribe a model of classical mechanics with a non-zero Planck constant but with
a different hypercomplex unit. Instead of the imaginary unit with the property
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i2 = −1 we will use the nilpotent unit ε such that ε2 = 0. The dual numbers gen-
erated by nilpotent unit were already known for their connections with Galilean
relativity [28, 107] – the fundamental symmetry of classical mechanics – thus its
appearance in our discussion shall not be very surprising after all. Rather, we may
wander why the following construction was unnoticed for such a long time.
Another important feature of our scheme is that the classical mechanics is pre-
sented by a noncommutative model. Therefore, it will be a refutation of Dirac’s
claim about the exclusive rôle of noncommutativity for quantum theory. Moreover,
the model is developed from the same Heisenberg group, which were used above
to describe the quantum mechanics.
Consider a four-dimensional algebra C spanned by 1, i, ε and iε. We can define
the following representation ρεh of the Heisenberg group in a space of C-valued
smooth functions [69, 71]

ρεh(s, x, y) : f(q, p) 7→ (8)

e−2πi(xq+yp)

(
f(q, p) + ε~

(
2πsf(q, p)− iy

2
f ′q(q, p) +

ix

2
f ′p(q, p)

))
.

A simple calculation shows the representation property

ρεh(s, x, y)ρεh(s̃, x̃, ỹ) = ρεh((s, x, y) ∗ (s̃, x̃, ỹ))

for the multiplication (3) on H. Since this is not a unitary representation in a
complex-valued Hilbert space its existence does not contradict the Stone–von Neu-
mann theorem. Both representations (5) and (8) are noncommutative and act on
functions over the phase space. The important distinction is:

• The representation (5) is induced (in the sense of Mackey [47, § 13.4]) by
the complex-valued unitary character ρ}(s, 0, 0) = e2πi}s of the centre of
H.
• The representation (8) is similarly induced by the dual number-valued char-

acter ρεh(s, 0, 0) = eεhs = 1 + εhs of the centre of H, cf. [67]. Here
dual numbers are the associative and commutative two-dimensional algebra
spanned by 1 and ε.

Similarity between (5) and (8) is even more striking if (8) is written2 as

ρ}(s, x, y) : f(q, p) 7→ e−2π(ε}s+i(qx+py))f

(
q − i}

2
εy, p+

i}
2
εx

)
. (9)

Here, for a differentiable function k of a real variable t, the expression k(t + εa)
is understood as k(t) + εak′(t), where a ∈ C is a constant. For a real-analytic
function k this can be justified through its Taylor’s expansion, see [10, 16, 17, 28],

2I am grateful to Prof. N.Gromov, who suggested this expression.
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[109, § I.2(10)]. The same expression appears within the non-standard analysis
based on the idempotent unit ε [5].
The infinitesimal generators of one-parameter subgroups (that is derived represen-
tations) ρεh(0, x, 0) and ρεh(0, 0, y) in (8) are

dρXεh = −2πiq − εh

4πi
∂p and dρYεh = −2πip+

εh

4πi
∂q

respectively. We calculate their commutator

dρXεh · dρYεh − dρYεh · dρXεh = εh. (10)

It is similar to the Heisenberg relation (1): the commutator is non-zero and is
proportional to the Planck constant. The only difference is the replacement of the
imaginary unit by the nilpotent one. The radical nature of this change becomes
clear if we integrate this representation with the Fourier transform Ĥ(x, y) of a
Hamiltonian function H(q, p)

H̊ =

∫
R2n

Ĥ(x, y) ρεh(0, x, y) dx dy = H +
εh

2

(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)
. (11)

This is a first order differential operator on the phase space. It generates a dynamics
of a classical observable k – a smooth real-valued function on the phase space –
through the equation isomorphic to the Heisenberg equation (7)

εh
d̊k

dt
= H̊k̊ − k̊H̊.

Making a substitution from (11) and using the identity ε2 = 0 we obtain
dk

dt
=
∂H

∂p

∂k

∂q
− ∂H

∂q

∂k

∂p
· (12)

This is, of course, the Hamilton equation of classical mechanics based on the Pois-
son bracket. Dirac suggested, see the paper’s epigraph, that the commutator corre-
sponds to the Poisson bracket. However, the commutator in the representation (8)
is exactly the Poisson bracket.
Note also, that both the Planck constant and the nilpotent unit disappeared from
(12), however we did use the fact h 6= 0 to make this cancellation. Also, the shy
disappearance of the nilpotent unit ε at the very last minute can explain why its
rôle remain unnoticed for a long time.

1.6. Summary

We revised mathematical foundations of quantum and classical mechanics and the
rôle of hypercomplex units i2 = −1 and ε2 = 0 there. To make the consideration
complete, one may wish to consider the third logical possibility of the hyperbolic
unit j with the property j2 = 1 [38, 44, 67, 70, 71, 88, 102], see Section 4.4.
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The above discussion provides the following observations [72]

1. Noncommutativity is not a crucial prerequisite for quantum theory, it can
be obtained as a consequence of other fundamental assumptions.

2. Noncommutativity is not a distinguished feature of quantum theory, there
are noncommutative formulations of classical mechanics as well.

3. The non-zero Planck constant is compatible with classical mechanics. Thus,
there is no a necessity to consider the semiclassical limit }→ 0, where the
constant has to tend to zero.

4. There is no a necessity to request that physical observables form an alge-
bra, which is a physical non-sense since we cannot add two observables
of different dimensionalities. Quantization can be performed by the Weyl
recipe, which requires only a structure of a linear space in the collection of
all observables with the same physical dimensionality.

5. It is the imaginary unit in (1), which is ultimately responsible for most of
quantum effects. Classical mechanics can be obtained from the similar com-
mutator relation (10) using the nilpotent unit ε2 = 0.

In Dirac’s opinion, quantum noncommutativity was so important because it guar-
anties a non-trivial commutator, which is required to substitute the Poisson bracket.
In our model, multiplication of classical observables is also non-commutative and
the Poisson bracket exactly is the commutator. Thus, these elements do not sepa-
rate quantum and classical models anymore.
Our consideration illustrates the following statement on the exceptional rôle of the
complex numbers in quantum theory [86]

. . . for the first time, the complex field C was brought into physics
at a fundamental and universal level, not just as a useful or elegant
device, as had often been the case earlier for many applications of
complex numbers to physics, but at the very basis of physical law.

Thus, Dirac may be right that we need to change a single assumption to get a tran-
sition between classical mechanics and quantum. But, it shall not be a move from
commutative to noncommutative. Instead, we need to replace a representation of
the Heisenberg group induced from a dual number-valued character by the repre-
sentation induced by a complex-valued character. Our conclusion can be stated
like a proportionality

Classical/Quantum=Dual Numbers/Complex Numbers.

2. Groups, Homogeneous Spaces and Hypercomplex Numbers

This section shows that the group SL2(R) naturally requires complex, dual and
double numbers to describe its action on homogeneous space. And the group
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SL2(R) acts by automorphism on the Heisenberg group, thus the Heisenberg group
is naturally linked to hypercomplex numbers as well.

2.1. The Group SL2(R) and Its Subgroups

The SL2(R) group [79] consists of 2× 2 real matrices with unit determinant. This
is the smallest semis-simple Lie group, its Lie algebra is formed by zero-trace 2×2
real matrices. The ax+b group, which is used in wavelet theory and harmonic anal-
ysis [76], is only a subgroup of SL2(R) consisting of the upper-triangular matrices(
a1/2 b

0 a−1/2

)
.

Consider the Lie algebra sl2 of the group SL2(R). Pick up the following basis in
sl2 [97, § 8.1]

A =
1

2

(
−1 0
0 1

)
, B =

1

2

(
0 1
1 0

)
, Z =

(
0 1
−1 0

)
. (13)

The commutation relations between the elements are

[Z,A] = 2B, [Z,B] = −2A, [A,B] = −1

2
Z. (14)

Any element X of the Lie algebra sl2 defines a one-parameter continuous sub-
group A(t) of SL2(R) through the exponentiation: A(t) = exp(tX). There are
only three different types of such subgroups under the matrix similarity A(t) 7→
MA(t)M−1 for some constant M ∈ SL2(R).

Proposition 1. Any continuous one-parameter subgroup of SL2(R) is conjugate
to one of the following subgroups

A =

{(
e−t/2 0

0 et/2

)
= exp

(
−t/2 0

0 t/2

)
; t ∈ R

}
(15)

N =

{(
1 t
0 1

)
= exp

(
0 t
0 0

)
; t ∈ R

}
(16)

K =

{(
cos t sin t
− sin t cos t

)
= exp

(
0 t
−t 0

)
; t ∈ (−π, π]

}
. (17)

2.2. Action of SL2(R) as a Source of Hypercomplex Numbers

We recall the following standard construction [47, § 13.2]. Let H be a closed
subgroup of a Lie group G. Let Ω = G/H be the corresponding homogeneous
space and s : Ω → G be a smooth section, which is a right inverse to the natural
projection p : G→ Ω. The choice of s is inessential in the sense that by a smooth
map Ω→ Ω we can always reduce one to another.
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Any g ∈ G has a unique decomposition of the form g = s(ω)h, where ω = p(g) ∈
Ω and h ∈ H . Note that Ω is a left homogeneous space with the G-action defined
in terms of p and s as follows

g : ω 7→ g · ω = p(g ∗ s(ω)) (18)

where ∗ is the multiplication on G. This is also illustrated by the following com-
mutative diagram

G

p

��

g∗ // G

p

��
Ω

s

OO

g· // Ω

s

OO

We want to describe homogeneous spaces obtained from G = SL2(R) and H be
one-dimensional continuous subgroup of SL2(R). For G = SL2(R), as well as
for other semisimple groups, it is common to consider only the case of H being
the maximal compact subgroup K. However, in this paper we admit H to be any
one-dimensional continuous subgroup. Due to Proposition 1 it is sufficient to take
H = K, N or A. Then Ω is a two-dimensional manifold and for any choice of H
we define [54, Ex. 3.7(a)]

s : (u, v) 7→ 1√
v

(
v u
0 1

)
, (u, v) ∈ R2, v > 0. (19)

A direct (or computer algebra [65]) calculation show that

Proposition 2. The SL2(R) action (18) associated to the map s (19) is(
a b
c d

)
: (u, v) 7→

(
(au+ b)(cu+ d)− σcav2

(cu+ d)2 − σ(cv)2
,

v

(cu+ d)2 − σ(cv)2

)
(20)

where σ = −1, 0 and 1 for the subgroups K, Ñ and Ã respectively.

The expression in (20) does not look very appealing, however an introduction of
hypercomplex numbers makes it more attractive

Proposition 3. Let a hypercomplex unit ι be such that ι2 = σ, then the SL2(R)
action (20) becomes(

a b
c d

)
: w 7→ aw + b

cw + d
, where w = u+ ιv (21)

for all three cases parametrised by σ as in Proposition 2.

Remark 4. We wish to stress that the hypercomplex numbers were not introduced
here by our intention, arbitrariness or “generalising attitude” [92, p. 4]. They
were naturally created by the SL2(R) action.
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Notably the action (21) is a group homomorphism of the group SL2(R) into trans-
formations of the “upper half-plane” on hypercomplex numbers. Although dual
and double numbers are algebraically trivial, the respective geometries in the spirit
of Erlangen programme are refreshingly inspiring [50, 66, 70] and provide useful
insights even in the elliptic case [61]. In order to treat divisors of zero, we need to
consider Möbius transformations (21) of conformally completed plane [34, 62].
The arithmetic of dual and double numbers is different from complex numbers
mainly in the following aspects

1. They have zero divisors. However, we are still able to define their trans-
forms by (21) in most cases. The proper treatment of zero divisors will be
done through corresponding compactification [70, § 8.1].

2. They are not algebraically closed. However, this property of complex num-
bers is not used very often in analysis.

The three possible values−1, 0 and 1 of σ := ι2 will be referred to here as elliptic,
parabolic and hyperbolic cases, respectively. This separation into three cases will
be referred to as the EPH classification. Unfortunately, there is a clash here with
the already established label for the Lobachevsky geometry. It is often called hy-
perbolic geometry because it can be realised as a Riemann geometry on a two-sheet
hyperboloid. However, within our framework, the Lobachevsky geometry should
be called elliptic and it will have a true hyperbolic counterpart.

Notation 5. We denote the space R2 of vectors u+vι by Re, Rp or Rh to highlight
which number system (complex, dual or double, respectively) is used. The notation
Rσ is used for a generic case.

2.3. Orbits of the Subgroup Actions

We start our investigation of the Möbius transformations (21)(
a b
c d

)
: w 7→ aw + b

cw + d

on the hypercomplex numbersw = u+ιv from a description of orbits produced by
the subgroups Ã, Ñ and K. Due to the Iwasawa decomposition SL2(R) = ANK,
any Möbius transformation can be represented as a superposition of these three
actions.
The actions of subgroups A and N for any kind of hypercomplex numbers on
the plane are the same as on the real line: A dilates and N shifts – see Fig. 1 for
illustrations. Thin traversal lines in Fig. 1 join points of orbits obtained from the
vertical axis by the same values of t and grey arrows represent “local velocities” –
vector fields of derived representations.
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1

1

1

1

Figure 1. Actions of the subgroups A and N by Möbius transforma-
tions. Transverse thin lines are images of the vertical axis, grey arrows
show the derived action.

1

1

1

1

1

1

Figure 2. Action of the subgroup K. The corresponding orbits are
circles, parabolas and hyperbolas shown by thick lines. Transverse thin
lines are images of the vertical axis, grey arrows show the derived ac-
tion.

By contrast, the action of the third matrix from the subgroupK sharply depends on
σ = ι2, as illustrated by Fig. 2. In elliptic, parabolic and hyperbolic cases,K-orbits
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are circles, parabolas and (equilateral) hyperbolas, respectively. The meaning of
traversal lines and vector fields is the same as on the previous figure.
At the beginning of this subsection we described how subgroups generate homoge-
neous spaces. The following exercise goes it in the opposite way: from the group
action on a homogeneous space to the corresponding subgroup, which fixes the
certain point.

Exercise 6. Let SL2(R) act by Möbius transformations (21) on the three number
systems. Show that the isotropy subgroups of the point ι are:

1. The subgroup K in the elliptic case. Thus, the elliptic upper half-plane is a
model for the homogeneous space SL2(R)/K.

2. The subgroup Ñ of matrices(
1 0
ν 1

)
=

(
0 −1
1 0

)(
1 ν
0 1

)(
0 1
−1 0

)
(22)

in the parabolic case. It also fixes any point εv on the vertical axis, which
is the set of zero divisors in dual numbers. The subgroup Ñ is conjugate to
subgroup N , thus the parabolic upper half-plane is a model for the homo-
geneous space SL2(R)/N .

3. The subgroup Ã of matrices(
cosh τ sinh τ
sinh τ cosh τ

)
=

1

2

(
1 −1
1 1

)(
eτ 0
0 e−τ

)(
1 1
−1 1

)
(23)

in the hyperbolic case. These transformations also fix the light cone centred
at j, that is, consisting of j + zero divisors. The subgroup Ã is conjugate
to the subgroup A, thus two copies of the upper half-plane are a model for
SL2(R)/A.

1

1

1

1

1

1

Figure 3. Actions of isotropy subgroups K, Ñ and Ã, which fix point
ι in three EPH cases.
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Figure 3 shows actions of the above isotropic subgroups on the respective numbers,
we call them rotations around ι. Note, that in parabolic and hyperbolic cases they
fix larger sets connected with zero divisors.
It is inspiring to compare the action of subgroups K, Ñ and Ã on three number
systems, this is presented on Fig. 4. Some features are preserved if we move from
top to bottom along the same column, that is, keep the subgroup and change the
metric of the space. We also note the same system of a gradual transition if we
compare pictures from left to right along a particular row. Note, that Fig. 3 extracts
diagonal images from Fig. 4, this puts three images from Fig. 3 into a context,
which is not obvious from Fig. 4.

2.4. The Heisenberg Group and Symplectomorphisms

Let (s, x, y), where s, x, y ∈ R, be an element of the one-dimensional Heisenberg
group H [26,36] also known as Weyl or Heisenberg-Weyl group. Consideration of
the general case of the n-dimensional Heisenberg group Hn will be similar, but is
beyond the scope of present paper. The group law on H is given as follows:

(s, x, y) · (s̃, x̃, ỹ) = (s+ s̃+ 1
2ω(x, y; x̃, ỹ), x+ x̃, y + ỹ) (24)

where the non-commutativity is due to ω – the symplectic form on R2 (4), which is
the central object of the classical mechanics [3, § 37]

ω(x, y; x̃, ỹ) = xỹ − x̃y. (25)

The Heisenberg group is a non-commutative Lie group with the centre

Z = {(s, 0, 0) ∈ H ; s ∈ R}.
The left shifts

Λ(g) : f(g̃) 7→ f(g−1g̃) (26)
act as a representation of H on a certain linear space of functions. For example,
an action on L2(H, dg) with respect to the Haar measure dg = ds dx dy is the left
regular representation, which is unitary.
The Lie algebra h of H is spanned by left-(right-)invariant vector fields

Sl(r) = ±∂s, X l(r) = ±∂x − 1
2y∂s, Y l(r) = ±∂y + 1

2x∂s (27)

on H with the Heisenberg commutator relation

[X l(r), Y l(r)] = Sl(r) (28)

and all other commutators vanishing. This is encoded in the phrase H is a nilpotent
step 2 Lie group. For simplicity, we will sometimes omit the superscript l for left-
invariant field.
The group of outer automorphisms of H, which trivially acts on the centre of H, is
the symplectic group Sp(2) It is the group of symmetries of the symplectic form
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1
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1

1

1

1

1

1

1

1

1

1

1

Figure 4. Actions of the subgroups K, Ñ , Ã are shown in the first,
middle and last columns respectively. The elliptic, parabolic and hyper-
bolic spaces are presented in the first, middle and last rows respectively.
The diagonal drawings comprise Fig. 3 and the first column Fig. 2.

ω (25) [26, Theorem 1.22; 35, p. 830]. The symplectic group is isomorphic to
SL2(R) considered in Sec. 2.2. The explicit action of Sp(2) on the Heisenberg
group is

g : h = (s, x, y) 7→ g(h) = (s, x̃, ỹ) (29)
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where

g =

(
a b
c d

)
∈ SL2(R) and

(
x̃
ỹ

)
=

(
a b
c d

)(
x
y

)
.

Due to appearance of half-integer weight in the Shale–Weil representation below,
we need to consider the metaplectic group Mp(2) which is the double cover of
Sp(2). Then we can build the semidirect productG = HoMp(2) with the standard
group law

(h, g) ∗ (h̃, g̃) = (h ∗ g(h̃), g ∗ g̃), where h, h̃ ∈ H, g, g̃ ∈ Mp(2) (30)

and the stars denote the respective group operations while the action g(h̃) is defined
as the composition of the projection map Mp(2) → Sp(2) and the action (29).
This group is sometimes called the Schrödinger group and it is known as the max-
imal kinematical invariance group of both the free Schrödinger equation and the
quantum harmonic oscillator [85]. This group is of interest not only in quantum
mechanics but also in optics [98, 99].
Consider the Lie algebra sl2 of the group SL2(R) (as well as groups Sp(2) and
Mp(2)). We again use the basis A, B, Z (13) with commutators (14). Vec-
tors Z, B − Z/2 and B are generators of the one-parameter subgroups K, Ñ
and Ã (17), (22) and (23) respectively. Furthermore we can consider the basis
{S,X, Y,A,B,Z} of the Lie algebra g of the Lie group G = H o Mp(2). All
non-zero commutators besides those already listed in (28) and (14) are

[A,X] = 1
2X, [B,X] = −1

2Y, [Z,X] = Y (31)

[A, Y ] = −1
2Y, [B, Y ] = −1

2X, [Z, Y ] = −X.

3. Linear Representations and Hypercomplex Numbers

A consideration of the symmetries in analysis is natural to start from linear repre-
sentations. The above geometrical actions (21) can be naturally extended to such
representations by induction [47, § 13.2; 54, § 3.1] from a representation of a sub-
groupH . IfH is one-dimensional then its irreducible representation is a character,
which is commonly supposed to be a complex valued. However, hypercomplex
number naturally appeared in the SL2(R) action (21), see [67, 70], why shall we
admit only i2 = −1 to deliver a character then?

3.1. Hypercomplex Characters

As we already mentioned, the typical discussion of induced representations of
SL2(R) is centred around the case H = K and a complex valued character of
K. A linear transformation defined by a matrix K in (17) is a rotation of R2 by the
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q

p

q

p

q

p

Figure 5. Rotations of algebraic wheels, i.e., the multiplication by eιt:
elliptic (E), trivial parabolic (P0) and hyperbolic (H). All blue orbits
are defined by the identity x2 − ι2y2 = r2. Thin “spokes” (straight
lines from the origin to a point on the orbit) are “rotated” from the real
axis. This is symplectic linear transformations of the classical phase
space as well.

angle t. After identification R2 = C this action is given by the multiplication eit,
with i2 = −1. The rotation preserve the (elliptic) metric given by

x2 + y2 = (x+ iy)(x− iy). (32)

Therefore the orbits of rotations are circles, any line passing the origin (a “spoke”)
is rotated by the angle t. Dual and double numbers produces the most straightfor-
ward adaptation of this result, see Fig. 5 for all three cases. The correspondences
between the respective algebraic aspects is shown at Fig. 6.

Elliptic Parabolic Hyperbolic

i2 = −1 ε2 = 0 j2 = 1
w = x+ iy w = x+ εy w = x+ jy
w̄ = x− iy w̄ = x− εy w̄ = x− jy

eit = cos t+ i sin t eεt = 1 + εt ejt = cosh t+ j sinh t

|w|2e = ww̄ = x2 + y2 |w|2p = ww̄ = x2 |w|2h = ww̄ = x2 − y2

argw = tan−1 y
x argw = y

x argw = tanh−1 y
x

unit circle |w|2e = 1 “unit” strip x = ±1 unit hyperbola |w|2h = 1

Figure 6. Algebraic correspondence between complex, dual and dou-
ble numbers.

Explicitly, parabolic rotations associated with eεt acts on dual numbers as follows

eεx : a+ εb 7→ a+ ε(ax+ b). (33)



Symmetry, Geometry and Quantization with Hypercomplex Numbers 31

This links the parabolic case with the Galilean group [107] of symmetries of the
classic mechanics, with the absolute time disconnected from space.
The obvious algebraic similarity and the connection to classical kinematic is a wide
spread justification for the following viewpoint on the parabolic case, cf. [33, 107]

• The parabolic trigonometric functions are trivial

cosp t = ±1, sinp t = t. (34)

• The parabolic distance is independent from y if x 6= 0

x2 = (x+ εy)(x− εy). (35)

• The polar decomposition of a dual number is defined by [107, Appen-
dix C(30’)]

u+ εv = u(1 + ε
v

u
), thus |u+ εv| = u, arg(u+ εv) =

v

u
· (36)

• The parabolic wheel looks rectangular, see Fig. 5.

Those algebraic analogies are quite explicit and widely accepted as an ultimate
source for parabolic trigonometry [33, 80, 107]. Moreover, those three rotations
are all non-isomorphic symplectic linear transformations of the phase space, which
makes them useful in the context of classical and quantum mechanics [68, 71], see
Section 4. There exist also alternative characters [63] based on Möbius transfor-
mations with geometric motivation and connections to equations of mathematical
physics.

3.2. Induced Representations

Let G be a group, H be its closed subgroup with the corresponding homogeneous
space X = G/H with an invariant measure. Now we wish to linearise the ac-
tion (18) through the induced representations [47, § 13.2; 54, § 3.1]. We define
a map r : G → H associated to the natural projection p : G → G/H and a
continuous section s : G/H → H from the identities

r(g) = (s(ω))−1g, where ω = p(g) ∈ Ω. (37)

Let χ be an irreducible representation of H in a vector space V , then it induces a
representation of G in the sense of Mackey [47, § 13.2]. For a character χ of H we
can define a lifting Lχ : L2(G/H)→ Lχ2 (G) as follows

[Lχf ](g) = χ(r(g))f(p(g)) where f(x) ∈ L2(G/H). (38)

The image space of the lifting Lχ is invariant under left shifts. We also define
the pulling P : Lχ2 (G) → L2(G/H), which is a left inverse of the lifting and
explicitly cab be given, for example, by [PF ](x) = F (s(x)). Then the induced
representation on L2(G/H) is generated by the formula ρχ(g) = P ◦ Λ(g) ◦ Lχ.
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This representation has the realisation ρχ in the space of V -valued functions by the
formula [47, § 13.2.(7)–(9)]

[ρχ(g)f ](ω) = χ(r(g−1 ∗ s(ω)))f(g−1 · ω) (39)

where g ∈ G, ω ∈ Ω, h ∈ H and r : G→ H , s : Ω→ G are maps defined above,
∗ denotes multiplication on G and · denotes the action (18) of G on Ω.
An alternative construction of induced representations is as follow [47, § 13.2].
Let Fχ2 (Hn) be the space of functions on Hn having the properties

f(gh) = χ(h)f(g), for all g ∈ Hn, h ∈ Z (40)

and ∫
R2n

|f(0, x, y)|2 dx dy <∞. (41)

ThenFχ2 (Hn) is invariant under the left shifts and those shifts restricted toFχ2 (Hn)
make a representation ρχ of Hn induced by χ.
Consider this scheme for representations of SL2(R) induced from characters of its
one-dimensional subgroups. We can notice that only the subgroup K requires a
complex valued character due to the fact of its compactness. For subgroups Ñ and
Ã we can consider characters of all three types—elliptic, parabolic and hyperbolic.
Therefore we have seven essentially different induced representations. We will
write explicitly only three of them here.

Example 7. Consider the subgroupH = K, due to its compactness we are limited
to complex valued characters of K only. All of them are of the form χk

χk

(
cos t sin t
− sin t cos t

)
= e−ikt, where k ∈ Z. (42)

Using the explicit form (19) of the map s we find the map r given in (37) as follows

r

(
a b
c d

)
=

1√
c2 + d2

(
d −c
c d

)
∈ K.

Therefore

r(g−1 ∗ s(u, v)) =
1√

(cu+ d)2 + (cv)2

(
cu+ d −cv
cv cu+ d

)
where g−1 =

(
a b
c d

)
∈ SL2(R). Substituting this into (42) and combining with

the Möbius transformation of the domain (21) we get the explicit realisation ρk of
the induced representation (39)

ρk(g)f(w) =
|cw + d|k

(cw + d)k
f

(
aw + b

cw + d

)
, where g−1 =

(
a b
c d

)
, w = u+ iv.

(43)
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This representation acts on complex valued functions in the upper half-plane R2
+ =

SL2(R)/K and belongs to the discrete series [79, § IX.2]. It is common to get rid
of the factor |cw + d|k from that expression in order to keep analyticity and we will
follow this practise for a convenience as well.

Example 8. In the case of the subgroup N there is a wider choice of possible
characters.

1. Traditionally only complex valued characters of the subgroup N are con-
sidered, they are

χC
τ

(
1 0
t 1

)
= eiτt, where τ ∈ R. (44)

A direct calculation shows that

r

(
a b
c d

)
=

(
1 0
c
d 1

)
∈ Ñ .

Thus

r(g−1 ∗ s(u, v)) =

(
1 0
cv

d+cu 1

)
, where g−1 =

(
a b
c d

)
. (45)

A substitution of this value into the character (44) together with the Möbius
transformation (21) we obtain the next realisation of (39)

ρCτ (g)f(w) = exp

(
i
τcv

cu+ d

)
f

(
aw + b

cw + d

)
where w = u + εv and g−1 =

(
a b
c d

)
∈ SL2(R). The representation

acts on the space of complex valued functions on the upper half-plane R2
+,

which is a subset of dual numbers as a homogeneous space SL2(R)/Ñ . The
mixture of complex and dual numbers in the same expression is confusing.

2. The parabolic character χτ with the algebraic flavour is provided by multi-
plication (33) with the dual number

χτ

(
1 0
t 1

)
= eετt = 1 + ετt, where τ ∈ R.

If we substitute the value (45) into this character, then we receive the repre-
sentation

ρτ (g)f(w) =

(
1 + ε

τcv

cu+ d

)
f

(
aw + b

cw + d

)
where w, τ and g are as above. The representation is defined on the space
of dual numbers valued functions on the upper half-plane of dual numbers.
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Thus expression contains only dual numbers with their usual algebraic op-
erations. Thus it is linear with respect to them.

All characters in the previous Example are unitary. Then, the general scheme [47,
§ 13.2] implies unitarity of induced representations in suitable senses.

Theorem 9 ([67]). Both representations of SL2(R) from Example 8 are unitary on
the space of function on the upper half-plane R2

+ of dual numbers with the inner
product

〈f1, f2〉 =

∫
R2
+

f1(w)f̄2(w)
dudv

v2
, where w = u+ εv (46)

and we use the conjugation and multiplication of functions’ values in algebras of
complex and dual numbers for representations ρCτ and ρτ respectively.

The inner product (46) is positive defined for the representation ρCτ but is not for
the others. The respective spaces are parabolic cousins of the Krein spaces [4],
which are hyperbolic in our sense.

3.3. Similarity and Correspondence: Ladder Operators

From the above observation we can deduce the following empirical principle,
which has a heuristic value.

Principle 10 (Similarity and correspondence). 1. Subgroups conjugated toK,
Ñ and Ã play a similar rôle in the structure of the group SL2(R) and its rep-
resentations.

2. The subgroups shall be swapped simultaneously with the respective replace-
ment of hypercomplex unit ι.

The first part of the Principle (similarity) does not look sound alone. It is enough
to mention that the subgroup K is compact (and thus its spectrum is discrete)
while two other subgroups are not. However, in a conjunction with the second part
(correspondence) the Principle have received the following confirmations so far,
see [67] for details:

• The action of SL2(R) on the homogeneous space SL2(R)/H for H = K,
Ñ or Ã is given by linear-fractional transformations of complex, dual or
double numbers respectively. Fig. 4 provides an illustration.
• Subgroups K, Ñ or Ã are isomorphic to the groups of unitary rotations of

respective unit cycles in complex, dual or double numbers.
• Representations induced from subgroups K, Ñ or Ã are unitary if the inner

product spaces of functions with values in complex, dual or double num-
bers.
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Remark 11. The principle of similarity and correspondence resembles supersym-
metry between bosons and fermions in particle physics, but we have similarity
between three different types of entities in our case.

3.4. Ladder Operators

We present another illustration to the Principle 10. Let ρ be a representation of
the group SL2(R) in a space V . Consider the derived representation dρ of the Lie
algebra sl2 [79, § VI.1], that is

dρ(X) =
d

dt
ρ(etX)

∣∣∣∣
t=0

, for any X ∈ sl2. (47)

We also denote X̃ = dρ(X) forX ∈ sl2. To see the structure of the representation
ρ we can decompose the space V into eigenspaces of the operator X̃ for a suitable
X ∈ sl2.

3.4.1. Elliptic Ladder Operators

It would not be surprising that we are going to consider three cases. Let X = Z
be a generator of the subgroup K (17). Since this is a compact subgroup the
corresponding eigenspaces Z̃vk = ikvk are parametrised by an integer k ∈ Z. The
raising/lowering or ladder operators L± [79, § VI.2; 97, § 8.2] are defined by the
following commutation relations

[Z̃, L±] = λ±L
±. (48)

In other words L± are eigenvectors for operators adZ of adjoint representation of
sl2 [79, § VI.2].

Remark 12. The existence of such ladder operators follows from the general prop-
erties of Lie algebras if the element X ∈ sl2 belongs to a Cartan subalgebra. This
is the case for vectors Z and B, which are the only two non-isomorphic types of
Cartan subalgebras in sl2. However, the third case considered in this paper, the
parabolic vector B + Z/2, does not belong to a Cartan subalgebra, yet a sort of
ladder operators is still possible with dual number coefficients. Moreover, for the
hyperbolic vectorB, besides the standard ladder operators an additional pair with
double number coefficients will also be described.

From the commutators (48) we deduce that L+vk are eigenvectors of Z̃ as well

Z̃(L+vk) = (L+Z̃ + λ+L
+)vk = L+(Z̃vk) + λ+L

+vk

= ikL+vk + λ+L
+vk = (ik + λ+)L+vk. (49)
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Thus action of ladder operators on respective eigenspaces can be visualised by the
diagram

. . .
L+ // Vik−λ
L−

oo
L+ // Vik
L−
oo

L+ // Vik+λ
L−
oo

L+ // . . .
L−
oo (50)

Assuming L+ = aÃ+ bB̃+cZ̃ from the relations (14) and defining condition (48)
we obtain linear equations with unknown a, b and c

c = 0, 2a = λ+b, −2b = λ+a.

The equations have a solution if and only if λ2
+ + 4 = 0, therefore the rais-

ing/lowering operators are
L± = ±iÃ+ B̃. (51)

3.4.2. Hyperbolic Ladder Operators
Consider the case X = 2B of a generator of the subgroup Ã (23). The subgroup
is not compact and eigenvalues of the operator B̃ can be arbitrary, however rais-
ing/lowering operators are still important [37, § II.1; 84, § 1.1]. We again seek a
solution in the form L+

h = aÃ + bB̃ + cZ̃ for the commutator [2B̃, L+
h] = λL+

h.
We will get the system

4c = λa, b = 0, a = λc.

A solution exists if and only if λ2 = 4. There are obvious values λ = ±2 with the
ladder operators L±h = ±2Ã+ Z̃, see [37, § II.1; 84, § 1.1]. Each indecomposable
sl2-module is formed by a one-dimensional chain of eigenvalues with a transitive
action of ladder operators.
Admitting double numbers we have an extra possibility to satisfy λ2 = 4 with
values λ = ±2j. Then there is an additional pair of hyperbolic ladder operators
L±j = ±2jÃ+Z̃, which shift eigenvectors in the “orthogonal” direction to the stan-
dard operators L±h. Therefore an indecomposable sl2-module can be parametrised
by a two-dimensional lattice of eigenvalues on the double number plane, see Fig. 7

3.4.3. Parabolic Ladder Operators
Finally consider the case of a generator X = −B + Z/2 of the subgroup Ñ (22).
According to the above procedure we get the equations

b+ 2c = λa, −a = λb,
a

2
= λc

which can be resolved if and only if λ2 = 0. If we restrict ourselves with the only
real (complex) root λ = 0, then the corresponding operators L±p = −B̃ + Z̃/2
will not affect eigenvalues and thus are useless in the above context. However the
dual number roots λ = ±εt, t ∈ R lead to the operators L±ε = ±εtÃ− B̃ + Z̃/2.
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. . .

L+j
��

. . .

L+j
��

. . .

L+j
��

. . .
L+h // V(n−2)+j(k−2)
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+j(k−2)
L−h

oo
L+h//

L−j

OO

L+j

��

V(n+2)+j(k−2)
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .
L+h // V(n−2)+jk
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+jk
L−h

oo
L+h //

L−j

OO

L+j

��

V(n+2)+jk
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .
L+h // V(n−2)+j(k+2)
L−h

oo
L+h //

L−j

OO

L+j

��

Vn+j(k+2)
L−h

oo
L+h//

L−j

OO

L+j

��

V(n+2)+j(k+2)
L−h

oo
L+h //

L−j

OO

L+j

��

. . .
L−h

oo

. . .

L−j

OO

. . .

L−j

OO

. . .

L−j

OO

Figure 7. The action of hyperbolic ladder operators on a 2D lattice of
eigenspaces. Operators L±h move the eigenvalues by 2, making shifts
in the horizontal direction. Operators L±j change the eigenvalues by 2j,
shown as vertical shifts.

These operators are suitable to build an sl2-modules with a one-dimensional chain
of eigenvalues.

Remark 13. The following rôles of hypercomplex numbers are noteworthy

• the introduction of complex numbers is a necessity for the existence of lad-
der operators in the elliptic case
• in the parabolic case we need dual numbers to make ladder operators useful
• in the hyperbolic case double numbers are not required neither for the ex-

istence or for the usability of ladder operators, but they do provide an en-
hancement.

We summarise the above consideration with a focus on the Principle of similarity
and correspondence

Proposition 14. Let a vector X ∈ sl2 generates the subgroup K, Ñ or Ã, that is
X = Z, B − Z/2, or B respectively. Let ι be the respective hypercomplex unit.
Then raising/lowering operators L± satisfying to the commutation relation

[X,L±] = ±ιL±, [L−, L+] = 2ιX

are
L± = ±ιÃ+ Ỹ .
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Here Y ∈ sl2 is a linear combination of B and Z with the properties

• Y = [A,X]

• X = [A, Y ]

• Killings form K(X,Y ) [47, § 6.2] vanishes.

Any of the above properties defines the vector Y ∈ span{B,Z} up to a real con-
stant factor.

3.5. Induced Representations of the Heisenberg Group

In this subsection we calculate representations of of the Heisenberg group induced
by a complex valued character. Representations induced by hypercomplex charac-
ters and their physical interpretation will be discussed in the next section.
Take a maximal (two dimensional) abelian subgroup H = {(s, 0, y) ∈ H}, then
the homogeneous space can be parametrised by a real number x. We define the
natural projection p(s, x, y) = x and the continuous section s(x) = (0, x, 0).
Then the map r : H1 → H ′x is r(s, x, y) = (s − 1

2xy, 0, y). For the character
χ}(s, 0, y) = e2πi(}s), the representation of H1 on L2(R1) is

[ρχ(s, x, y)f ](x̃) = exp(2πi(}(−s+ yx̃− 1
2xy))) f(x̃− x). (52)

Then the Fourier transform x → q produces the Schrödinger representation [26,
§ 1.3] of H in L2(R), that is [71, (3.5)]

[ρ}(s, x, y)f ](q) = e2πi}(s−xy/2)+2πixq f(q − }y). (53)

The variable q is treated as the coordinate on the configurational space of a particle.
The action of the derived representation on the Lie algebra h is

ρ}(X) = 2πiq, ρ}(Y ) = −} d

dq
, ρ}(S) = 2πi}I. (54)

The Shale–Weil theorem [26, § 4.2; 35, p. 830] states that any representation ρ}
of the Heisenberg groups generates a unitary oscillator (or metaplectic) represen-
tation ρSW

} of the Mp(2), the two-fold cover of the symplectic group [26, Theo-
rem 4.58]. The Shale–Weil theorem allows us to expand any representation ρ} of
the Heisenberg group to the representation ρ2

} = ρ}⊕ρSW
} of the group Schrödinger

group (30). Of course, there is the derived form of the Shale–Weil representation
for g. It can often be explicitly written in contrast to the Shale–Weil representation.

Example 15. The Shale–Weil representation of SL2(R) in L2(R) associated to the
Schrödinger representation (53) has the derived action, cf. [26, § 4.3; 98, (2.2)]

ρSW
} (A) = −q

2

d

dq
−1

4
, ρSW

} (B) = − }i

8π

d2

dq2
−πiq2

2}
, ρSW

} (Z) =
}i

4π

d2

dq2
−πiq2

}
·

(55)
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We can verify commutators (14) and (28), (31) for operators (54)–(55). It is also
obvious that in this representation the following algebraic relations hold

ρSW
} (A) =

i

4π}
(ρ}(X)ρ}(Y )− 1

2ρ}(S))

=
i

8π}
(ρ}(X)ρ}(Y ) + ρ}(Y )ρ}(X))

ρSW
} (B) =

i

8π}
(ρ}(X)2 − ρ}(Y )2) (56)

ρSW
} (Z) =

i

4π}
(ρ}(X)2 + ρ}(Y )2).

Thus it is common in quantum optics to name g as a Lie algebra with quadratic
generators, see [27, § 2.2.4].

Note that ρSW
} (Z) is the Hamiltonian of the harmonic oscillator (up to a factor).

Then we can consider ρSW
} (B) as the Hamiltonian of a repulsive (hyperbolic) os-

cillator. The operator ρSW
} (B−Z/2) = }i

4π
d2

dq2
is the parabolic analog. A graphical

representation of all three transformations defined by those Hamiltonian is given in
Fig. 5 and a further discussion of these Hamiltonians can be found in [106, § 3.8].
An important observation, which is often missed, is that the three linear symplectic
transformations are unitary rotations in the corresponding hypercomplex algebra,
cf. [67, § 3]. This means, that the symplectomorphisms generated by operators Z,
B−Z/2,B within time t coincide with the multiplication of hypercomplex number
q+ ιp by eιt, see Subsection 3.1 and Fig. 5, which is just another illustration of the
Similarity and Correspondence Principle 10.

Example 16. There are many advantages of considering representations of the
Heisenberg group on the phase space [15; 26, §1.6; 36, §1.7]. A convenient ex-
pression for Fock–Segal–Bargmann representation on the phase space is, cf. § 4.2.1
and [15, (1); 59, (2.9)]

[ρF (s, x, y)f ](q, p) = e−2πi(}s+qx+py)f
(
q − }

2y, p+ }
2x
)
. (57)

Then the derived representation of h is

ρF (X) = −2πiq + }
2∂p, ρF (Y ) = −2πip− }

2∂q, ρF (S) = −2πi}I. (58)

This produces the derived form of the Shale–Weil representation

ρSW
F (A) = 1

2 (q∂q − p∂p) , ρSW
F (B) = −1

2 (p∂q + q∂p) , ρSW
F (Z) = p∂q−q∂p.

(59)
Note that this representation does not contain the parameter } unlike the equivalent
representation (55). Thus, the FSB model explicitly shows the equivalence of ρSW

}1
and ρSW

}2 if }1}2 > 0 [26, Theorem 4.57].
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As we will also see below the FSB-type representations in hypercomplex numbers
produce almost the same Shale–Weil representations.

4. Mechanics and Hypercomplex Numbers

Complex valued representations of the Heisenberg group provide a natural frame-
work for quantum mechanics [26, 36]. These representations provide the funda-
mental example of induced representations, the Kirillov orbit method and geomet-
rical quantisation technique [48, 49]. Following the presentation in Section 3 we
will consider representations of the Heisenberg group which are induced by hyper-
complex characters of its centre: complex (which correspond to the elliptic case),
dual (parabolic) and double (hyperbolic).
To describe dynamics of a physical system we use a universal equation based on
inner derivations (commutator) of the convolution algebra [57, 59]. The complex
valued representations produce the standard framework for quantum mechanics
with the Heisenberg dynamical equation [105].
The double number valued representations, with the hyperbolic unit j2 = 1, is a
natural source of hyperbolic quantum mechanics developed for a while [38–40,42,
43,103]. The universal dynamical equation employs hyperbolic commutator in this
case. This can be seen as a Moyal bracket based on the hyperbolic sine function.
The hyperbolic observables act as operators on a Krein space with an indefinite
inner product. Such spaces are employed in study of PT -symmetric Hamiltonians
and hyperbolic unit j2 = 1 naturally appear in this setup [32].
The representations with values in dual numbers provide a convenient description
of the classical mechanics. For this we do not take any sort of semiclassical limit,
rather the nilpotency of the parabolic unit (ε2 = 0) does the task. This removes the
vicious necessity to consider the Planck constant tending to zero. The dynamical
equation takes the Hamiltonian form. We also describe classical non-commutative
representations of the Heisenberg group which acts in the first jet space.

Remark 17. It is worth to note that our technique is different from contraction
technique in the theory of Lie groups [30, 31, 81]. Indeed a contraction of the
Heisenberg group Hn is the commutative Euclidean group R2n which may be iden-
tified with the phase space in classical and quantum mechanics.

The considered here approach provides not only three different types of dynamics,
it also generates the respective rules for addition of probabilities as well. For ex-
ample, the quantum interference is the consequence of the same complex-valued
structure, which directs the Heisenberg equation. The absence of an interference (a
particle behaviour) in the classical mechanics is again the consequence the nilpo-
tency of the parabolic unit. Double numbers creates the hyperbolic law of additions
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of probabilities, which was extensively investigates [40, 42]. There are still unre-
solved issues with positivity of the probabilistic interpretation in the hyperbolic
case [38, 39].

The fundamental relations of quantum and classical mechanics were discussed in
Section 1. Below we will recover the existence of three non-isomorphic models of
mechanics from the representation theory. They were already derived in [38, 39]
from translation invariant formulation, that is from the group theory as well. It also
hinted that hyperbolic counterpart is (at least theoretically) as natural as classical
and quantum mechanics are. The approach provides a framework for a description
of aggregate system which have say both quantum and classical components. This
can be used to model quantum computers with classical terminals [64].

Remarkably, simultaneously with the work [38] group-invariant axiomatics of ge-
ometry leaded Pimenov [91] to description of 3n Cayley–Klein constructions. The
connection between group-invariant geometry and respective mechanics were ex-
plored in many works of Gromov, [28–30]. They already highlighted the rôle of
three types of hypercomplex units for the realisation of elliptic, parabolic and hy-
perbolic geometry and kinematic.

There is a further connection between representations of the Heisenberg group and
hypercomplex numbers. The symplectomorphism of phase space are also auto-
morphism of the Heisenberg group [26, § 1.2]. We recall that the symplectic group
SL2(R) [26, § 1.2] is isomorphic to the group SL2(R) [37,79,84] and provides lin-
ear symplectomorphisms of the two-dimensional phase space. It has three types of
non-isomorphic one-dimensional continuous subgroups (15)–(17) with symplec-
tic action on the phase space illustrated by Fig. 5. Hamiltonians, which produce
those symplectomorphism, are of interest [98; 99; 106, § 3.8]. An analysis of those
Hamiltonians from Subsection 3.3 by means of ladder operators recreates hyper-
complex coefficients as well [68].

Harmonic oscillators, which we shall use as the main illustration here, are treated
in most textbooks on quantum mechanics. This is efficiently done through cre-
ation/annihilation (ladder) operators, cf. § 3.3 and [7, 27]. The underlying struc-
ture is the representation theory of the Heisenberg and symplectic groups [26; 36;
79, § VI.2; 97, § 8.2]. As we will see, they are naturally connected with respective
hypercomplex numbers. As a result we obtain further illustrations to the Similarity
and Correspondence Principle 10.

We work with the simplest case of a particle with only one degree of freedom.
Higher dimensions and the respective group of symplectomorphisms Sp(2n) may
require consideration of Clifford algebras [11, 12, 32, 51, 78, 93, 103].
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4.1. p-Mechanics Formalism

Here we briefly outline a formalism [8,53,57,59,94], which allows to unify quan-
tum and classical mechanics.

4.1.1. Convolutions (Observables) on H and Commutator

Using the invariance of the Lebesgue measure dg = ds dx dy on H we can define
the convolution of two functions

(k1 ∗ k2)(g) =

∫
H
k1(g1) k2(g−1

1 g) dg1. (60)

Because H is non-commutative, the convolution is a non-commutative operation.
It is meaningful for functions from various spaces including L1(H) = L1(H, dg),
the Schwartz space S and many classes of distributions, which form algebras under
convolutions. Convolutions on H are used as observables in p-mechanic [53, 59].
A unitary representation ρ of H extends to L1(H) by the formula

ρ(k) =

∫
H
k(g)ρ(g) dg (61)

where the operator-valued integral can be defined in a weak sense. This is also an
algebra homomorphism of convolutions to linear operators.
For a dynamics of observables we need inner derivations Dk of the convolution
algebra L1(H), which are given by the commutator

Dk : f 7→ [k, f ] = k ∗ f − f ∗ k (62)

=

∫
H
k(g1)

(
f(g−1

1 g)− f(gg−1
1 )
)

dg1, f, k ∈ L1(H).

To describe dynamics of a time-dependent observable f(t, g) we use the universal
equation, cf. [52, 53]

Sḟ = [H, f ] (63)

where S is the left-invariant vector field (27) generated by the centre of H. The
presence of operator S fixes the dimensionality of both sides of the equation (63) if
the observableH (Hamiltonian) has the dimensionality of energy [59, Remark 4.1].
Alternatively, if we apply a right inverse A of S to both sides of the equation (63)
we obtain the equivalent equation

ḟ = {[H, f ]} (64)

based on the universal bracket {[k1, k2]} = k1 ∗ Ak2 − k2 ∗ Ak1 [59]. We will not
use this approach in the present paper.
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Example 18 (Harmonic oscillator). LetH = 1
2(mk2q2+ 1

mp
2) be the Hamiltonian

of a one-dimensional harmonic oscillator, where k is a constant frequency andm is
a constant mass. Its p-mechanisation will be the second order differential operator
on H [8, § 5.1]

H = 1
2(mk2X2 + 1

mY
2)

where we dropped sub-indexes of vector fields (27) in one dimensional setting. We
can express the commutator as a difference between the left and the right action of
the vector fields

[H, f ] = 1
2(mk2((Xr)2 − (X l)2) + 1

m((Y r)2 − (Y l)2))f.

Thus the equation (63) becomes [8, (5.2)]

∂

∂s
ḟ =

∂

∂s

(
mk2y

∂

∂x
− 1

m
x
∂

∂y

)
f. (65)

Of course, the derivative ∂
∂s can be dropped from both sides of the equation and

the general solution is found to be

f(t; s, x, y) = f0

(
s, x cos(kt) +mky sin(kt),− x

mk sin(kt) + y cos(kt)
)

(66)

where f0(s, x, y) is the initial value of an observable on H.

Example 19 (Unharmonic oscillator). We consider unharmonic oscillator with cu-
bic potential, see [9] and references therein

H =
mk2

2
q2 +

λ

6
q3 +

1

2m
p2. (67)

Due to the absence of non-commutative products in (67), its p-mechanisation is
again straightforward

H =
mk2

2
X2 +

λ

6
X3 +

1

m
Y 2.

Similarly to the harmonic case the dynamic equation, after cancellation of ∂
∂s on

both sides, becomes

ḟ =

(
mk2y

∂

∂x
+
λ

6

(
3y

∂2

∂x2
+

1

4
y3 ∂

2

∂s2

)
− 1

m
x
∂

∂y

)
f. (68)

Unfortunately, it cannot be solved analytically as easy as in the harmonic case.
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4.1.2. States and Probability
Let an observable ρ(k) (61) is defined by a kernel k(g) on the Heisenberg group
and a representation ρ at a Hilbert space H. A state on the convolution algebra is
given by a vector v ∈ H. A simple calculation

〈ρ(k)v, v〉H =

〈∫
H
k(g)ρ(g)v dg, v

〉
H

=

∫
H
k(g) 〈ρ(g)v, v〉H dg =

∫
H
k(g)〈v, ρ(g)v〉H dg

can be restated as

〈ρ(k)v, v〉H = 〈k, l〉 , where l(g) = 〈v, ρ(g)v〉H .

Here the left-hand side contains the inner product on H, while the right-hand side
uses a skew-linear pairing between functions on H based on the Haar measure
integration. In other words we obtain, cf. [8, Theorem 3.11]

Proposition 20. A state defined by a vector v ∈ H coincides with the linear func-
tional given by the wavelet transform

l(g) = 〈v, ρ(g)v〉H (69)

of v used as the mother wavelet as well.

The addition of vectors inH implies the following operation on states

〈v1 + v2, ρ(g)(v1 + v2)〉H = 〈v1, ρ(g)v1〉H + 〈v2, ρ(g)v2〉H
+ 〈v1, ρ(g)v2〉H + 〈v1, ρ(g−1)v2〉H. (70)

The last expression can be conveniently rewritten for kernels of the functional as

l12 = l1 + l2 + 2A
√
l1l2 (71)

for some real number A. This formula is behind the contextual law of addition
of conditional probabilities [41] and will be illustrated below. Its physical inter-
pretation is an interference, say, from two slits. Despite of a common belief, the
mechanism of such interference can be both causal and local, see [46, 58].

4.2. Elliptic Characters and Quantum Dynamics

In this subsection we consider the representation ρh of the Heisenberg group H
induced by the elliptic character χh(s) = eihs in complex numbers parametrised
by h ∈ R. We also use the convenient agreement h = 2π} borrowed from physical
literature.
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4.2.1. Fock–Segal–Bargmann and Schrödinger Representations
The realisation of ρh by the left shifts (26) on Lh2(H) is rarely used in quantum me-
chanics. Instead two unitary equivalent forms are more common: the Schrödinger
and Fock–Segal–Bargmann (FSB) representations.
The FSB representation can be obtained from the orbit method of Kirillov [48]. It
allows spatially separate irreducible components of the left regular representation,
each of them become located on the orbit of the co-adjoint representation, see [48;
59, § 2.1] for details, we only present a brief summary here.
We identify H and its Lie algebra h through the exponential map [47, § 6.4]. The
dual h∗ of h is presented by the Euclidean space R3 with bi-orthogonal coordinates
(}, q, p). Then the pairing of h∗ and h given by

〈(s, x, y), (}, q, p)〉 = }s+ q · x+ p · y.
This pairing can be used to defines the Fourier transform ˆ : L2(H) → L2(h∗)
given by [49, § 2.3]

φ̂(F ) =

∫
hn
φ(expX)e−2πi〈X,F 〉 dX, where X ∈ hn, F ∈ h∗. (72)

For a fixed } the left regular representation (26) is mapped by the Fourier transform
to the FSB type representation (57). The collection of points (}, q, p) ∈ h∗ for a
fixed } is naturally identified with the phase space of the system.

Remark 21. It is possible to identify the case of } = 0 with classical mechan-
ics [59]. Indeed, a substitution of the zero value of } into (57) produces the com-
mutative representation

ρ0(s, x, y) : f(q, p) 7→ e−2πi(qx+py)f (q, p) . (73)

It can be decomposed into the direct integral of one-dimensional representations
parametrised by the points (q, p) of the phase space. The classical mechanics, in-
cluding the Hamilton equation, can be recovered from those representations [59].
However, the condition } = 0 (as well as the semiclassical limit } → 0) is not
completely physical. Commutativity (and subsequent relative triviality) of those
representation is the main reason why they are oftenly neglected. The commuta-
tivity can be outweighed by special arrangements, e.g. an antiderivative, see the
discussion around (64) and [59, (4.1)]. However, the procedure is not straightfor-
ward, see discussion in [1, 60, 63]. A direct approach using dual numbers will be
shown below, cf. Remark. 33.

To recover the Schrödinger representation we use notations and technique of in-
duced representations from § 3.2, see also [56, Ex. 4.1]. The subgroup H =
{(s, 0, y) ; s ∈ R, y ∈ Rn} ⊂ H defines the homogeneous space X = G/H ,
which coincides with Rn as a manifold. The natural projection p : G → X is
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p(s, x, y) = x and its left inverse s : X → G can be as simple as s(x) = (0, x, 0).
For the map r : G→ H , r(s, x, y) = (s− xy/2, 0, y) we have the decomposition

(s, x, y) = s(p(s, x, y)) ∗ r(s, x, y) = (0, x, 0) ∗ (s− 1
2xy, 0, y).

For a character χh(s, 0, y) = eihs of H the lifting Lχ : L2(G/H) → Lχ2 (G) is as
follows

[Lχf ](s, x, y) = χh(r(s, x, y)) f(p(s, x, y)) = eih(s−xy/2)f(x).

Thus the representation ρχ(g) = P ◦ Λ(g) ◦ L becomes

[ρχ(s̃, x̃, ỹ)f ](x) = e−2πi}(s̃+xỹ−x̃ỹ/2) f(x− x̃). (74)

After the Fourier transform x 7→ q (similar to one in (72)) we get the Schrödinger
representation on the configuration space

[ρχ(s̃, x̃, ỹ)f̂ ](q) = e−2πi}(s̃+x̃ỹ/2)−2πix̃q f̂(q + }ỹ). (75)

Note that this again turns into a commutative representation (multiplication by an
unimodular function) if } = 0. To get the full set of commutative representations
in this way we need to use the character χ(h,p)(s, 0, y) = e2πi(}+py) in the above
consideration.

4.2.2. Commutator and the Heisenberg Equation

The property (40) of Fχ2 (H) implies that the restrictions of two operators ρχ(k1)
and ρχ(k2) to this space are equal if∫

R
k1(s, x, y)χ(s) ds =

∫
R
k2(s, x, y)χ(s) ds.

In other words, for a character χ(s) = e2πi}s the operator ρχ(k) depends only on

k̂s(}, x, y) =

∫
R
k(s, x, y) e−2πi}s ds

which is the partial Fourier transform s 7→ } of k(s, x, y). The restriction to
Fχ2 (H) of the composition formula for convolutions is [59, (3.5)]

(k′ ∗ k)ŝ =

∫
R2n

eih(xỹ−yx̃)/2 k̂′s(}, x̃, ỹ) k̂s(}, x− x̃, y − ỹ) dx̃dỹ. (76)

Under the Schrödinger representation (75) the convolution (76) defines a rule for
composition of two pseudo-differential operators (PDO) in the Weyl calculus [26,
§ 2.3; 36].
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Consequently the representation (61) of commutator (62) depends only on its par-
tial Fourier transform [59, (3.6)]

[k′, k]̂s = 2i

∫
R2n

sin(h2 (xỹ − yx̃))

× k̂′s(}, x̃, ỹ) k̂s(}, x− x̃, y − ỹ) dx̃dỹ. (77)

Under the Fourier transform (72) this commutator is exactly the Moyal bracket [108]
for of k̂′ and k̂ on the phase space.
For observables in the space Fχ2 (H) the action of S is reduced to multiplication,
e.g. for χ(s) = eihs the action of S is multiplication by ih. Thus the equation (63)
reduced to the space Fχ2 (H) becomes the Heisenberg type equation [59, (4.4)]

ḟ =
1

ih
[H, f ]̂s (78)

based on the above bracket (77). The Schrödinger representation (75) transforms
this equation to the original Heisenberg equation.

Example 22. 1. Under the Fourier transform (x, y) 7→ (q, p) the p-dynamic
equation (65) of the harmonic oscillator becomes

ḟ =

(
mk2q

∂

∂p
− 1

m
p
∂

∂q

)
f. (79)

The same transform creates its solution out of (66).
2. Since ∂

∂s acts onFχ2 (H) as multiplication by i}, the quantum representation
of unharmonic dynamics equation (68) is

ḟ =

(
mk2q

∂

∂p
+
λ

6

(
3q2 ∂

∂p
− }2

4

∂3

∂p3

)
− 1

m
p
∂

∂q

)
f. (80)

This is exactly the equation for the Wigner function obtained in [9, (30)].

4.2.3. Quantum Probabilities
For the elliptic character χh(s) = eihs we can use the Cauchy–Schwartz inequality
to demonstrate that the real number A in the identity (71) is between −1 and 1.
Thus, we can put A = cosα for some angle (phase) α to get the formula for
counting quantum probabilities, cf. [42, (2)]

l12 = l1 + l2 + 2 cosα
√
l1l2. (81)

Remark 23. It is interesting to note that the both trigonometric functions are em-
ployed in quantum mechanics: sine is in the heart of the Moyal bracket (77) and
cosine is responsible for the addition of probabilities (81). In the essence the com-
mutator and probabilities took respectively the odd and even parts of the elliptic
character eihs.
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Example 24. Take a vector v(a,b) ∈ Lh2(H) defined by a Gaussian with mean value
(a, b) in the phase space for a harmonic oscillator of the massm and the frequency
k

v(a,b)(q, p) = exp

(
−2πkm

}
(q − a)2 − 2π

}km
(p− b)2

)
. (82)

A direct calculation shows〈
v(a,b), ρ}(s, x, y)v(ã,b̃)

〉
=

4

}
exp

(
πi
(

2s} + x(a+ ã) + y(b+ b̃)
)

− π

2}km
((}x+ b− b̃)2 + (b− b̃)2)− πkm

2}
((}y + ã− a)2 + (ã− a)2)

)
=

4

}
exp

(
πi
(

2s} + x(a+ ã) + y(b+ b̃)
)

− π

}km
((b− b̃+ }x

2 )2 + (}x2 )2)− πkm

}
((a− ã− }y

2 )2 + (}y2 )2)

)
.

Thus, the kernel l(a,b) =
〈
v(a,b), ρ}(s, x, y)v(a,b)

〉
in (69) for the state v(a,b) is

l(a,b) =
4

}
exp

(
2πi(s} + xa+ yb) − π}

2km
x2 − πkm}

2}
y2

)
. (83)

An observable registering a particle at a point q = c of the configuration space is
δ(q − c). On the Heisenberg group this observable is given by the kernel

Xc(s, x, y) = e2πi(s}+xc)δ(y). (84)

The measurement of Xc on the state (82) (through the kernel (83)) predictably is〈
Xc, l(a,b)

〉
=

√
2km

}
exp

(
−2πkm

}
(c− a)2

)
.

Example 25. Now take two states v(0,b) and v(0,−b), where for the simplicity we
assume the mean values of coordinates vanish in the both cases. Then the corre-
sponding kernel (70) has the interference terms

li =
〈
v(0,b), ρ}(s, x, y)v(0,−b)

〉
=

4

}
exp

(
2πis}− π

2}km
((}x+ 2b)2 + 4b2)− π}km

2
y2

)
.

The measurement of Xc (84) on this term contains the oscillating part

〈Xc, li〉 =

√
2km

}
exp

(
−2πkm

}
c2 − 2π

km}
b2 +

4πi

}
cb

)
.

Therefore on the kernel l corresponding to the state v(0,b)+v(0,−b) the measurement
is

〈Xc, l〉 = 2

√
2km

}
exp

(
−2πkm

}
c2

)(
1 + exp

(
− 2π

km}
b2
)

cos

(
4π

}
cb

))
.
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The presence of the cosine term in the last expression can generate an interference
picture. In practise, it does not happen for the minimal uncertainty state (82) which
we are using here: it rapidly vanishes outside of the neighbourhood of zero, where
oscillations of the cosine occurs, see Fig. 8(a).

(a) (b)

Figure 8. Quantum probabilities: the blue (dashed) graph shows the
addition of probabilities without interaction, the red (solid) graph
present the quantum interference. Left picture shows the Gaussian
state (82), the right – the rational state (85).

Example 26. To see a traditional interference pattern one can use a state which is
far from the minimal uncertainty. For example, we can consider the state

u(a,b)(q, p) =
}2

((q − a)2 + }/km)((p− b)2 + }km)
· (85)

To evaluate the observable Xc (84) on the state l(g) = 〈u1, ρh(g)u2〉 in (69) we
use the following formula

〈Xc, l〉 =
2

}

∫
Rn
û1(q, 2(q − c)/}) û2(q, 2(q − c)/}) dq

where ûi(q, x) denotes the partial Fourier transform p 7→ x of ui(q, p). The for-
mula is obtained by swapping order of integrations. The numerical evaluation of
the state obtained by the addition u(0,b) + u(0,−b) is plotted on Fig. 8(b), the red
curve shows the canonical interference pattern.

4.3. Ladder Operators and Harmonic Oscillator

Let ρ be the representation (30) of the Schrödinger group G = H o Mp(2) in the
space V . Consider the derived representation of the Lie algebra g [79, § VI.1] and
to simplify expressions we denote X̃ = ρ(X) forX ∈ g. To see the structure of the
representation ρ we can decompose the space V into eigenspaces of the operator X̃
for some X ∈ g. The canonical example is the Taylor series in complex analysis.
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We are going to consider three cases corresponding to three non-isomorphic sub-
groups (15–17) of SL2(R) starting from the compact case. Let X = Z be a gener-
ator of the compact subgroup K. Corresponding symplectomorphisms (29) of the

phase space are given by orthogonal rotations with matrices
(

cos t sin t
− sin t cos t

)
. The

Shale–Weil representation (55) coincides with the Hamiltonian of the harmonic
oscillator in Schrödinger representation.
Since Mp(2) is a two-fold cover of Mp(2), the corresponding eigenspaces of a
compact group Z̃vk = ikvk are parametrised by a half-integer k ∈ Z/2. Explicitly
for a half-integer k eigenvectors are

vk(q) = Hk+ 1
2

(√
2π

}
q

)
e−

π
} q

2
(86)

where Hk is the Hermite polynomial [22, 8.2(9); 26, § 1.7].
From the point of view of quantum mechanics as well as the representation the-
ory, it is beneficial to introduce the ladder operators L± (48), known also as cre-
ation/annihilation in quantum mechanics [7; 26, p. 49]. There are two ways to
search for ladder operators: in (complexified) Lie algebras h and sl2. The later
coincides with our consideration in Section 3.3 in the essence.

4.3.1. Ladder Operators from the Heisenberg Group
Assuming L+ = aX̃ + bỸ we obtain from the relations (31) and (48) the linear
equations with unknown a and b

a = λ+b, −b = λ+a.

The equations have a solution if and only if λ2
+ + 1 = 0, and the raising/lowering

operators are L± = X̃ ∓ iỸ .

Remark 27. Here we have an interesting asymmetric response: due to the struc-
ture of the semidirect product H o Mp(2) it is the symplectic group which acts on
H, not vise versa. However the Heisenberg group has a weak action in the opposite
direction: it shifts eigenfunctions of SL2(R).

In the Schrödinger representation (54) the ladder operators are

ρ}(L±) = 2πiq ± i}
d

dq
· (87)

The standard treatment of the harmonic oscillator in quantum mechanics, which
can be found in many textbooks, e.g. [26, § 1.7; 27, § 2.2.3], is as follows. The
vector v−1/2(q) = e−πq

2/} is an eigenvector of Z̃ with the eigenvalue − i
2 · In

addition v−1/2 is annihilated by L+. Thus the chain (50) terminates to the right
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and the complete set of eigenvectors of the harmonic oscillator Hamiltonian is
presented by (L−)kv−1/2 with k = 0, 1, 2, . . ..
We can make a wavelet transform generated by the Heisenberg group with the
mother wavelet v−1/2, and the image will be the Fock–Segal–Bargmann space [26,
§ 1.6; 36]. Since v−1/2 is the null solution of L+ = X̃ − iỸ , then by Corrolary 38
the image of the wavelet transform will be null-solutions of the corresponding
linear combination of the Lie derivatives (27)

D = Xr − iY r = (∂x + i∂y)− π}(x− iy) (88)

which turns out to be the Cauchy–Riemann equation on a weighted FSB-type
space.

4.3.2. Symplectic Ladder Operators
We can also look for ladder operators within the Lie algebra sl2, see § 3.4.1
and [67, § 8]. Assuming L+

2 = aÃ+ bB̃ + cZ̃ from the relations (14) and defining
condition (48) we obtain the linear equations with unknown a, b and c

c = 0, 2a = λ+b, −2b = λ+a.

The equations have a solution if and only if λ2
+ + 4 = 0, and the raising/lowering

operators are L±2 = ±iÃ+ B̃. In the Shale–Weil representation (55) they turn out
to be

L±2 = ±i

(
q

2

d

dq
+

1

4

)
− }i

8π

d2

dq2
− πiq2

2}
= − i

8π}

(
∓2πq + }

d

dq

)2

. (89)

Since this time λ+ = 2i the ladder operatorsL±2 produce a shift on the diagram (50)
twice bigger than the operators L± from the Heisenberg group. After all, this is not
surprising since from the explicit representations (87) and (89) we get

L±2 = − i

8π}
(L±)2.

4.4. Hyperbolic Quantum Mechanics

Now we turn to double numbers also known as hyperbolic, split-complex, etc.
numbers [45; 100; 107, Appendix C]. They form a two commutative associative
dimensional algebra O spanned by 1 and the hyperbolic unit j with the property
j2 = 1. There are zero divisors in O

j± = 1√
2
(1± j), such that j+j− = 0 and j2± = j±.

Thus, double numbers algebraically isomorphic to two copies of R spanned by j±.
Being algebraically dull double numbers are nevertheless interesting as a SL2(R)-
homogeneous space [66, 67] and they are relevant in physics [40, 100, 101, 103].
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The combination of p-mechanical approach with hyperbolic quantum mechanics
was already discussed in [8, § 6].
For the hyperbolic character χjh(s) = ejhs = coshhs + j sinhhs of R one can
define the hyperbolic Fourier-type transform

k̂(q) =

∫
R
k(x) e−jqxdx.

It can be understood in the sense of distributions on the space dual to the set of an-
alytic functions [43, § 3]. Hyperbolic Fourier transform intertwines the derivative
d

dx and multiplication by jq [43, Proposition 1].

Example 28. For the Gaussian the hyperbolic Fourier transform is the ordinary
function (note the sign difference!)∫

R
e−x

2/2e−jqxdx =
√

2π eq
2/2.

However the opposite identity∫
R

ex
2/2e−jqxdx =

√
2π e−q

2/2

is true only in a suitable distributional sense. To this end we may note that ex
2/2

and e−q
2/2 are null solutions to the differential operators d

dx − x and d
dq + q re-

spectively, which are intertwined (up to the factor j) by the hyperbolic Fourier
transform. The above differential operators d

dx − x and d
dq + q are images of the

ladder operators (87) in the Lie algebra of the Heisenberg group. They are inter-
twining by the Fourier transform, since this is an automorphism of the Heisenberg
group [35].

An elegant theory of hyperbolic Fourier transform may be achieved by a suitable
adaptation of [35], which uses representation theory of the Heisenberg group.

4.4.1. Hyperbolic Representations of the Heisenberg Group

Consider the space F j
h(H) of O-valued functions on H with the property

f(s+ s̃, h, y) = ejhs̃f(s, x, y), for all (s, x, y) ∈ H, s̃ ∈ R (90)

and the square integrability condition (41). Then the hyperbolic representation of
H is obtained by the restriction of the left shifts to F j

h(H). To obtain an equiva-
lent representation on the phase space we take the O-valued functional of the Lie
algebra h

χj(h,q,p)(s, x, y) = ej(hs+qx+py) = cosh(hs+qx+py)+j sinh(hs+qx+py). (91)
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The hyperbolic Fock–Segal–Bargmann type representation is intertwined with the
left group action by means of the Fourier transform (72) with the hyperbolic func-
tional (91). Explicitly this representation is

ρ}(s, x, y) : f(q, p) 7→ e−j(hs+qx+py)f
(
q − h

2y, p+ h
2x
)
. (92)

For a hyperbolic Schrödinger type representation we again use the scheme de-
scribed in § 3.2. Similarly to the elliptic case one obtains the formula, resem-
bling (74)

[ρj
χ(s̃, x̃, ỹ)f ](x) = e−jh(s̃+xỹ−x̃ỹ/2)f(x− x̃). (93)

Application of the hyperbolic Fourier transform produces a Schrödinger type rep-
resentation on the configuration space, cf. (75)

[ρj
χ(s̃, x̃, ỹ)f̂ ](q) = e−jh(s̃+x̃ỹ/2)−jx̃q f̂(q + hỹ).

The extension of this representation to kernels according to (61) generates hyper-
bolic pseudodifferential operators introduced in [43, (3.4)].

4.4.2. Hyperbolic Dynamics
Similarly to the elliptic (quantum) case we consider a convolution of two kernels
on H restricted to F j

h(H). The composition law becomes, cf. (76)

(k′ ∗ k)ŝ =

∫
R2n

ejh(xỹ−yx̃) k̂′s(h, x̃, ỹ) k̂s(h, x− x̃, y − ỹ) dx̃dỹ. (94)

This is close to the calculus of hyperbolic PDO obtained in [43, Theorem 2]. Re-
spectively for the commutator of two convolutions we get, cf. (77)

[k′, k]̂s =

∫
R2n

sinh(h(xỹ − yx̃)) k̂′s(h, x̃, ỹ) k̂s(h, x− x̃, y − ỹ) dx̃dỹ. (95)

This is the hyperbolic version of the Moyal bracket, cf. [43, p. 849], which gener-
ates the corresponding image of the dynamic equation (63).

Example 29. 1. For a quadratic Hamiltonian, e.g. harmonic oscillator from
Example 18, the hyperbolic equation and respective dynamics is identical
to quantum considered before.

2. Since ∂
∂s acts on F j

2(H) as multiplication by jh and j2 = 1, the hyperbolic
image of the unharmonic equation (68) becomes

ḟ =

(
mk2q

∂

∂p
+
λ

6

(
3q2 ∂

∂p
+

}2

4

∂3

∂p3

)
− 1

m
p
∂

∂q

)
f.

The difference with quantum mechanical equation (80) is in the sign of the
cubic derivative.
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Notably, the hyperbolic setup allows us to linearise many non-linear problems of
classical mechanics. It will be interesting to realise new hyperbolic coordinates
introduced to this end in [88–90] as a hyperbolic phase space.

4.4.3. Hyperbolic Probabilities

(a) (b)

Figure 9. Hyperbolic probabilities: the blue (dashed) graph shows
the addition of probabilities without interaction, the red (solid) graph
present the hyperbolic quantum interference. Left picture shows the
Gaussian state (82), with the same distribution as in quantum mechan-
ics, cf. Fig. 8(a). The right picture shows the rational state (85), note
the absence of interference oscillations in comparison with the quantum
state on Fig. 8(b).

To calculate probability distribution generated by a hyperbolic state we are using
the general procedure from Section 4.1.2. The main differences with the quantum
case are as follows

1. The real number A in the expression (71) for the addition of probabilities is
bigger than 1 in absolute value. Thus, it can be associated with the hyper-
bolic cosine coshα, cf. Remark 23, for certain phase α ∈ R [43].

2. The nature of hyperbolic interference on two slits is affected by the fact
that ejhs is not periodic and the hyperbolic exponent ejt and cosine cosh t
do not oscillate. It is worth to notice that for Gaussian states the hyperbolic
interference is exactly the same as quantum one, cf. Figs. 8(a) and 9(a). This
is similar to coincidence of quantum and hyperbolic dynamics of harmonic
oscillator.
The contrast between two types of interference is prominent for the ratio-
nal state (85), which is far from the minimal uncertainty, see the different
patterns on Figs. 8(b) and 9(b).
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4.4.4. Ladder Operators for the Hyperbolic Subgroup
Consider the case of the Hamiltonian H = 2B, which is a repulsive (hyperbolic)
harmonic oscillator [106, § 3.8]. The corresponding one-dimensional subgroup of
symplectomorphisms produces hyperbolic rotations of the phase space, see Fig. 5.
The eigenvectors vµ of the operator

ρSW
} (2B)vν = −i

(
}

4π

d2

dq2
+
πq2

}

)
vν = iνvν

are Weber–Hermite (or parabolic cylinder) functions vν = Dν− 1
2

(
±2eiπ

4
√

π
} q
)

,
see [22, § 8.2; 95] for fundamentals of Weber–Hermite functions and [98] for fur-
ther illustrations and applications in optics.
The corresponding one-parameter group is not compact and the eigenvalues of the
operator 2B̃ are not restricted by any integrality condition, but the raising/lowering
operators are still important [37, § II.1; 84, § 1.1]. We again seek solutions in two
subalgebras h and sl2 separately. However, the additional options will be provided
by a choice of the number system: either complex or double.

Example 30 (Complex Ladder Operators). Assuming L+
h = aX̃ + bỸ from the

commutators (31) we obtain the linear equations

−a = λ+b, −b = λ+a. (96)

The equations have a solution if and only if λ2
+ − 1 = 0. Taking the real roots

λ = ±1 we obtain that the raising/lowering operators are L±h = X̃ ∓ Ỹ . In the
Schrödinger representation (54) the ladder operators are

L±h = 2πiq ± }
d

dq
· (97)

The null solutions v± 1
2
(q) = e±

πi
} q

2
to operators ρ}(L±) are also eigenvectors of

the Hamiltonian ρSW
} (2B) with the eigenvalue±1

2 . However the important distinc-
tion from the elliptic case is, that they are not square-integrable on the real line
anymore.
We can also look for ladder operators within the sl2, that is in the formL+

2h = aÃ+

bB̃+cZ̃ for the commutator [2B̃, L+
h] = λL+

h, see § 3.4.2. Within complex numbers
we get only the values λ = ±2 with the ladder operators L±2h = ±2Ã + Z̃/2,
see [37, § II.1; 84, § 1.1]. Each indecomposable h- or sl2-module is formed by a
one-dimensional chain of eigenvalues with a transitive action of ladder operators
L±h or L±2h respectively. And we again have a quadratic relation between the ladder
operators

L±2h =
i

4π}
(L±h)2.
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4.4.5. Double Ladder Operators
There are extra possibilities in in the context of hyperbolic quantum mechanics [40,
42, 43]. Here we use the representation of H induced by a hyperbolic character
ejht = cosh(ht) + j sinh(ht), see (92) and [71, (4.5)], and obtain the hyperbolic
representation of H, cf. (75)

[ρj
h(s̃, x̃, ỹ)f̂ ](q) = ejh(s̃−x̃ỹ/2)+jx̃q f̂(q − hỹ). (98)

The corresponding derived representation is

ρj
h(X) = jq, ρj

h(Y ) = −h d

dq
, ρj

h(S) = jhI. (99)

Then the associated Shale–Weil derived representation of sp2 in the Schwartz space
S (R) is, cf. (55)

ρSW
h (A) = −q

2

d

dq
− 1

4
, ρSW

h (B) =
jh

4

d2

dq2
− jq2

4h
, ρSW

h (Z) = − jh

2

d2

dq2
− jq2

2h
.

(100)
Note that ρSW

h (B) now generates a usual harmonic oscillator, not the repulsive one
like ρSW

} (B) in (55). However, the expressions in the quadratic algebra are still the
same (up to a factor), cf. (56)

ρSW
h (A) = − j

2h
(ρj
h(X)ρj

h(Y )− 1
2ρ

j
h(S))

= − j

4h
(ρj
h(X)ρj

h(Y ) + ρj
h(Y )ρj

h(X))

ρSW
h (B) =

j

4h
(ρj
h(X)2 − ρj

h(Y )2)

ρSW
h (Z) = − j

2h
(ρj
h(X)2 + ρj

h(Y )2).

This is due to the Principle 10 of similarity and correspondence: we can swap
operators Z and B with simultaneous replacement of hypercomplex units i and j.
The eigenspace of the operator 2ρSW

h (B) with an eigenvalue jν are spanned by the

Weber–Hermite functions D−ν− 1
2

(
±
√

2
hx
)

, see [22, § 8.2]. Functions Dν are
generalisations of the Hermite functions (86).
The compatibility condition for a ladder operator within the Lie algebra h will
be (96) as before, since it depends only on the commutators (31). Thus, we still
have the set of ladder operators corresponding to values λ = ±1

L±h = X̃ ∓ Ỹ = jq ± h d

dq
·

Admitting double numbers we have an extra way to satisfy λ2 = 1 in (96) with
values λ = ±j. Then there is an additional pair of hyperbolic ladder operators,
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which are identical (up to factors) to (87)

L±j = X̃ ∓ jỸ = jq ± jh
d

dq
·

Pairs L±h and L±j shift eigenvectors in the “orthogonal” directions changing their
eigenvalues by ±1 and ±j. Therefore an indecomposable sl2-module can be para-
metrised by a two-dimensional lattice of eigenvalues in double numbers, see Fig. 7.

The following functions

v±h1
2

(q) = e∓jq2/(2h) = cosh
q2

2h
∓ j sinh

q2

2h

v±j
1
2

(q) = e∓q
2/(2h)

are null solutions to the operators L±h and L±j respectively. They are also eigen-
vectors of 2ρSW

h (B) with eigenvalues ∓ j
2 and ∓1

2 respectively. If these functions
are used as mother wavelets for the wavelet transforms generated by the Heisen-
berg group, then the image space will consist of the null-solutions of the following
differential operators, see Corrolary 38

Dh = Xr − Y r = (∂x − ∂y) +
h

2
(x+ y)

Dj = Xr − jY r = (∂x + j∂y)−
h

2
(x− jy)

for v±h1
2

and v±j
1
2

respectively. This is again in line with the classical result (88).

However, annihilation of the eigenvector by a ladder operator does not mean that
the part of the 2D-lattice becomes void since it can be reached via alternative routes
on this lattice. Instead of multiplication by a zero, as it happens in the elliptic case,
a half-plane of eigenvalues will be multiplied by the divisors of zero 1± j.

We can also search ladder operators within the algebra sl2 and admitting double
numbers we will again find two sets of them, cf. § 3.4.2

L±2h = ±Ã+ Z̃/2 = ∓q
2

d

dq
∓ 1

4
− jh

4

d2

dq2
− jq2

4h
= − j

4h
(L±h)2

L±2j = ±jÃ+ Z̃/2 = ∓ jq

2

d

dq
∓ j

4
− jh

4

d2

dq2
− jq2

4h
= − j

4h
(L±j )2.

Again the operators L±2h and L±2h produce double shifts in the orthogonal directions
on the same two-dimensional lattice in Fig. 7.
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4.5. Parabolic (Classical) Representations on the Phase Space

After the previous two cases it is natural to link classical mechanics with dual
numbers generated by the parabolic unit ε2 = 0. Connection of the parabolic
unit ε with the Galilean group of symmetries of classical mechanics is around for a
while [107, Appendix C], for other applications see [10,16,17,28], [109, § I.2(10)].
However, the nilpotency of the parabolic unit ε makes it difficult if we will work
with dual number valued functions only. To overcome this issue we consider a
commutative and associative four-dimensional real algebra C spanned by 1, i, ε
and iε with identities i2 = −1 and ε2 = 0. A seminorm on C is defined as follows

|a+ bi + cε+ diε|2 = a2 + b2.

4.5.1. Classical Non-Commutative Representations

We wish to build a representation of the Heisenberg group which will be a classical
analog of the Fock–Segal–Bargmann representation (57). To this end, we introduce
the space Fεh(H) of C-valued functions on H with the property

f(s+ s̃, h, y) = eεhs̃f(s, x, y), for all (s, x, y) ∈ H, s̃ ∈ R (101)

and the square integrability condition (41). Here as before, eεhs̃ = 1 + εhs̃ in line
with the Taylor expansion of the exponent. The described space is invariant under
the left shifts and we restrict the left group action to Fεh(H).
An equivalent form of the induced representation acts on Fεh(R2n), where R2n) is
the homogeneous space of H over its centre. The Fourier transform (x, y) 7→ (q, p)
intertwines the last representation with the following action on C-valued functions
on the phase space

ρεh(s, x, y) : f(q, p) 7→ e−2πi(xq+yp)(f(q, p) (102)

+ε~(2πsf(q, p)− yi

2
f ′q(q, p) +

xi

2
f ′p(q, p))).

Note, that for any real polynomial p(x) algebraic manipulations show that p(x +
εy) = p(x) + εyp′(x). If extend this rule to any differentiable function then (102)
can be re-written as

ρ}(s, x, y) : f(q, p) 7→ e−2π(ε}s+i(qx+py))f

(
q − i}

2
εy, p+

i}
2
εx

)
. (103)

The later form completely agrees with FSB representation (57).

Remark 31. Comparing the traditional infinite-dimensional (57) and one-dimen-
sional (73) representations of H we can note that the properties of the representa-
tion (102) are a non-trivial mixture of the former
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1. The action (102) is non-commutative, similarly to the quantum represen-
tation (57) and unlike the classical one (73). This non-commutativity will
produce the Hamilton equations below in a way very similar to Heisenberg
equation, see Remark 33.

2. The representation (102) does not change the support of a function f on the
phase space, similarly to the classical representation (73) and unlike the
quantum one (57). Such a localised action will be responsible later for an
absence of an interference in classical probabilities.

3. The parabolic representation (102) can not be derived from either the ellip-
tic (57) or hyperbolic (92) by the plain substitution h = 0.

We may also write a classical Schrödinger type representation. According to § 3.2
we get a representation formally very similar to the elliptic (74) and hyperbolic
versions (93)

[ρεχ(s̃, x̃, ỹ)f ](x) = e−εh(s̃+xỹ−x̃ỹ/2)f(x− x̃)
(104)

= (1− εh(s̃+ xỹ − 1
2 x̃ỹ))f(x− x̃).

However due to nilpotency of ε the (complex) Fourier transform x 7→ q produces a
different formula for parabolic Schrödinger type representation in the configuration
space, cf. (75) and (98)

[ρεχ(s̃, x̃, ỹ)f̂ ](q) = e2πix̃q
((

1− εh(s̃− 1
2 x̃ỹ)

)
f̂(q) + εi~ỹf̂ ′(q)

)
(105)

= e2π(−ε~(s̃−1
2 x̃ỹ)+ix̃q)f̂(q + εi~ỹ).

This representation shares all properties mentioned in Remark. 31 as well.

4.5.2. Hamilton Equation
The identity eεt − e−εt = 2εt suggests that a parabolic version of the sine func-
tion is the identity function, while the parabolic cosine is identically equal to one,
cf. § 3.1 and [33, 65]. From this we obtain the parabolic version of the commuta-
tor (77)

[k′, k]̂s(εh, x, y) = εh

∫
R2n

(xỹ − yx̃)

× k̂′s(εh, x̃, ỹ) k̂s(εh, x− x̃, y − ỹ) dx̃dỹ

for the partial parabolic Fourier-type transform k̂s of the kernels. Thus, the para-
bolic representation of the dynamical equation (63) becomes

εh
df̂s
dt

(εh, x, y; t) (106)

= εh
∫
R2n(xỹ − yx̃) Ĥs(εh, x̃, ỹ) f̂s(εh, x− x̃, y − ỹ; t) dx̃dỹ.
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Although there is no possibility to divide by ε (since it is a zero divisor) we can
obviously eliminate εh from the both sides if the rest of the expressions are real.
Moreover, this can be done “in advance” through a kind of the antiderivative oper-
ator considered in [59, (4.1)]. This will prevent “imaginary parts” of the remaining
expressions (which contain the factor ε) from vanishing.

Remark 32. It is noteworthy that the Planck constant completely disappeared from
the dynamical equation. Thus the only prediction about it following from our con-
struction is h 6= 0, which was confirmed by experiments, of course.

Using the duality between the Lie algebra h of H and the phase space we can
find an adjoint equation for observables on the phase space. To this end we apply
the usual Fourier transform (x, y) 7→ (q, p). It turn to be the Hamilton equation
(12) [59, (4.7)]. However, the transition to the phase space is more a custom rather
than a necessity and in many cases we can efficiently work on the Heisenberg group
itself.

Remark 33. It is noteworthy, that the non-commutative representation (102) pro-
duces the Hamilton equation directly from the commutator [ρεh(k1), ρεh(k2)]. In-
deed, its straightforward evaluation will produce exactly the above expression. On
the contrast such a commutator for the commutative representation (73) is zero
and to obtain the Hamilton equation we have to work with an additional tools, e.g.
an anti-derivative [59, (4.1)].

Example 34. 1. For the harmonic oscillator in Example 18 the equation (106)
again reduces to the form (65) with the solution given by (66). The adjoint
equation of the harmonic oscillator on the phase space is not different from
the quantum written in Example 22(1). This is true for any Hamiltonian of
at most quadratic order.

2. For non-quadratic Hamiltonians classical and quantum dynamics are dif-
ferent, of course. For example, the cubic term of ∂s in the equation (68) will
generate the factor ε3 = 0 and thus vanish. Thus the equation (106) of the
unharmonic oscillator on H becomes

ḟ =

(
mk2y

∂

∂x
+
λy

2

∂2

∂x2
− 1

m
x
∂

∂y

)
f.

The adjoint equation on the phase space is

ḟ =

((
mk2q +

λ

2
q2

)
∂

∂p
− 1

m
p
∂

∂q

)
f.

The last equation is the classical Hamilton equation generated by the cubic
potential (67). Qualitative analysis of its dynamics can be found in many
textbooks [3, § 4.C, Pic. 12; 87, § 4.4].
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Remark 35. We have obtained the Poisson bracket from the commutator of con-
volutions on H without any quasiclassical limit h→ 0. This has a common source
with the deduction of main calculus theorems in [10] based on dual numbers. As
explained in [66, Remark. 6.9] this is due to the similarity between the parabolic
unit ε and the infinitesimal number used in non-standard analysis [14]. In other
words, we never need to take care about terms of order O(h2) because they will be
wiped out by ε2 = 0.

An alternative derivation of classical dynamics from the Heisenberg group is given
in the recent paper [82].

4.5.3. Classical Probabilities
It is worth to notice that dual numbers are not only helpful in reproducing classical
Hamiltonian dynamics, they also provide the classic rule for addition of proba-
bilities. We use the same formula (69) to calculate kernels of the states. The
important difference now that the representation (102) does not change the sup-
port of functions. Thus if we calculate the correlation term 〈v1, ρ(g)v2〉 in (70),
then it will be zero for every two vectors v1 and v2 which have disjoint supports
in the phase space. Thus no interference similar to quantum or hyperbolic cases
(Subsection 4.2.3) is possible.

4.5.4. Ladder Operator for the Nilpotent Subgroup
Finally we look for ladder operators for the Hamiltonian B̃+ Z̃/2 or, equivalently,
−B̃ + Z̃/2. It can be identified with a free particle [106, § 3.8].
We can search for ladder operators in the representation (54)–(55) within the Lie
algebra h in the form L±ε = aX̃ + bỸ . This is possible if and only if

−b = λa, 0 = λb. (107)

The compatibility condition λ2 = 0 implies λ = 0 within complex numbers.
However, such a “ladder” operator L±ε = aX̃ produces only the zero shift on the
eigenvectors, cf. equation (49).
Another possibility appears if we consider the representation of the Heisenberg
group induced by dual-valued characters. On the configuration space such a repre-
sentation is (105)

[ρεχ(s̃, x̃, ỹ)f̂ ](q) = e2π(−ε~(s̃−1
2 x̃ỹ)+ix̃q)f̂(q + εi~ỹ). (108)

The corresponding derived representation of h is

ρεh(X) = 2πiq, ρεh(Y ) = −iε~
d

dq
, ρεh(S) = −2πε~I.

However, the Shale–Weil extension generated by this representation is inconve-
nient. It is better to consider the FSB–type parabolic representation (102) on the
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phase space induced by the same dual-valued character. Then the derived repre-
sentation of h is

ρph(X) = −2πiq+
iε~
2
∂p, ρph(Y ) = −2πip− iε~

2
∂q, ρph(S) = 2πε~I. (109)

An advantage of the FSB representation is that the derived form of the parabolic
Shale–Weil representation coincides with the elliptic one (59).
Eigenfunctions with the eigenvalue µ of the parabolic Hamiltonian B̃+Z̃/2 = q∂p
have the form

vµ(q, p) = eµp/qf(q), with an arbitrary function f(q). (110)

The linear equations defining the corresponding ladder operator L±ε = aX̃ + bỸ
in the algebra h are (107). The compatibility condition λ2 = 0 implies λ = 0
within complex numbers again. Admitting dual numbers we have additional values
λ = ±ελ1 with λ1 ∈ C with the corresponding ladder operators

L±ε = X̃ ∓ ελ1Ỹ = −2πiq +
iε~
2
∂p ± 2πiελ1p = −2πiq + εi(±2πλ1p+

~
2
∂p).

For the eigenvalue µ = µ0 + εµ1 with µ0, µ1 ∈ C the eigenfunction (110) can be
rewritten as

vµ(q, p) = eµp/qf(q) = eµ0p/q
(

1 + εµ1
p

q

)
f(q) (111)

due to the nilpotency of ε. Then the ladder action of L±ε is µ0 + εµ1 7→ µ0 +
ε(µ1 ± λ1). Therefore these operators are suitable for building sl2-modules with a
one-dimensional chain of eigenvalues.
Finally, consider the ladder operator for the same element B + Z/2 within the Lie
algebra sl2, cf. § 3.4.3. There is the only operator L±p = B̃ + Z̃/2 corresponding
to complex coefficients, which does not affect the eigenvalues. However the dual
numbers lead to the operators

L±ε = ±ελ2Ã+ B̃ + Z̃/2 = ±ελ2

2
(q∂q − p∂p) + q∂p, λ2 ∈ C.

These operator act on eigenvalues in a non-trivial way.

5. Wavelet Transform, Uncertainty Relation and Analyticity

There are two and a half main examples of reproducing kernel spaces of analytic
function. One is the Fock–Segal–Bargmann space and others (one and a half) – the
Bergman and Hardy spaces on the upper half-plane. The first space is generated by
the Heisenberg group [26, § 1.6; 69, § 7.3], two others – by the group SL2(R) [69,
§ 4.2] (this explains our way of counting).
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Those spaces have the following properties, which make their study particularly
pleasant and fruitful:

1. There is a group, which acts transitively on functions’ domain.
2. There is a reproducing kernel.
3. The space consists of holomorphic functions.

Furthermore, for FSB space there is the following property:

iv. The reproducing kernel is generated by a function, which minimises the
uncertainty for coordinate and momentum observables.

It is known, that a transformation group is responsible for the appearance of the re-
producing kernel [2, Theorem 8.1.3]. This paper shows that the last two properties
are equivalent and connected to the group as well.

5.1. Induced Wavelet (Covariant) Transform

The following object is common in quantum mechanics [59], signal processing,
harmonic analysis [76], operator theory [73,75] and many other areas [69]. There-
fore, it has various names [2]: coherent states, wavelets, matrix coefficients, etc.
In the most fundamental situation [2, Ch. 8], we start from an irreducible unitary
representation ρ of a Lie group G in a Hilbert spaceH. For a vector f ∈ H (called
mother wavelet, vacuum state, etc.), we define the mapWf from H to a space of
functions on G by

[Wfv](g) = ṽ(g) := 〈v, ρ(g)f〉 . (112)
Under the above assumptions, ṽ(g) is a bounded continuous function on G. The
mapWf intertwines ρ(g) with the left shifts on G

Wf ◦ ρ(g) = Λ(g) ◦Wf , where Λ(g) : ṽ(g̃) 7→ ṽ(g−1g̃). (113)

Thus, the image WfH is invariant under the left shifts on G. If ρ is square inte-
grable and f is admissible [2, § 8.1], then ṽ(g) is square-integrable with respect
to the Haar measure on G. Moreover, it is a reproducing kernel Hilbert space and
the kernel is k(g) = [Wff ](g). At this point, none of admissible vectors has an
advantage over others.
It is common [69, § 5.1], that there exists a closed subgroup H ⊂ G and a respec-
tive f ∈ H such that ρ(h)f = χ(h)f for some character χ of H . In this case, it
is enough to know values of ṽ(s(x)), for any continuous section s from the homo-
geneous space X = G/H to G. The map v 7→ ṽ(x) = ṽ(s(x)) intertwines ρ with
the representation ρχ in a certain function space on X induced by the character χ
of H [47, § 13.2]. We call the map

Wf : v 7→ ṽ(x) = 〈v, ρ(s(x))f〉 , where x ∈ G/H (114)

the induced wavelet transform [69, § 5.1].
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For example, ifG = H,H = {(s, 0, 0) ∈ H ; s ∈ R} and its character χ}(s, 0, 0) =
e2πi}s, then any vector f ∈ L2(R) satisfies ρ}(s, 0, 0)f = χ}(s)f for the repre-
sentation (53). Thus, we still do not have a reason to prefer any admissible vector
to others.

5.2. The Uncertainty Relation

In quantum mechanics [26, § 1.1], an observable (that is, a self-adjoint operator on
a Hilbert space H) A produces the expectation value Ā on a pure state (that is, a
unit vector) φ ∈ H by Ā = 〈Aφ, φ〉. Then, the dispersion is evaluated as follow

∆2
φ(A) =

〈
(A− Ā)2φ, φ

〉
=
〈
(A− Ā)φ, (A− Ā)φ

〉
=
∥∥(A− Ā)φ

∥∥2
. (115)

The next theorem links obstructions of exact simultaneous measurements with non-
commutativity of observables.

Theorem 36 (The Uncertainty relation). If A and B are self-adjoint operators on
a Hilbert spaceH, then

‖(A− a)u‖ ‖(B − b)u‖ ≥ 1
2 |〈(AB −BA)u, u〉| (116)

for any u ∈ H from the domains of AB and BA and a, b ∈ R. Equality holds
precisely when u is a solution of ((A− a) + ir(B − b))u = 0 for some real r.

Proof: The proof is well-known [26, § 1.3], but it is short, instructive and rele-
vant for the following discussion, thus we include it in full. We start from simple
algebraic transformations

〈(AB −BA)u, u〉 = 〈((A− a)(B − b)− (B − b)(A− a))u, u〉
= 〈(B − b)u, (A− a)u〉 − 〈(A− a))u, (B − b)u〉
= 2i= 〈(B − b)u, (A− a)u〉 (117)

Then by the Cauchy–Schwartz inequality

1
2 〈(AB −BA)u, u〉 ≤ |〈(B − b)u, (A− a)u〉| ≤ ‖(B − b)u‖ ‖(A− a)u‖ .

The equality holds if and only if (B − b)u and (A − a)u are proportional by a
purely imaginary scalar. �

The famous application of the above theorem is the following fundamental relation
in quantum mechanics. We use [71, (3.5)] the Schrödinger representation (75) of
the Heisenberg group (53)

[ρ}(s̃, x̃, ỹ)f̂ ](q) = e−2πi}(s̃+x̃ỹ/2)−2πix̃q f̂(q + }ỹ). (118)
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Elements of the Lie algebra h, corresponding to the infinitesimal generators X and
Y of one-parameters subgroups (0, t/(2π), 0) and (0, 0, t) in H, are represented
in (118) by the (unbounded) operators M̃ and D̃ on L2(R)

M̃ = −iq, D̃ = } d
dq , with the commutator [M̃, D̃] = i}I. (119)

In the Schrödinger model of quantum mechanics, f(q) ∈ L2(R) is interpreted as
a wave function (a state) of a particle, with M = iM̃ and 1

i D̃ are the observables
of its coordinate and momentum.

Corollary 37 (Heisenberg–Kennard uncertainty relation). For the coordinate M
and momentum D observables we have the Heisenberg–Kennard uncertainty rela-
tion

∆φ(M) ·∆φ(D) ≥ h

2
· (120)

The equality holds if and only if φ(q) = e−cq
2
, c ∈ R+ is the Gaussian vacuum

state in the Schrödinger model.

Proof: The relation follows from the commutator [M,D] = i}I , which, in turn, is
the representation of the Lie algebra h of the Heisenberg group. By Theorem 36,
the minimal uncertainty state in the Schrödinger representation is a solution of the
differential equation: (M − irD)φ = 0 for some r ∈ R, or, explicitly

(M − irD)φ = −i

(
q + r}

d

dq

)
φ(q) = 0. (121)

The solution is the Gaussian φ(q) = e−cq
2
, c = 1

2r} · For c > 0, this function is in
the state space L2(R). �

It is common to say that the Gaussian φ(q) = e−cq
2

represents the ground state,
which minimises the uncertainty of coordinate and momentum.

5.3. Right Shifts and Analyticity

To discover some preferable mother wavelets, we use the following general result
from [69, § 5]. Let G be a locally compact group and ρ be its representation in a
Hilbert space H. Let [Wfv](g) = 〈v, ρ(g)f〉 be the wavelet transform defined by
a vacuum state f ∈ H. Then, the right shift R(g) : [Wfv](g̃) 7→ [Wfv](g̃g) for
g ∈ G coincides with the wavelet transform [Wfgv](g̃) = 〈v, ρ(g̃)fg〉 defined by
the vacuum state fg = ρ(g)f . In other words, the covariant transform intertwines
right shifts on the group G with the associated action ρ on vacuum states, cf. (113)

R(g) ◦Wf =Wρ(g)f . (122)

Although, the above observation is almost trivial, applications of the following
corollary are not.
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Corollary 38 (Analyticity of the wavelet transform, [69, § 5]). Let G be a group
and dg be a measure on G. Let ρ be a unitary representation of G, which can be
extended by integration to a vector space V of functions or distributions on G. Let
a mother wavelet f ∈ H satisfy the equation∫

G
a(g) ρ(g)f dg = 0

for a fixed distribution a(g) ∈ V . Then any wavelet transform ṽ(g) = 〈v, ρ(g)f〉
obeys the condition

Dṽ = 0, where D =

∫
G
ā(g)R(g) dg (123)

with R being the right regular representation of G.

Some applications (including discrete one) produced by the ax + b group can be
found in [76, § 6]. We turn to the Heisenberg group now.

Example 39 (Gaussian and FSB transform). The Gaussian φ(x) = e−cq
2/2 is

a null-solution of the operator }cM − iD. For the centre Z = {(s, 0, 0) ; s ∈
R} ⊂ H, we define the section s : H/Z → H by s(x, y) = (0, x, y). Then, the
corresponding induced wavelet transform (114) is

ṽ(x, y) = 〈v, ρ(s(x, y))f〉 =

∫
R
v(q) eπi}xy−2πixq e−c(q+}y)2/2 dq. (124)

The transformation intertwines the Schrödinger and Fock–Segal–Bargmann rep-
resentations The infinitesimal generators X and Y of one-parameters subgroups
(0, t/(2π), 0) and (0, 0, t) are represented through the right shift in (24) by

R∗(X) = − 1
4πy∂s + 1

2π∂x, R∗(Y ) = 1
2x∂s + ∂y.

For the representation induced by the character χ}(s, 0, 0) = e2πi}s we have ∂s =
2πi}I . Corrolary 38 ensures that the operator

}c ·R∗(X) + i ·R∗(Y ) = −}
2

(2πx+ i}cy) +
}c
2π
∂x + i∂y (125)

annihilate any ṽ(x, y) from (124). The integral (124) is known as Fock–Segal–
Bargmann transform and in the most common case the values } = 1 and c = 2π
are used. For these, operator (125) becomes−π(x+iy)+(∂x+i∂y) = −πz+2∂z̄
with z = x + iy. Then the function V (z) = eπzz̄/2 ṽ(z) = eπ(x2+y2)/2 ṽ(x, y)
satisfies the Cauchy–Riemann equation ∂z̄V (z) = 0.

This example shows, that the Gaussian is a preferred vacuum state (as produc-
ing analytic functions through FSB transform) exactly for the same reason as be-
ing the minimal uncertainty state: the both are derived from the identity (}cM +

iD)e−cq
2/2 = 0.



Symmetry, Geometry and Quantization with Hypercomplex Numbers 67

5.4. Uncertainty and Analyticity

The main result of this paper is a generalisation of the previous observation, which
bridges together Corrolary 38 and Theorem 36. Let G, H , ρ and H be as before.
Assume, that the homogeneous space X = G/H has a (quasi-)invariant measure
dµ(x) [47, § 13.2]. Then, for a function (or a suitable distribution) k on X we can
define the integrated representation

ρ(k) =

∫
X
k(x)ρ(s(x)) dµ(x) (126)

which is (possibly, unbounded) operators on (possibly, dense subspace of)H. It is
a homomorphism of the convolution algebra L1(G, dg) to an algebra of bounded
operators on H. In particular, R(k) denotes the integrated right shifts, for H =
{e}.

Theorem 40 ([77]). Let k1 and k2 be two distributions on X with the respective
integrated representations ρ(k1) and ρ(k2). The following are equivalent

1. A vector f ∈ H satisfies the identity

∆f (ρ(k1)) ·∆f (ρ(k2)) = |〈[ρ(k1), ρ(k1)]f, f〉| .

2. The image of the wavelet transformWf : v 7→ ṽ(g) = 〈v, ρ(g)f〉 consists
of functions satisfying the equation R(k1 + irk2)ṽ = 0 for some r ∈ R,
where R is the integrated form (126) of the right regular representation on
G.

Proof: This is an immediate consequence of a combination of Theorem 36 and
Corrolary 38. �

Example 39 is a particular case of this theorem with k1(x, y) = δ′x(x, y) and
k2(x, y) = δ′y(x, y) (partial derivatives of the delta function), which represent
vectors X and Y from the Lie algebra h. The next example will be of this type
as well.

5.5. Hardy Space on the Real Line

We consider the induced representation ρ1 (43) for k = 1 of the group SL2(R).
A SL2(R)-quasi-invariant measure on the real line is |cx+ d|−2 dx. Thus, the
following form of the representation (43)

ρ1(g)f(w) =
1

cx+ d
f

(
ax+ b

cx+ d

)
, where g−1 =

(
a b
c d

)
(127)

is unitary in L2(R) with the Lebesgue measure dx.
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We can calculate the derived representations for the basis of sl2 presented in (13)

dρA1 = 1
2 · I + x∂x

dρB1 = 1
2x · I + 1

2(x2 − 1)∂x

dρZ1 = −x · I − (x2 + 1)∂x.

The linear combination of the above vector fields producing ladder operators L± =
±iA+B are, cf. (51)

dρ
L±

1 = 1
2

(
(x± i) · I + (x± i)2 · ∂x

)
. (128)

Obviously, the function f+(x) = (x + i)−1 satisfies dρ
L+

1 f+ = 0. Recalling the
commutator [A,B] = −1

2Z we note that dρZ1 f+ = −if+. Therefore, there is the
following identity for dispersions on this state

∆f+(ρA1 ) ·∆f+(ρB1 ) = 1
2

with the minimal value of uncertainty among all eigenvectors of the operator dρZ1 .
Furthermore, the vacuum state f+ generates the induced wavelet transform for the
subgroup K = {etZ | t ∈ R}. We identify SL2(R)/K with the upper half-plane
C+ = {z ∈ C ; =z > 0} [69, § 5.5; 75]. The map s : SL2(R)/K → SL2(R) is

defined as s(x+iy) = 1√
y

(
y x
0 1

)
(19). Then, the induced wavelet transform (114)

is

ṽ(x+ iy) = 〈v, ρ1(s(x+ iy))f+〉 =
1

2π
√
y

∫
R

v(t) dt
t−x
y − i

=

√
y

2π

∫
R

v(t) dt

t− (x+ iy)
·

Clearly, this is the Cauchy integral up to the factor
√
y, which is related to the

conformal metric on the upper half-plane. Similarly, we can consider the operator
ρB−iA

1 = 1
2

(
(x± i) · I + (x± i)2 · ∂x

)
and the function f−(z) = 1

x−i simulta-
neously solving the equations ρB−iA

1 f− = 0 and dρZ1 f− = if−. It produces the
integral with the conjugated Cauchy kernel.
Finally, we can calculate the operator (123) annihilating the image of the wavelet
transform. In the coordinates (x+ iy, t) ∈ (SL2(R)/K)×K, the restriction to the
induced subrepresentation is, cf. [79, § IX.5]

LA = i
2 sin 2t · I − y sin 2t · ∂x − y cos 2t · ∂y

LB = − i
2 cos 2t · I + y cos 2t · ∂x − y sin 2t · ∂y.

Then, the left-invariant vector field corresponding to the ladder operator contains
the Cauchu–Riemann operator as the main ingredient

LL
−

= e2it(− i
2I + y(∂x + i∂y)), where L− = L+ = −iA+B. (129)
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Furthermore, if L−iA+B ṽ(x+ iy) = 0, then (∂x + i∂y)(ṽ(x+ iy)/
√
y) = 0. That

is, V (x+ iy) = ṽ(x+ iy)/
√
y is a holomorphic function on the upper half-plane.

Similarly, we can treat representations of SL2(R) in the space of square integrable
functions on the upper half-plane. The irreducible components of this representa-
tion are isometrically isomorphic [69, § 4–5] to the weighted Bergman spaces of
(purely poly-)analytic functions on the unit disk, cf. [104]. Further connections be-
tween analytic function theory and group representations can be found in [54, 69].

5.6. Contravariant Transform and Relative Convolutions

For a square integrable unitary irreducible representation ρ and a fixed admissi-
ble vector ψ ∈ V , the integrated representation (126) produces the contravariant
transformMψ : L1(G)→ V , cf. [56, 75]

Mρ
ψ(k) = ρ(k)ψ, where k ∈ L1(G). (130)

The contravariant transform Mρ
ψ intertwines the left regular representation Λ on

L2(G) and ρ

Mρ
ψ Λ(g) = ρ(g)Mρ

ψ. (131)

Combining with (113), we see that the composition Mρ
ψ ◦ W

ρ
φ of the covariant

and contravariant transform intertwines ρ with itself. For an irreducible square
integrable ρ and suitably normalised admissible φ andψ, we use the Schur’s lemma
[2, Lemma 4.3.1], [47, Theorem 8.2.1] to conclude that

Mρ
ψ ◦W

ρ
φ = 〈ψ, φ〉 I. (132)

Similarly to induced wavelet transform (114), we may define integrated represen-
tation and contravariant transform for a homogeneous space. Let H be a subgroup
of G and X = G/H be the respective homogeneous space with a (quasi-)invariant
measure dx [47, § 9.1]. For the natural projection p : G→ X we fix a continuous
section s : X → G [47, § 13.2], which is a right inverse to p. Then, we define an
operator of relative convolution on V [55, 75], cf. (126)

ρ(k) =

∫
X
k(x) ρ(s(x)) dx (133)

with a kernel k defined on X = G/H . There are many important classes of oper-
ators described by (133), notably pseudodifferential operators (PDO) and Toeplitz
operators [36, 55, 56, 75]. Thus, it is important to have various norm estimations
of ρ(k). We already mentioned a straightforward inequality ‖ρ(k)‖ ≤ C ‖k‖1 for
k ∈ L1(G, dg), however, other classes are of interest as well.
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5.7. Norm Estimations of Relative Convolutions

IfG is the Heisenberg group and ρ is its Schrödinger representation, then ρ(â) (133)
is a PDO a(X,D) with the symbol a [26,36,75], which is the Weyl quantization (6)
of a classical observable a defined on phase space R2. Here, â is the Fourier trans-
form of a, as usual. The Calderón–Vaillancourt theorem [96, Ch. XIII] estimates
‖a(X,D)‖ by L∞-norm of a finite number of partial derivatives of a.
In this section we revise the method used in [36, § 3.1] to prove the Calderón–
Vaillancourt estimations. It was described as “rather magical” in [26, § 2.5]. We
hope, that a usage of the covariant transform dispel the mystery without undermin-
ing the power of the method.

We start from the following lemma, which has a transparent proof in terms of
covariant transform, cf. [36, § 3.1] and [26, (2.75)]. For the rest of the section we
assume that ρ is an irreducible square integrable representation of an exponential
Lie group G in V and mother wavelet φ, ψ ∈ V are admissible.

Lemma 41. Let φ ∈ V be such that, for Φ =Wφφ, the reciprocal Φ−1 is bounded
on G or X = G/H . Then, for the integrated representation (126) or relative
convolution (133), we have the inequality

‖ρ(f)‖ ≤
∥∥Λ⊗R(fΦ−1)

∥∥ (134)

where (Λ⊗R)(g) : k(g̃) 7→ k(g−1g̃g) acts on the image ofWφ.

Proof: We know from (132) thatMφ ◦Wρ(g)φ = 〈φ, ρ(g)φ〉 I on V , thus

Mφ ◦Wρ(g)φ ◦ ρ(g) = 〈φ, ρ(g)φ〉 ρ(g) = Φ(g)ρ(g).

On the other hand, the intertwining properties (113) and (122) of the wavelet trans-
form imply

Mφ ◦Wρ(g)φ ◦ ρ(g) =Mφ ◦ (Λ⊗R)(g) ◦Wφ.

Integrating the identity Φ(g)ρ(g) = Mφ ◦ (Λ ⊗ R)(g) ◦ Wφ with the function
fΦ−1 and use the partial isometriesWφ andMφ we get the inequality. �

The Lemma is most efficient if Λ ⊗ R acts in a simple way. Thus, we give he
following

Definition 42. We say that the subgroup H has the complemented commutator
property, if there exists a continuous section s : X → G such that

p(s(x)−1gs(x)) = p(g), for all x ∈ X = G/H, g ∈ G. (135)

For a Lie group G with the Lie algebra g define the Lie algebra h = [g, g]. The
subgroup H = exp(h) (as well as any larger subgroup) has the complemented
commutator property (135). Of course, X = G/H is non-trivial if H 6= G and
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this happens, for example, for a nilpotent G. In particular, for the Heisenberg
group, its centre has the complemented commutator property.
Note, that the complemented commutator property (135) implies

Λ⊗R(s(x)) : g 7→ gh, for the unique h = g−1s(x)−1gs(x) ∈ H.
(136)

For a character χ of the subgroup H , we introduce an integral transformationu :
L1(X)→ C(G)

uk(g) =

∫
X
k(x)χ(g−1s(x)−1gs(x)) dx (137)

where h(x, g) = g−1s(x)−1gs(x) is in H due to the relations (135). This trans-
formation generalises the isotropic symbol defined for the Heisenberg group in
[36, § 2.1].

Proposition 43 ([74]). Let a subgroup H of G have the complemented commuta-
tor property (135) and ρχ be an irreducible representation of G induced from a
character χ of H , then ∥∥ρχ(f)

∥∥ ≤ ∥∥∥�fΦ−1
∥∥∥
∞

(138)

with the sup-norm of the function�fΦ−1 on the right.

Proof: For an induced representation ρχ [47, § 13.2], the covariant transformWφ

maps V to a spaceLχ2 (G) of functions having the propertyF (gh) = χ(h)F (g) [75,
§ 3.1]. From (136), the restriction of Λ⊗R to the space Lχ2 (G) is

Λ⊗R(s(x)) : ψ(g) 7→ ψ(gh) = χ(h(x, g))ψ(g).

In other words, Λ ⊗ R acts by multiplication on Lχ2 (G). Then, integrating the
representation Λ ⊗ R over X with a function k we get an operator (L ⊗ R)(k),
which reduces on the irreducible component to multiplication by the function uk(g).
Put k = fΦ−1 for Φ = Wφφ. Then, from the inequality (134), the norm of

operator ρχ(f) can be estimated by
∥∥Λ⊗R(fΦ−1)

∥∥ =
∥∥∥�fΦ−1

∥∥∥
∞

. �

For a nilpotent step 2 Lie group, the transformation (137) is almost the Fourier
transform, cf. the case of the Heisenberg group in [36, § 2.1]. This allows to
estimate

∥∥∥�fΦ−1
∥∥∥
∞

through
∥∥ uf∥∥∞, where uf is in the essence the symbol of the

respective PDO. For other groups, the expression g−1s(x)−1gs(x) in (137) con-
tains non-linear terms and its analysis is more difficult. In some circumstance the
integral Fourier operators [96, Ch. VIII] may be useful for this purpose.
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