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Abstract. The energy spectrum of two 0-branes for fixed angular momen-
tum in 2+1 dimensions is calculated by the Rayleigh-Ritz method. The basis
function used for each angular momentum consists of 80 eigenstates of the
harmonic oscillator problem on the corresponding space. It is seen that the
spectrum exhibits a definite linear Regge trajectory behavior. It is argued how
this behavior supports the picture by which the bound-states of quarks and
QCD-strings are governed by the quantum mechanics of matrix coordinates.
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1. Introduction

The string theoretic description of gauge theories is an old idea [20, 23, 24], still
stimulating research works in theoretical physics [14, 17, 21]. Depending on the
amount of momentum transfer, the hadron-hadron scattering processes have shown
two different behaviors [2, Ch.14], [22]. At very large momentum transfers the in-
teractions are among the point-like substructures, and qualitative similarities to
electron-hadron scattering emerge. At high energies and small momentum trans-
fers the Regge trajectories are exchanged. The exchanged linear trajectories are the
first motivation for the string picture of strong interaction. However, the fairly good
fitting between the linear Regge trajectories and the mass of QCD bound-states has
not been explained yet [17], partially due to the lack of a consistent formulation of
string theory in 3+1 dimensions
According to string theory, 0-branes are point-like objects to which the strings can
end [18, 19]. It is known that in a specific regime the dynamics of N 0-branes is
governed by the matrix quantum mechanics resulting from dimensional reduction
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of U(N) Yang-Mills theory to 0 + 1 dimension [25]. In this regime, the dynamics
of 0-branes and the strings stretched between them is encoded in the elements of
matrix coordinates resulted from the dimensional reduction of non-Ableian gauge
theory.

By the picture mentioned above, it sounds reasonable that the dynamics of 0-branes
is used to model the bound-states of quarks and QCD-strings. This picture is the
main theme of a series of works, and it is shown that the dynamics of 0-branes can
reproduce some known features and expectations in hadron physics, including the
potentials between static and fast decaying quarks, and also the Regge behavior
in the scattering amplitudes [5, 6]. The symmetry aspects of the picture and its
relation to special relativity agenda were studied in [7]. In particular, it is argued
that maybe the full featured formulation of non-Ableian gauge theories is possible
on non-commutative matrix spaces [7].

In the present note the aim is to see whether the 0-brane matrix dynamics can
reproduce the linear Regge trajectories observed in hadron physics. Early studies
on spectrum of 0-brane bound-states are reported in [3, 4, 10, 12]. In [13, 26] the
study of spectrum based on the variational method is presented. In the present
work, based on the results by [12, 13], for the case of two bosonic 0-branes in
2+1 dimensions the energy eigenvalues are calculated for states with given angular
momentum, ranging from 0 to 42. The spectrum is calculated by the Rayleigh-Ritz
variational method, and the basis function for each angular momentum consists of
80 eigenstates of the harmonic oscillator problem on the configuration space of the
0-branes. It is seen that apart from two lowest angular momenta, the energy versus
angular momentum can be fitted with straight-line at each level. The spectrum may
be interpreted as the one for massive 0-branes in 2+1 dimensions, or in a Matrix
theory perspective [1], as for massless particles in 3+1 dimensions but in the light-
cone frame. Based on the latter way of interpretation, the linear relation can be
turned as the one between mass-squared and angular momentum, just reminiscent
the observed one in QCD bound-states.

Based on the above observation about the spectrum, this may be suggested that, the
quantum mechanics of matrix coordinates can reconcile string picture and QCD in
3+1 dimensions. In particular, according to this picture the bound-states of quarks
and QCD-strings are governed by the quantum mechanics of matrix coordinates
[5–7].

The scheme of the rest of this paper is the following. In Section 2, the basic notions
for the 0-brane matrix dynamics are presented, together with a demonstration of
a bound-state classical solution. In Section 3, the quantum theory is developed.
The eigen-functions of the angular momentum together with the complete solution
for harmonic oscillator on the 0-branes’ configuration space are presented. This
solution is used to construct the basis function used in the Rayleigh-Ritz variational
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method of Section 4. The light-cone interpretation of the results is also presented
in Section 4.

2. Matrix Dynamics of 0-Branes

The dynamics of N 0-branes is given by a U(N) Yang-Mills theory dimensionally
reduced to 0 + 1 dimensions [12, 19], given by (in units ~ = c = 1)

L = m0Tr
(1
2
(DtXi)

2 +
1

4 l2s
[Xi, Xj ]

2
)
, Dt = ∂t − i[A0, ·] (1)

where i, j = 1, ..., d, ls as the fundamental string length, m0 = (gsls)
−1 with gs

supposedly small string coupling, i.e.,m0 ≫ l−1
s . X’s are in adjoint representation

of U(N) with the usual expansion Xi = xi aT a, a = 1, ..., N2. The theory is
invariant under the gauge symmetry

X⃗ → X⃗ ′ = UX⃗U †, A0 → A′
0 = UA0U

† + iU∂tU
† (2)

where U is an arbitrary time-dependent N ×N unitary matrix. Under these trans-
formations one can check that

DtX⃗ → D′
tX⃗

′ = U(DtX⃗)U †, DtDtX⃗ → D′
tD

′
tX⃗

′ = U(DtDtX⃗)U †. (3)

For each direction there areN2 variables and it is understood that the extraN2 −N
degrees of freedom are representing the dynamics of oriented strings stretched be-
tween N 0-branes. The center-of-mass of 0-branes is represented by the trace of
the X matrices.
In the quantum theory the off-diagonal elements of matrices play an essential role.
In particular, it is shown that in the quantum theory the off-diagonal elements cause
the interaction between 0-branes. For the case of classically static 0-branes it is
shown that the fluctuations of the off-diagonal elements develop a linear potential,
just as the case for QCD-strings stretched between quarks [5].
The canonical momenta are given by

Pi =
∂L

∂Xi
= m0DtXi (4)

by which the Hamiltonian is constructed

H = Tr

(
P 2
i

2m0
− m0

4 l2s
[Xi, Xj ]

2

)
. (5)

As the time-derivative of the dynamical variable A0 is absent, its equation of mo-
tion introduces a constraint, the so-called Gauss law

Ga :=
∑
i

[Xi, Pi]a = i
∑
i,b,c

fabc xi b pi c ≡ 0. (6)
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In the present work we take the two dimensional case (d = 2) for a pair of 0-
branes. It would be quite useful to separate the pure gauge variables from the
others. For the case of SU(2) theory in 2+1 dimensions, following [10, 13] we use
the decomposition

xi a = (Ψ)a b(Λ)b j(η)j i (7)

in which the matrix Ψ is an element of group of SU(2). Accordingly the gauge
transformations of the variable xi a are captured by Ψ through ordinary gauge
group left multiplications. Parameterizing the SU(2) group elements by the three
Euler angles, the matrix Ψ is represented by [8]

Ψ = Rz(α)Rx(γ)Rz(β) (8)

in which Ra is the rotation matrix about the ath axis. Analogously, the matrix η is
an element of the SO(2) group parameterized by the angle ϕ, capturing the effect
of rotation in the two dimensional space. The matrix Λ takes the form [13]

Λ =

r cos θ 0
0 r sin θ
0 0

 . (9)

We mention that the only variable with dimension of length is r. Also, apart
from pure gauge variables α, β, and γ, the two dimensional configuration space
is spanned by the polar coordinates (r, ϕ), and the extra variable θ appears as an
internal degree of freedom.
By the decomposition, the three constraints (6) take the form [13]

G1 = sinα cot γ pα − sinα csc γ pβ − cosα pγ

G2 = cosα cot γ pα − cosα csc γ pβ + sinα pγ

G3 = −pα
(10)

in which pα, pβ , and pγ are the conjugate momenta of the pure gauge variables α,
β, and γ. By the constraints (6), using the explicit forms (10), we have to set

pα = pβ = pγ ≡ 0. (11)

By imposing the constraints, setting ls = 1 the Hamiltonian takes the form [12,13]

H =
1

2µ

(
p2r +

p2θ
r2

+
p2ϕ

r2 cos2(2θ)

)
+
µ

8
r4 sin2(2θ) (12)

in which µ = m0/2, as the reduced mass appearing in the relative motion of two
0-branes. It is easy to check that the canonical momentum of ϕ, pϕ, is conserved.
So as expected, the two dimensional angular momentum is a constant of motion.
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Figure 1. The plots of a numerical solution of (13). The outer curve
is representing the radial coordinate as a function of the polar angle ϕ.
The inner one, which is scaled ten times to make it visible, is θ(ϕ). The
solution is by the conditions: µ = 1/2, ls = 1, pϕ = 1.42, r(0) = 3,
θ(0) = 0.157 rad, ṙ(0) = θ̇(0) = 0, ϕ(0) = 0.

The equations of motion by (12) are

µ(r̈ − rθ̇2)−
p2ϕ

µr3 cos2(2θ)
+
µ

2
r3 sin2(2θ) = 0

µ(rθ̈ + 2ṙθ̇) +
2p2ϕ sin(2θ)

µr3 cos3(2θ)
+
µ

2
r3 sin(2θ) cos(2θ) = 0

ϕ̇ =
pϕ

µr2 cos2(2θ)
·

(13)

It is easy to check that θ(t) ≡ 0, by which the potential is set to zero, the equations
for (r, ϕ) would come to the form of a free particle in polar coordinate. As an illus-
tration that the above equations can develop bound-states, the plots of a numerical
solution are presented in Fig. 1. In the figure, the outer curve is r(ϕ) as the path of
the relative motion of 0-branes in the polar coordinate setup (r, ϕ), while the inner
curve is a ten times scaled of θ(ϕ), as the internal degree of freedom causing the
effective attractive force between 0-branes. Evidently, this solution represents an
almost circular path for the relative motion of 0-branes.

3. Quantum Dynamics

In passing to quantum theory, the constraints in operator form define the physically
acceptable states as

Ĝ |ψ⟩ = 0. (14)
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By the replacements

pα → −i
∂

∂α
, pβ → −i

∂

∂β
, pγ → −i

∂

∂γ
(15)

one would find, as expected, that the physical wave-functions do not depend on
the pure gauge degrees of freedom α, β, and γ. The Laplacian operator can be
constructed using the metric gij

∇2 ≡ 1
√
g
∂i(

√
ggij ∂j) (16)

in which g = det g, explicitly found to be 1
4r

5 sin γ sin(4θ) [13]. So, in the co-
ordinate setup (r, 4 θ, ϕ), with 0 ≤ θ ≤ π/4 and 0 ≤ ϕ ≤ 2π, the Hamiltonian
acting on the wave-function ψ(r, θ, ϕ), takes the form [12, 13]

H = − 1

2µ

(
1

r5
∂r
(
r5∂r

)
+

1

r2
∇2

Ω

)
+
µ

8
r4 sin2(2θ) (17)

in which

∇2
Ω =

1

sin(4θ)
∂θ (sin(4θ)∂θ) +

∂2ϕ
cos2(2θ)

· (18)

Using the scaling ψ → r−3/2ψ, the Hamiltonian comes to the form

H = − 1

2µ

(
1

r2
∂r
(
r2∂r

)
+

1

r2
(∇2

Ω − 15/4)

)
+
µ

8
r4 sin2(2θ). (19)

By the introduced separation of variables, the two dimensional angular momentum
is Lz = −i ∂

∂ϕ [13], and obviously commutes with the Hamiltonian, [L̂z, Ĥ] = 0.
So one can construct states with given energy and angular momentum.

3.1. Angular Momentum Spectrum

Here the aim is to find the eigenfunctions and eigenvalues of the operator ∇2
Ω

∇2
Ω Yλ(θ, ϕ) = λ Yλ(θ, ϕ) (20)

for which we assume as usual

Yλ(θ, ϕ) = gλ(θ)
eimzϕ

√
2π

(21)

with mz as the quantum number associated to the angular momentum in the two
dimensional configuration space. Although the pure gauge degrees of freedom
have been separated out, it is known that a remaining discrete gauge transformation
would cause that only even integer values are accepted for mz [13]. In particular,
the shifts α → π + α and ϕ → 2π + ϕ would make equal changes to the original
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variables, namely xi a → −xi a, if mz has an odd value. So, to construct absolute
gauge invariant physical states, the quantum number mz has to be even, setting

mz = 2m, m = 0,±1,±2, . . . . (22)

Using the change of variable x = cos(4θ), one has

d

dx

(
(1− x2)

dgλ
dx

)
− m2

2(1 + x)
gλ(x) =

λ

16
gλ(x). (23)

As the spectrum is invariant under the change m → −m, from now on we take
m ≥ 0. Using the replacement gλ(x) = (1 + x)m/2Qλ(x)

(1− x2)Q′′(x) +
(
m− (m+ 2)x

)
Q′(x)−

(
λ+

m(m+ 2)

4

)
Q(x) = 0 (24)

which is known to have Jacobi polynomials of order n = l −m ≥ 0, P(0,m)
n (x),

as solutions [9]. By this the eigenvalue λ is found

λ = −16(l −m/2)(l −m/2 + 1), m ≤ l = 0, 1, . . . (25)

for the normalized eigenfunction

Ym
l (θ, ϕ) =

√
2l −m+ 1

2m+1
(1 + cos(4θ))m/2P(0,m)

l−m (cos(4θ))
e2imϕ

√
2π

· (26)

The Jacobi polynomials of our interest satisfy the following recurrence relation,
which comes mostly helpful when the matrix elements of the Hamiltonian (19) are
evaluated in the angular momentum basis

2(l + 1)(l −m+ 1)

(2l −m+ 1)(2l −m+ 2)
P(0,m)
l−m+1(x) +

2l(l −m)

(2l −m)(2l −m+ 1)
P(0,m)
l−m−1(x)

+
m2

(2l −m)(2l −m+ 2)
P(0,m)
l−m (x) = xP(0,m)

l−m (x). (27)

3.2. Harmonic Oscillator Solution

As we are going to evaluate the spectrum of the Hamiltonian (19) by the variational
Rayleigh-Ritz method [15], a set of basis functions is needed, for which we shall
take those of harmonic oscillator. For a harmonic oscillator with kinetic term as in
(19) and unit frequency (ω = 1), taking

ψE,l,m(r, θ, ϕ) = RE,l,m(r) Ym
l (θ, ϕ) (28)

the radial equation would come to the form

− 1

2µ

(
R′′

E,l,m −
Jm
l (Jm

l + 1)

r2
RE,l,m

)
+

1

2
µr2RE,l,m = ERE,l,m (29)
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in which

Jm
l = 4 l − 2m+ 3/2. (30)

It is known that the above has normalized solutions in terms of the Laguerre poly-
nomials

Rk,l,m(r) =

√
2 k!µJ

m
l +3/2

Γ(k + Jm
l + 3/2)

rJ
m
l e−µr2/2 L

(Jm
l +1/2)

k (µr2) (31)

with (k = 0, 1, 2, . . .), and

Ek,l,m = 2k + Jm
l + 3/2 = 2k + 4l − 2m+ 3. (32)

To calculate the matrix elements of the Hamiltonian (19), the following recurrence
relations for Laguerre polynomia1ls would appear mostly useful [9]

L
(α+1)
k (x)− L

(α+1)
k−1 (x) = L

(α)
k (x)

(2k + α+ 1− x)L
(α)
k (x) = (k + 1)L

(α)
k+1(x) + (k + α)L

(α)
k−1(x)

(k + α)L
(α)
k−1(x)− kL

(α)
k (x) = x L

(α+1)
k−1 (x).

(33)

The following identity for the integral of Laguerre polynomials is known as well
[16] ∫ ∞

0
zp L

(p−τ ′)
k′ (z)L

(p−τ)
k (z)dz = (−1)k

′+k τ ′! τ !

×
min{k′k }∑

σ=max{k′−τ ′
k−τ }

(p+ σ)!

σ!(k′ − σ)!(k − σ)!(σ + τ ′ − k′)!(σ + τ − k)!
·

(34)

Of course if max{k′−τ ′

k−τ } > min{k′k} the integral is zero.

4. Rayleigh-Ritz Method and Spectrum

To find the eigenvalues of the Hamiltonian (19) we use the Rayleigh-Ritz varia-
tional method, in which a basis function is needed to approximate the exact eigen-
functions. Here we take the basis function to be a collection of eigenstates of har-
monic oscillator obtained in previous part. As we are interested to find eigenvalues
with given angular momentum mz , the basis function is taken (recall mz = 2m){

ψk,l,mz/2(r, θ, ϕ)
}
, l =

mz

2
, . . . ,

mz

2
+ nmax, k = 0, . . . , n′max (35)

in which nmax and n′max determine the level of truncations. By this choice, the
number of the members of the basis function is equal to (nmax + 1)(n′max + 1).
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mz E1 E2 E3 E4 E5 E6 mz E1 E2 E3 E4 E5 E6

0 2.66 4.54 5.95 7.15 8.25 9.09 22 13.5 14.9 16.5 18.3 20.4 22.8
2 4.13 5.31 6.22 7.16 8.34 9.79 24 14.4 15.9 17.6 19.5 21.6 24.1
4 5.39 6.13 6.89 7.91 9.22 10.9 26 15.4 16.9 18.7 20.6 22.9 25.4
6 6.44 6.99 7.83 8.95 10.4 12.1 28 16.3 17.9 19.7 21.8 24.1 26.7
8 7.33 7.96 8.89 10.1 11.6 13.4 30 17.3 18.9 20.8 22.9 25.3 28.0
10 8.18 8.95 9.97 11.3 12.8 14.7 32 18.2 19.9 21.9 24.1 26.5 29.2
12 9.03 9.95 11.1 12.4 14.1 16.1 34 19.2 21.0 23.0 25.2 27.7 30.5
14 9.90 10.9 12.2 13.6 15.4 17.4 36 20.2 22.0 24.0 26.4 28.9 31.8
16 10.8 11.9 13.3 14.8 16.6 18.8 38 21.1 23.0 25.1 27.5 30.1 33.1
18 11.7 12.9 14.3 16.0 17.9 20.1 40 22.1 24.0 26.2 28.6 31.3 34.3
20 12.6 13.9 15.4 17.2 19.1 21.4 42 23.1 25.0 27.3 29.8 32.5 35.6

Table 1. The first six energy eigenvalues for givenmz by the Rayleigh-
Ritz method, in units g1/3s l−1

s . For each mz basis function consists of
80 elements.

Before to proceed, it would be useful to determine how the spectrum depends on
the initial parameters ls and gs (recall m0 = 1/(gsls), and µ = m0/2). By the
re-scalings [12]

Xi → g1/3s lsXi, Pi → g−1/3
s l−1

s Pi (36)

in the Hamiltonian (5) one finds that the eigenvalues have the formE = κ g
1/3
s l−1

s ,
with κ as dimensionless number (recall we have set ~ = c = 1).
In calculation of the matrix elements of the Hamiltonian (19) one could avoid ex-
plicit integrations over r and θ variables, simply by using the recurrence relations
(27) and (33), and the integral identity (34).
For the energy eigenvalues reported in Table 1 we have set nmax = n′max = 8,
making 80 elements for the basis function for each mz .
Apart from two lowest mz’s, the values given in Table 1 together with the straight-
line data fittings are plotted in Fig. 2. The results of the fittings are presented in
equation (37), with the brackets indicating the standard error for each given value

E1 = 3.474 [0.059] + 0.462 [0.002]mz

E2 = 3.953 [0.031] + 0.500 [0.001]mz

E3 = 4.632 [0.020] + 0.539 [0.001]mz

E4 = 5.535 [0.027] + 0.579 [0.001]mz

E5 = 6.754 [0.038] + 0.616 [0.001]mz

E6 = 8.277 [0.047] + 0.654 [0.002]mz.

(37)

By the present standard errors one finds that all the percentage errors are less than
2%. Further, all the statistical P-values for the straight-line fittings are less than
10−22, leaving almost no room for the null hypothesis.
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Figure 2. The plots of energy eigenvalues versus mz , according to Ta-
ble 1, together with the straight-line fittings given in equation (37).

4.1. Light-Cone Interpretation

The obtained spectrum may be interpreted as the one for massive 0-branes in 2+1
dimensions, or in a Matrix theory perspective [1], as for massless particles in 3+1
dimensions but in the light-cone frame. For the latter way of interpretation, the
relative motion of bound-state constituents (defined by P⃗⊥ =

∑
i k⃗⊥i = 0) is

related to the masses’ constituents and the potential W in transverse directions as
following [11]

H := P− =
∑
i=1,2

k⃗2⊥i +mi
2

2 p+i
+

W

2P+

in which P+ =
∑

i p
+
i , and p+i ’s appear as the masses of constituents but in

the transverse directions of the light-cone frame. For the case of interest, setting
mi = 0 and p+1 = p+2 one simply has the relation between Hamiltonian eigenval-
ues for relative motion (P⃗⊥ = 0) and the mass squared of bound-state using the
key relation M2 = 2P−P+ [1, 11]. So in the light-cone frame the linear relation
between the Hamiltonian eigenvalues and the angular momentum turns as the lin-
ear relation between the mass squared and the angular momentum, just reminiscent
the observed one in hadron physics.
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