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Abstract, The Manev model is known to possess Ermanno-Bemoulli type 
invariants similar to the Laplaee-Runge-Lenz vector of the ordinary Kepler 
model. If the orbits are bounded these invariants exist only when a certain ra
tionality condition is met and consequently we have superintegrability only 
on a subset of initial values. On the contrary, real form dynamics of the 
Manev model is superintegrable for all initial values. Using these additional 
invariants, we demonstrate here that both Manev model and its real Hamil
tonian form have su(2) ~  so(3) (or so (2 ,1) depending on the value of a 
parameter in the potential) symmetry algebra in addition to the angular mo
mentum algebra. Thus Kepler and Manev models are shown to have identical 
symmetry algebras.

1. In troduction

Since Kepler and Newton elliptical trajectories replaced circular ones as an arche
type of the (bounded) planetary motion. The advent of Einstein’s theory did not 
produce a new archetype of heavenly motions, apart from the exceptional case 
of a collapse into the (still hypothetical) black holes. Nevertheless, among the 
variety of relativistic effects the perihelion shift of inner planets is definitely the 
best recognizable effect in the Solar system. Maybe it is a lime lo accept a new 
archetype of heavenly motions -  precessing ellipse (or more generally, precessing
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conics). Apart from relativity there are also some quite classical arguments in its 
favour: Kepler-type motion is generally not preserved by small perturbations and 
generally any sort of “real world” interactions like Solar pressure, drag, etc, would 
destroy “fixed ellipse” motion [15]. If precessing conics give us “the typical” mo
tion of planets it is tempting to ask which central force field produces them. The 
answer is: the Manev model (see [2] for the precise formulation of the statement). 
Here we already have persistent KAM tori and cylinders for a large class of even 
non-Hamiltonian perturbations [15] and this is an additional argument in favour 
of it.

Kepler problem is famous as one of archetypes of superintegrable systems and 
it is intriguing to ask whether Manev problem shares this property. Recently we 
reported [14] that indeed it has an additional independent globally defined constant 
of motion, but not for all initial data. Let us remark that for a generic central 
potential we could have disjoint set of initial data corresponding to closed orbits 
but in our case all points on certain level sets of the angular momentum lie on 
closed orbits which are intersections with the level sets of the additional invariant.

Also, it was shown that the real form dynamics of the Manev problem -  a closely 
related dynamical model to be introduced below -  is superintegrable for all initial 
data. Real form dynamics of the Manev problem is interesting enough and we 
describe it briefly at the end of the article.

One may expect that superintegrability could be connected with some hidden sym
metry group, or at least some symmetry algebra. In principle, finding of such a 
connection is not a trivial task. For example, we have the list of natural mechan
ical superintegrable models with integrals quadratic in momenta in [10] but still 
very little is known about their symmetry algebras, see e.g. [11]. (The models we 
will be concerned with fall beyond the scope of this classification and they are not 
present in the list.)

We have already found in [14] the algebra of Poisson brackets between the angular 
momentum and the (properly redefined) new first integrals and, unfortunately, it 
bears no resemblance with the symmetry algebra of the Kepler model. Here we 
are able to construct new constants of motion which together with a new set of 
Poisson brackets realize an explicit su(2) ~  so(3) symmetry algebra of the Manev 
model. If the values of the parameter B  in equation (1) below are large enough (and 
irrespectively of the sign of the energy) we obtain an so (2,1) symmetry algebra. 
Similarly, we have shown that the real form Manev model also have su(2) ~  so(3) 
or so (2,1) as symmetry algebras. Thus we see that the Kepler and Manev models 
actually have identical symmetry algebras. What is different is that Manev model 
algebras are the same for both negative and positive energies and that they do not 
lead to SU(2) or SO(3), or SO (2,1) group action on the phase space.
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Recently some connection has been observed between superintegrability and the 
not so familiar type of dynamical but non-symplectic symmetries [19, 24, 4, 6], 
Here we also see the appearance of two dynamical but non-symplectic symmetries 
thus enlarging the list of symmetry properties of the Manev model and its real form 
dynamics.

2. The M anev Problem Basics

By Manev model [21] we mean here the dynamics given by the Hamiltonian func
tion

H  = \ { p l  + P2v + p I ) - - - %  C1)2 y r  v*
where r  =  \ / x 2 + y2 + z 2 and A  and B  are assumed to be arbitrary real constants 
whose positive values correspond to attractive forces. The genuine model proposed 
by George Manev was not invented as an approximation of relativity theory but as 
a consequence of Max Planck’s (more general) action-reaction principle and it was 
associated with a specific value of the constant B  =  §j§A. Nevertheless, Manev 
model offers a surprisingly good practical approximation to Einstein’s relativistic 
dynamics -  at least at a Solar system level -  capable to describe both the perihelion 
advance of the inner planets and the Moon’s perigee motion. In the last decade it 
had enjoyed an increased interest either as a very suitable approximation from 
astronomers’ point of view or as a toy model for applying different techniques of 
the modem mechanics and its dynamics has already been thoroughly analyzed (see 
e.g. [22,23, 7, 3, 9]).
Due to the rotational invariance each component of the angular momentum L =
(L i, L 2, Lz)

L] = EjkmPkXm with (x1, x 2,xz)  = (x,y , z) (2)

is an obvious first integral: {H, L j } =  0 and so, like the Kepler problem, the 
Manev model is integrable. The components Lj themselves are not in involution 
but span an so (3) algebra with respect to the Poisson bracket

{Lj,  Lk }  — EjkmLn (3)

The dynamics is confined in a plane which we assume to be Oxy  and is separable 
in polar coordinates r  and 9 =  arctan(y/a:). On the reduced phase space (see 
e.g. [13] for the generalities of the reduction procedure) obtained by fixing the 
angular momentum L : L to a certain value £ the motion is governed by

HeS
1
2 Pr +

e2 - 2 B  
r2

A
r (4)

The dynamics behave like radial motion of Kepler dynamics with angular momen
tum squared l 2 — 2B\  while the case 2B  > £2 corresponds to overall centripetal
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effect. On the other hand, the angular equation of motion 9 =  t f r 2 is still governed 
by the “authentic” angular momentum l  (and r  is as just described). Consequently, 
the remarkable properties of Kepler dynamics that all negative energy orbits are 
closed and the frequencies of radial and angular motions coincide (for any initial 
conditions) are not anymore true. Thus we may have not only purely classical 
perihelion shifts but also if 2B > £2 /  0 we may have collapsing trajectories 
which are spirals, even though in phase space they are symplectic transformations 
-  while in the Kepler dynamics the only allowed fall down is along straight lines. 
For this reason the set of initial data leading to collision has a positive measure and 
this may offer an explanation why collisions in the Solar system are estimated to 
happen more often than Newton theory predicts [8].

3. The Kepler Problem Invariants

In the case of the Kepler problem, corresponding to B  =  0, we have more first 
integrals (for details and historical notes see e.g. [16, 17, 25, 5])

where H k  is the Kepler Hamiltonian and Jx and Jy are the components of the 
Laplaee-Runge-Lenz vector. They are not independent since

Together with the Hamiltonian and angular momentum they close on an algebra 
with respect to the Poisson bracket

{L, E x) =  E y, {L, E y} = - E x , {Ex , E y} = -  sign ( if  )L (8)

which makes obvious the fact that we have an so (3) algebra for negative energies 
and so (2,1) for positive ones. In the case of the three-dimensional Kepler prob
lem the components of the angular momentum give us another copy of so (3), see 
equation (3), so the full symmetry algebra is either so(4) or so (3 ,1) depending on 
the sign of H k -
According to [17], the first use of these first integrals was made by J. Hermann 
(known also as J. Ermanno) in 1710 (in order to find all possible orbits under an 
inverse square law force) in the disguise of “Ermanno Bernoulli" constants

Jx = PyL -  —X, Jy = —pxL -  —y, {H k , /}  =  0 (5)

J 2 =  2 H k L 2 +  A 2. ( 6)

(7)

(9)
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which satisfy

{H k , J ± } = 0, {L, J±} = ±U ± , { J + ,J - }  = - 4 i H KL. (10)

4. The M anev Problem Invariants and Symmetries

In order to obtain the equation for the trajectories of the Manev model in the case 
of non-vanishing angular momentum we note that due to 6 = £/r2 we have dt =  
r 2 d6/£. As a result the equation for the radial motion takes the form

d2 e e  -  2b e2
d62 r £2 r ( 11)

and thus, as in the Kepler model, we could have harmonic oscillations of 1 jr-  
variable as a function of the “false” time 6.

4.1. The £2 > 2B > 0 Case

Denoting
2 £2 - 2 B  £2 £2

"  ~  ~~£2 ’ W ~ V ~  £2 - 2 B A
one easily verifies that

d
dO

uw ±  i— w =  0

and since 

we obtain

d _  r 2 d 
A0 ~  Y d t

a 
at

f AV--------- =F 1 £pr, r v
_+31>0

^ = 0 -

(12)

(13)

(14)

(15)

4.1.1. Compact Motion Case
In the case when £2 > 2B  > 0, H  < 0 and A > 0 the motion is on a two
dimensional torus. In order to have globally defined constants of motion in this 
case we have to require that the i/’s are rational, i.e.,

v  =  \J£? — 2 B  : £ =  m  : k  (16)

with m  and k  mutually prime integers. Then due to equation (13)

J± = JZ =
m £ 2 k 
— A  1 £pr
k r m

3±im0/fc (17)

are conserved by the flow of equation (1) on the surface L  =  £ satisfying the 
rationality condition (16). Thus we have conditional constants of motion which 
exist only for disjoint but infinite set of values £ (c.f. the invariant relations in [18]).
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The trajectory in the configuration space is a “rosette” with m  petals and this is 
connected to the fact that J -  are invariant under the action of the cyclic group 
generated by rotations by angle 2irkfm

While in the Kepler case we could unambiguously attach the Laplace Runge Len/ 
vector to Urmanno Bernoulli invariants this is not possible now due to this finite 
symmetry. (It is intuitively clear that if the Laplace Runge Lenz vector points to 
the perihelion of the Kepler ellipse, now we have m  petals to choose between.) 
Anyway, up to this ambiguity, or restricting ourselves to one of the m  sectors we 
may note that while the radial/angular components of the Laplace Runge Lenz 
vector take the form

One may note also that r (6)  dynamics could be equally well described by the 
Hamiltonian

(18)m

Jp —  A., Jq —  Lp^
r

one has J r +  iJ q =  ^ ^  — iipr'j e1̂ -1!0 and hence

(19)

(20)

Let us denote by \ /T i  and <p the modulus and the phase of the ^  =F i£pr term,
and by x  the phase of J - ,  i.e.

with

(22)

and let
a = s f l e iv, b = s f l e ie. (23)

H* = v I  + L = va)a + b% (24)

and the symplectic form

dJ A dp  +  d L  Ad 6 = ida A da^ +  id& A d $ (25)
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or the Poisson brackets
{I,<p}* = 1, {L,0}* = {L,0} = 1

{a^,a}* =  i, {b^,b}* =  i
(26)

with 0 taking the role of evolution parameter (“time”) due to 6 = = 1.
Inspired by the harmonic oscillators case (see e.g. [20]) let us introduce the first 
integrals

K q

K 2

u I  + L _  H* 
2v 2v

rr I L  ,K  i \ —  sin x
v

K z =
v I - L

2v

(27)

which are not independent as K q — (K f  +  K% +  7 f|)  =  0 and thus forming a 
space of invariants lying on S2. Up to a coefficient K q, K \  and K 2 are actually the 
new Hamiltonian and (J + =f JX).  It is worth noting that they have also the cyclic 
symmetry (18) and strictly speaking they are properly defined only on the restricted 
phase space (diffeomorphic to one of the m  sectors) obtained by factoring out the 
corresponding finite group.
It is easy to check that K\,  K 2, K q close an su(2) ~  so(3) algebra under the new 
Poisson bracket (26)

{ K j , K k}* = ejkmK m (28)
and that together with K q they form a u(2) algebra. As a result the Manev model 
possesses a symmetry algebra as large as the symmetry algebra of the Kepler 
model (8). (Of course, we have in addition the so (3) angular momentum alge
bra (3)).
The mere existence of an algebra of well defined first integrals does not presuppose 
suitable group action on the phase space. Even in the (seemingly trivial) case of 
two commensurate harmonic oscillators the candidates for group orbits hit singu
lar points which make the unambiguous continuation of the orbits impossible [1], 
Here one sees an even more immediate obstacle for the existence of a SU(2) group 
action as K \  and K 2 does not commute with L  and hence does not preserve any 
L  =  £ surface.

Dynamical but Non-Symplectic Symmetries

Let us remind that the Hamiltonian vector field for any first integral 3 not only 
preserves the Hamiltonian and the symplectic form: Xy(H*)  =  0 =  £ x 3 >̂ but 
also it is a dynamical symmetry, i.e., its Lie bracket with the dynamical vector field 
T vanishes

[T,Xy] = 0 while T juj  = -dH * . (29)
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As one and the same dynamics could be obtained from different pairs of Hamilto
nians plus symplectic forms, it is interesting to know more about the symmetries 
which preserve the dynamical vector field without requiring the preserving of a 
certain pair (H , uj). It is worth noting that Manev model has such dynamical but 
non-symplectic symmetries.
By choosing 3 =  sJhv~xJ -  =  a(ftl)1' one can see that X j splits further into a 
linear combination of two new dynamical symmetries Y ,  Y '  which do not preserve 
the Hamiltonian and the symplectic form

as

[r, Y]

A',1

a 9at
, _  3 9 

db

iF  +  i / /F ' 

i - X a =a da>

r, -x ,a
= T ( - )  +  — [I \X a] = ^ a X a -  — X a =  0

Y(H*) = i/3,

a a“

=  —  d3 A da 
a

and similarly for F ?.

(30)

(31)

(32)

4.1.2. Noncompact Motion Case
When £2 > 2B > 0 and either H  > 0 or A < 0 the additional invariant is 
always globally defined. The Lie group SO(3) does not act globally on the space

of invariants as the K% = 1/1 ^J2B  ̂ “parallel” on the sphere S3 is not accessible 
by the orbits due to the violation of the condition £2 > 2B.  The new dynamical 
symmetries in this case are exactly those just described in equations (30).

4.2. The 0 < £ 2 < 2 B  Case

Similarly, in the case when 0 < £2 < 2B  we may denote 2B£2 £2 
and

J±
£2 A

v ---- 1---- =Fr v £Pr e ± v 8  ^  y J i e T i v - v f f )

v 2 with v  real 

(33)

with
j  7  A 2

I = ^  = - 2 H £  + ^ I  (34)

will be first integrals for any £. Denoting again x  =  — v6 and assuming the same
Poisson brackets as (26) we obtain an so (2 ,1) algebra

{ K u K 2y  = K s , {K s , Xi}* =  K 2, { K 2, K s}* = - AT i (35)



Manev Problem. Superintegrability and Symmetry Algebras 211

formed by the first integrals

I L
K  i =  \ — sm hx, v

I L
K 2 = \ — cosh x, v

K Z =
v I - L

2v
(36)

K n = (37)

which satisfy K q +  K 2 — 7 f | — K 2 =  0 with

v I  + L  _  H*
2v = 2v

so that this time the space of invariants is lying on a single sheeted hyperboloid 
and again a certain level set of K 3 corresponding to £2 = 2B  obstructs the global 
action of the group SO (2,1).
Defining

O O

Y  = (b^'f— , Y ’ = a ^ Y - 1—  with a = s / l e lip, b=s/Z<  
a a T 00

\0 (38)

we easily see that again Y  and F 1 are dynamical but non-symplectic symmetries. 
Finally, when £2 =  2B  we have the first integral

3 = ?Pr +  A0  (39)

satisfying { H , j }  = 0, { L , j }  = A.

5. Real Form Dynamics

Here we briefly recall the notion of real form (RF) dynamics referring the reader 
to [12] for more details and a list of examples.
We start with a standard (real) Hamiltonian system H  = with n de
grees of freedom and at the present stage we assume that our phase space is just a 
vector space M. =  R2” .

Let us consider its complexification: Tic = ^ M C, H C, wc |  where M c  can be 
viewed as a linear space over the field of complex numbers

M c = M  ® i M .

In other words the dynamical variables in A4C now take complex values. We 
assume that the Hamiltonian H  (as well as all other possible first integrals in in
volution Ik) are real analytic functions on A4 which can naturally be extended to 
A4C. We introduce on the phase space M, an involutive, symplectic automorphism 
C : M ^ M

C2 = 1, C({F,G}) = {C(F),C(G)} (40)
where with some abuse of terminology we use the same notation for the action of 
C on the dual of the phase space.
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Since C has eigenvalues 1 and —1, it naturally splits M  into two eigenspaces

M  = M + ® M -  (41)

whose dimensions need not be equal. Due to the fact that C is symplectic M -  and 
M + are symplectic subspaces of M  and we will write uj =  uj+ © lu_.
Assuming a symplectic frame adapted to C we have

n+ Ti—
uj= Y ^  dpk+ A dqk+ +  dPk- A dqk—

k=1 k=1

The automorphism C can naturally be extended to M c  which is splitted also into 
a direct sum of two eigenspaces

M c = M €1 ® M S .

Similarly, the action of the complex conjugation * produces splitting into real and 
imaginary parts of the corresponding spaces. By construction C commutes with * 
and their composition C =  Co* =  *oCi s  also an involutive symplectic automor
phism on M c  so that we can define M r< to be the fixed point set of C, i.e.,

M r< =  Re AdS © ilm

which is again a symplectic subspace. From now on we will be interested in dy
namics on M  r and its connection to the initial real dynamical system.
In order to construct “real form dynamics” we shall assume that the Hamiltonian 
is (’-invariant, i.e.,

C(H) = H.  (42)
Then the Hamiltonian on the complexified phase space H c  (being the same ana
lytical function of the complexified variables) will share this property.
The real form dynamics may be defined either as:

i) complexified Hamilton equations on A4C being consistently restricted to M h- 
This gives a real vector field tangent to M  r< and satisfying the equations of 
motion given by the real part of H c  or

ii) dynamics on M  r< defined by the restricted H c  and UJC (whose restrictions are 
real on M h)

oc
Mu

H  + C(H) = H  + C(H)* = R e H c 
2 2

dRej/ji A dReg^  — d lm j/ :  A d lm g 1̂.
(43)

Now we have a well defined dynamical system 71r< =  {A4k, luI ^ ,  H\m ^}  with 
real Hamiltonian and real symplectic form on a subspace of the complexified phase 
space.
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It is noteworthy that the “real form dynamics” corresponding to a Liouville inte- 
grable Hamiltonian system is Liouville integrable again [12]. Similarly, the “real 
form dynamics” corresponding to a superintegrable Hamiltonian system is super- 
integrable as well. In such a case we have k e [n+1 ,2n — 1] independent constants 
of motion which are no more in involution. It could easily be checked that they will 
again produce k independent constants of motion of the RF dynamics.

6. Real Form Dynamics o f the M anev Problem

The Manev Hamiltonian and the canonical symplectic form are invariant under the 
involution C reflecting the y-degree of freedom

C(x) = x, C(y) = - y ,  C(z) = z
(44)

£ ( P x )  =  P x i  C (|A /) =  P y ,  C (P z )  =  Pz-
Consequently, the “real form dynamics” of Manev model for this choice of involu
tion will be given by

t t  1 / 2 2 2\ A  7?
Hm = ~(px - P y + P z ) ----------- 22 y p pz
lur =  dpx A da: — dpy Ad y + dpz A d z

(45)

where p =  \Jx2 — y2 +  z 2 is the “radius” of the pseudo-sphere. This is not an 
ordinary central field dynamics but rather an “indefinite metric central field” as 
Hu  depends on indefinite metric distance p. The real form Hamiltonian Hu  and 
the appropriate “angular momentum” Lj  are still commuting first integrals and the 
model is integrable. The involution acts on Lj  according to: C(Lj) =  (—1 y L j  
and instead of equation (3) we have

{ L j , L k} = ejkt( - i y +k+1L t (46)

so that the corresponding algebra is so (2 ,1) and this is the real form of so(3) 
obtained with a C-induced ('art an involution.
We shall assume again that the motion is on the Orcy-plane and in order to avoid the 
question of the behavior of trajectories at the singularities we restrict our attention 
to C-invariant configuration space

{(x, y, z) EM3 ; x > 0, x 2 > y2, z  = 0}.

Then the dynamics is separable in pseudo-radial coordinates i?
(—oo, oo) and p E (0, oo)

„  1 (  2 7tJ \  A B
H = o i P P ~ 2 l -----------------22 V p P2 P p2
uj =  dpp A dp +  d-TT,,? A di?

artanh(y/a:) 6

(47)
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with L L : = tt0, hence =  0 and i? =  —L / p 2. Due to the new symplectic 
form L  generates now transformations which preserve p.
In order to obtain an equation for the trajectories let us note again that in the case of2
non-vanishing angular momentum we have dt =  — i9. As a result the equation
for the p-motion takes the form

d2 £2 l 2 +  2B l 2
di)2 p £2

Assuming £2 +  2 B  /  Owe introduce

e2 + 2 b

p
- A  =  0 .

v 2 =
£2 ’ W p +  £2 +  2B

A

and obtain an inverted oscillator-type equation

d2 2 —  u; - v w  = 0.

(48)

(49)

(50)

The analysis of the resulting trajectories could be found in [14] and we shall not 
reproduce it here but we shall concentrate on the symmetry properties of the model.

6.1. Symmetries of the Real Form Manev Model

Proceeding as before, one could easily find the additional first integrals. What 
is different is that since the motion is never on a two-torus the new integrals are 
always globally defined for all initial data. When 0 /  £2 > —2B  they take the 
form

J± =
l 2 A

V-----1-----±  Ipp
p V

e±v$ =  ^ / l£eT v̂~v^

with

I = ^  = - 2 H £ + ^  £ A-r

(51)

(52)

Denoting again x  =  ¥  ~  and assuming the same Poisson brackets as (26) we 
obtain the so (2 ,1) algebra (35) formed by the first integrals

AT i =  \ —  sinhx ,
v K2 =  \l —  coshx,v K z =

v I - L
2v

K n =

which satisfy K q + K 2 — K% — K 2 = 0 with

v l  -)" L
2v =

Following the same line of reasoning as at the end of Section 4 we conclude that 
the global action of SO (2,1) is obstructed due to the level set £2 =  —2B.

H*
2^7

(53)

(54)
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Defining again

Y  = Y '  = a f b ^ r - 1^ -  with a = v l e lv, b = v rLi
daT do

id (55)

we obtain that Y  and Y ’ are dynamical but non-symplectic symmetries.

In the case when 0 /  ( 2 < —2B  let v 2 =  ~^e and we obtain new invariants 
which are globally defined for any £

J ±  = J *  =
e  A

v --------- ±  i £pp
P v

e±1̂  =  s / I I e Tl^ - v^  = s / l£eTl'x (56)

with

/ = ^  = 2 H l + A  
t  +  v U '

X = <P — vt>. (57)

Again we can introduce the first integrals forming an u(2) algebra

K 0 =
v l  "H L  

2v
rr I L  ,K i  =  \ — s mxv

rr  I LK 2 =  \ — cos
V

K z =
v I - L

2v
(58)

which are not independent as K q — (K \  +  7 f | +  K 2) =  0 and again we do not 
have well defined action of SO(3).
Here again we have the dynamical but non-symplectic symmetries Y  and F 1 given 
by

F  =  (6t )v——r, F ? =  a f t f y - 1—  with a =  vT e^ , b = y/Ze1 
da> db

Finally, when l 2 =  —2B  we have the first integral

j  = £PP ~  A i9

satisfying { H, j }  =  0, { L , j }  =  —A.

id (59)

(60)

7. Conclusions

We have shown that Manev model possesses Hrmanno Bernoulli type invariants 
and symmetry algebras su(2) ~  so(3) or so (2 ,1) in addition to the angular mo
mentum algebra. These two facts indicate that the Manev model has an exceptional 
position among the central field theories. It provides a better description of the real 
motion of the heavenly bodies than Kepler model and in the same time it shares its 
most celebrated mathematical features: its superintegrability and large symmetry 
algebras.
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Also, we see here an example when the RF dynamics, exotic as it may be, behaves 
“better” than the original problem remaining always superintegrable.
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