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Abstract. We consider the recursion operator related to a system introduced
recently that could be considered as a generalization to a pole gauge general-
ized Zakharov-Shabat system on sl(3,C) but involving rational dependence
on the spectral parameter and subject to Z2×Z2×Z2 reduction of Mikhailov
type. We calculate the hierarchies of nonlinear evolution equations related to
this system through the recursion operators we introduce.

MSC: 35Q51, 37K05, 37K10, 37K15, 37K25
Keywords: Mikhailov type reductions, soliton equations hierarchies, recur-
sion operators

1. Introduction. Systems on sl(3) and the GMV System

The generalized Zakharov-Shabat system (GZS) and Caudrey-Beals-Coifman sys-
tem (CBC) in pole gauge on the algebra sl(3) initially has been studied as an ap-
plication of the general results about GZS and CBC system in pole gauge, see [1]
and references in [2]. As a result, the generating operator has been calculated and
some systems of Heisenberg Ferromagnet (HF) type with possible physical appli-
cations, [9]. The interest in the pole gauge systems was renewed after the system
that we refer as GMV (Gerdjikov-Mikhailov-Valchev) has been introduced [3–5].
At the beginning the GMV system study started independently, spectral properties
were studied and generating operators were calculated. Later it was pointed out
that GMV could be treated as sl(3) GZS system in pole gauge with additional re-
ductions of Mikhailov type, so that the generating operators found for the GMV
system could be obtained from the generating operator for the general sl(3) sys-
tem and geometric interpretation has been clarified [12]. Let us introduce the GMV
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system. By this name we shall call the auxiliary linear problem

LS1ψ = (i∂x + λS1)ψ = 0, S1 =

 0 u v
u∗ 0 0
v∗ 0 0

 . (1)

In the above u, v (the potentials) are smooth complex valued functions on x be-
longing to the real line and by ∗ is denoted the complex conjugation. In addition,
the functions u and v satisfy the relation u|2 + |v|2 = 1. As described in [3, 4]
the GMV system arises naturally when one looks for integrable system having a
Lax representation [L,A] = 0 with L of the form i∂x + λS, where S ∈ sl(3,C)
and L,A subject to Mikhailov-type reduction requirements, see for example [7,8].
In this particular case the Mikhailov reduction group G0 is generated by the two
elements g0 and g1 acting on the fundamental solutions of the system (1) as

g0(ψ)(x, λ) =
[
ψ(x, λ∗)†

]−1

g1(ψ)(x, λ) = H1ψ(x,−λ)H1, H1 = diag(−1, 1, 1)

where † denotes Hermitian conjugation. Since g0g1 = g1g0 and g20 = g21 = Id

we see that G0 = Z2 × Z2. Denote H1 : X 7→ H1XH1 = H1XH
−1
1 . Then it

will be an involutive automorphism of sl(3,C) which commutes with the complex
conjugation σ that defines the real form su(3) of sl(3,C), (σ(X) = −X†). Next
we introduce the spaces

g[j] = {X ; H1(X) = (−1)jX}, j = 0, 1

and we get the splittings

sl(3,C) = g[0] ⊕ g[1]

su(3) = (g[0] ∩ su(3))⊕ (g[1] ∩ su(3)) (2)

isu(3) = (g[0] ∩ isu(3))⊕ (g[1] ∩ isu(3)).

The invariance under the reduction group G0 means that if ψ is the common G0-
invariant fundamental solution of (1) and a linear problem of the type

Aψ = i∂tψ + (

n∑
i=0

λkAk)ψ = 0, Ak ∈ sl(3,C)

A2k+1 ∈ g[1] ∩ isu(3), A2k ∈ g[0] ∩ isu(3), k = 0, 1, 2, . . . .

In the same way S1 ∈ g[1] ∩ isu(3)) which forces S1 to be as in (1). In [3, 4] and
in [10] have been considered the spectral theory aspects of the recursion operators
related to (1) and their relation to the recursion operators in general position re-
lated to GZS system in pole gauge. The geometric aspects of the theory of those
operators has been discussed in [12].
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In the present article we shall consider a linear problem which is subject to the one
more reduction, which has been also introduced in [3–5]. This linear problem is
a sort of generalization of GMV problem but admits a bigger Mikhailov reduction
group. It is generated by the three elements g0, g1 (as before) and g2

g2(ψ)(x, λ) = H2ψ(x,
1

λ
)H2, H2 = diag(1,−1, 1). (3)

Since the elements gi, i = 0, 1, 2 commute and g2i = Id the Mikhailov reduction
group is Z2×Z2×Z2. As easily seen LS1 cannot admit such such reduction group
for which rational dependence on λ is needed. So in [3,4] has been considered the
linear problem

LS±1 = i∂x + λS1 + λ−1S−1 (4)

subject to reduction generated by g0, g1, g2. (As it is clear the reduction group
forces S−1 to be equal to H2(S1) where H2(X) = H2XH2. Later, in [6], has
been considered the question of the recursion operators for the system (4) which
we shall call rational GMV system. From (4) it is clear that the problem of the
recursion operators for the rational GMV is much more complicated than that of
GMV system. Here we address the algebraic aspects of the recursion operators
related to (4), that is to see whether such operators arise when one resolves the
relations equivalent to the Lax equation [LS±1 , A] = 0.

2. Some Algebraic Preliminaries

We shall need some algebraic facts about the algebra sl(3,C). It a is simple Lie
algebra with Killing form ⟨X,Y ⟩ = 6 trXY . If S is a regular element from
sl(3,C) it defines a Cartan subalgebra hS = ker adS = {X ; [S,X] = 0}. In our
case both S1 and S−1 are regular,ant the corresponding subalgebras

hS1 = {X ; [X,S1] = 0}, hS−1 = {X ; [X,S−1] = 0}

are Cartan subalgebras. We shall denote the orthogonal complements (with respect
to the Killing form) h⊥S1

and h⊥S−1
of the above spaces by by gS1 and gS−1 and the

orthogonal projectors onto them by π+, π−. For X ∈ sl(3,C) we shall put

π+X = X+a, (Id−π+)X = X+d

π−X = X−a, (Id−π−)X = X−d.

We introduce now some facts about the matrices S±1 that will be useful in our
calculations. First, it is easy to see (for example using the fact that both S±1 are
simple matrices and have eigenvalues 0;±1) that

1. hS1 is spanned by {S1, S2 = S2
1 − (2/3)1}

2. hS−1 is spanned by {S−1, S−2 = S2
−1 − (2/3)1}
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3. trS2
1 = trS2

−1 = 2.

We note that
H1(S2) = S2, H1(S−2) = S−2

H2(S2) = S−2, H2(S−2) = S2

H1([S1, S−1]) = [S1, S−1], H2([S1, S−1]) = −[S1, S−1].

Since all of our matrices lie in isu(3), in the future if some vector space f is defined
in sl(3,C) but we use f ∩ isu(3) we shall continue to refer to it as f ’forgetting’ to
write isu(3) in order to simplify the notation. We hope that this will not lead to
confusion.
As mentioned already, see (2), the automorphism H1 splits the algebra sl(3,C)
into a direct sum. We shall denote the projectors defined by this splitting by π[0,1]

and if X ∈ sl(3,C) we shall put π[0,1]X = X [0,1].

Remark 1. Note that the projectors π± and π[0,1] commute.

In the same way as we split the algebra sl(3,C) we can obtain the splittings

a) For the Cartan subalgebras hS±1

hS±1 = h
[0]
S±1

⊕ h
[1]
S±1

because hS±1 are invariant under H1: (Of course everything depends on x
but we are slightly abusing the notation.)

b) For the orthogonal complements gS±1 = h⊥S±1
of hS±1

gS±1 = g
[0]
S±1

⊕ g
[1]
S±1

because the Killing form is invariant under automorphisms.

The matrices that are invariant under both automorphisms H1 and H2 are as eas-
ily seen diagonal. For example, in the above Lax pairs, [S1, A−1] + [S−1, A1] is
invariant under H1,H2 so it must be diagonal. The same is true for A0.

3. The Recursion Relations Systems Related to GMV System and the
Rational GMV System

Let us consider the following L,A pair on the algebra sl(3,C) (first without im-
posing any other restrictions)

L = i∂x + λS1 + λ−1S−1, A = i∂t +A0 +

N∑
k=1

(λkAk + λ−kA−k). (5)
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The condition [L,A] = 0 is equivalent to a system of equations on the coefficients
Ak which we do not write explicitely. We call it the L recursion system (where L
is as in (5)). One can see that the L recursion system almost splits to two different
systems – one for negative indexes k and another for positive k’s. If one is able
to resolve them recursively then one will obtain Ak (k ≥ 1) from As (s > k) and
A−k (k ≥ 1) from A−s (s > k). The two recursion processes come together in the
last stage and obtain the relations

iA1;x − iS1;t + [S1, A0] + [S−1, A2] = 0

iA−1;x − iS−1;t + [S−1, A0] + [S1, A−2] = 0

which in fact give the system of NLEEs corresponding to [L,A] = 0 and

iA0;x + [S1, A−1] + [S−1, A1] = 0

which is a sort of a compatibility relation.
If we have Mikhailov group generated by g0, g1, g2 it imposes the following re-
quirements on the coefficients in (5)

i) A†
l = Al for l = 0,±1,±2, . . . ± N and S†

l = Sl for l = ±1 where †
denotes Hermitian conjugation.

ii) H1(Al) = (−1)lAl for l = 0,±1,±2, . . . ± N and H1(Sl) = (−1)lSl
for l = ±1 where H1 is the involution defined by H1(X) = H1XH1,
H1 = diag(1,−1,−1).

iii) H2(Al) = A−l for l = 0,±1,±2, . . . ± N and H2(Sl) = S−l for l = ±1
where H2 is the involution H2(X) = H2XH2, H2 = diag(1,−1, 1).

The L recursion system in which the coefficients Ak are subject to the above re-
strictions and S1 is as in the GMV system we call rational GMV recursion system.
As a result of iii) half of the equations equivalent to [L,A] = 0 become con-
sequence of the other half. Since [S1, A−1] + [S−1, A1] = (Id+H2)[S−1, A1]
we have the following independent equations which are equivalent to the rational
GMV recursion system

iA0;x + (Id+H2)[S−1, A1] = 0

iA1;x − iS1;t + [S1, A0] + [S−1, A2] = 0

iAk;x + [S1, Ak−1] + [S−1, Ak+1] = 0, k = 2, 3, . . . N − 1 (6)

iAN ;x + [S1, AN−1] = 0

[S1, AN ] = 0.

The effect of i) and ii) on S1, S−1, A1, A−1 must belong to g[1] ∩ isu(3). Now,
before going to the rational GMV system, let us briefly analyse the GMV system
recursion relations, that is the system that arises from the condition [LS1 , A] = 0,
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where

LS1 = i∂x + λS1, A = i∂t +

N∑
k=0

λkAk. (7)

Then the condition [LS1 , A] = 0 is equivalent to the recursion system (LS1 recur-
sion system or GMV type recursion system) which is obtained from the system (6)
putting in it formally S−1 ≡ 0. For it the things are relatively easy. Basically we
need to find Ak if Ak+1 is known. In dealing with systems of the type we have it
is useful to use the following proposition which can be proved without difficulties.

Proposition 2. Suppose we need to solve with respect to X the equation

i∂xR+ T = −[S1, X] (8)

(R, T,X are functions with values in sl(3)). Suppose the compatibility condition
(Id−π+)(i∂xR + T ) = (i∂xR + T )+a = 0 holds. Then the general solution of
(8) is X+a +D+d where D+d is arbitrary function with values in hS1 and

X+a = ΛS1R
+a+ad−1

S1
(T+a+

i

12
∂−1
x (⟨T+d, S1⟩)S1;x+

i

4
∂−1
x (⟨T+d, S2⟩)S2;x).

Here ΛS1 is the operator

ΛS1(X) = − ad−1
S1
π+

(
i∂xX +

i

12
S1;x∂

−1
x ⟨X,S1;x⟩+

i

4
S2;x∂

−1
x ⟨X,S2;x⟩

)
and X+a could be written even more easily if we introduce the operator ΘS1

ΘS1(T ) = ad−1
S1

(
π+T +

i

12
∂−1
x ⟨T+d, S1⟩S1;x +

i

4
∂−1
x ⟨T+d, S2⟩S2;x

)
.

Then X+a = ΛS1R
+a +ΘS1(T ). Note that ΘS1(T

+a) = ad−1
S1

(T+a).
In the future we shall adopt the following notation. If fS1 is a field of spaces
each defined for S1(x) (that is for each rel x we have the fixed linear subspace
fS1(x) ⊂ sl(3,C) we shall put F(fS1) for the vector space of smooth functions
x 7→ fS1(x). The same logic should be applied understanding expressions of the
type F(fS−1). Naturally, fS1(x) are subalgebras then F(fS1) is a Lie algebra, a
subalgebra of F(sl(3,C)) – the set of rapidly decreasing functions with values in
sl(3,C). With the above notation we have

ΘS1(F(g
[0]
S1
) ⊂ F(g

[1]
S1
), ΘS1(F(g

[1]
S1
) ⊂ F(g

[0]
S1
)

ΛS1F(g
[0]
S1
) ⊂ F(g

[1]
S1
), ΛS1F(g

[1]
S1
) ⊂ F(g

[0]
S1
).

If we eliminate A0 through a gauge transformation and apply the Proposition to
the GMV recursion system we immediately get the soliton equations related to
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systems of GMV type (note that we did not use the fact that there is a reduction
here, but simply that S1 is regular) are

iS1;t = − adS1 Λ
N
S1
AN . (9)

In systems that are not subject to Z2 reductions is interpreted as ΛS1 being the
recursion operator. For the GMV system in order that the soliton equations (9) is
consistent with the involution related with H1, ΛN

S1
AN must take values in g[0]. So

for even N , AN is taken into the form αS2 (α = const) and for odd N we have
AN = βS1, β = const. Thus effectively the hierarchy of the soliton equations
related to GMV system is obtained by the action of Λ2

S1
.

4. Rational GMV Recursion System

Let us consider now the recursion system for the rational GMV system (6). The
calculations which for lack of space we cannot present here show that it indeed
could be resolved, Ak+1 could be found if Ak, Ak−1 are known. However, this
recursion process is not in a form suggesting that there exists recursion operator. So
let us try another idea, namely to use some linear combinations of the coefficients
Ak, −N ≤ k ≤ N . We shall put

Pk = Ak +A−k = Ak +H2(Ak) = (Id+H2)(Ak)

Qk = Ak−1 +A−(k+1) = Ak−1 +H2(Ak+1).

We extend the definition of the matrices Pk and Qk for arbitrary k ∈ Z assuming
that Ak = 0 if |k| > N . Thus we have Pk = 0 for |k| > N and Qk = 0
for |k| > N + 1, in particular, QN = AN−1, QN+1 = AN and Q0 = 2A−1,
P0 = 2A0. Directly from the definition of Pk and Qk we obtain that they have the
properties

H1Pk = (−1)kPk, H1Qk = (−1)k+1Qk

H2Pk = Pk, Pk = P−k, Qk = Q−k.

Further, for k ≥ 1

Ak = Qk+1 −H2(Qk+3) +Qk+5 −H2(Ak+7) + ...

(since Qs = 0 for s > N + 1 the above series is finite).
In particular, since Q0 = 2H2(A1) we have that

1

2
Q0 = H2(A1) = H2(Q2)−Q4 +H2(Q6)− ... ≡ 1

2
F (Q).

It follows that we have

Proposition 3. The set of Qk, k = 0, 1, . . . N + 1 determines uniquely the quanti-
ties Ak. Q0 (A1) is a linear combination F (Q) of the Q2s,H2(Q2s) for s ≥ 1.
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Using the rational GMV system recursion relations it is easy to check that for
|k| > 2 we have

i∂xPk + (Id+H2)[S1, Qk] = 0

i∂xQk − [S1 − S−1, Pk] + [S1, Qk−1 +Qk+1] = 0.

We solve the first equation for Pk and introduce into the second one. We get

i∂xQk − [S1 − S−1, i∂
−1
x (Id+H2)[S1, Qk]] = −[S1, Qk+1 +Qk−1]. (10)

This system is exactly of the type that is considered in Proposition 2 but in order to
write the things in a concise way let us introduce some notation. First, we introduce
the operator ΩS1 by

ΩS1(Z) = [S1 − S−1, i∂
−1
x (Id+H2)[S1, Z]]

where Z is a function on x with values in g. It is obvious that in fact ΩS1(Z)
depends only on the projection of Z on the space gS1 , that is ΩS1(Z) = ΩS1(Z

+a).
We also have

ΩS1(F(g
[0]
S1
) ⊂ F(g

[0]
S1
), ΩS1(F(g

[1]
S1
) ⊂ F(g

[1]
S1
).

Now, using Proposition 2 we get

(ΛS1 −ΘS1 ◦ ΩS1)Q
+a
k = Q+a

k+1 +Q+a
k−1.

It is obvious that if we put

ΛS1 = ΛS1 −ΘS1 ◦ ΩS1 . (11)

The above equation will have even nicer form ΛS1Q
+a
k = Q+a

k+1 + Q+a
k−1. One

immediately checks that ΛS1 has the properties

ΛS1(F(g
[0]
S1
) ⊂ F(g

[1]
S1
), ΛS1(F(g

[1]
S1
) ⊂ F(g

[0]
S1
). (12)

Skipping the technical details we obtain

Proposition 4. The system of equations equivalent to the rational GMV recursion
system could be resolved in the following way: At the first stage we resolve

ΛS1Qk = Qa
k+1 +Q+a

k−1, Pk = ΩS1(Q
+a
k ), N + 1 ≤ k ≤ 2

to find Q2 as a function of S1, S2 and their x-derivatives. Then using the value of
Q2 and knowing that Q0 = F (Q) we resolve

i∂xQ1 +
1

2
(Id+H2)[S1, Q0] +

1

2
(Id−H2)[S−1, Q0] + [S1, Q2] = 0

to find Q1 and obtain the corresponding soliton equation either in the form

i ad−1
S1
S1;t = Q+a

3 −ΛS1Q
+a
2 +Q+a

1 (13)

or in the form

i ad−1
S1
S−1;t = Q+a

1 − 1

2
ΛS1Q

+a
0 . (14)
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Finally P0 = ΩS1(Q
+a
0 ) and P1 =

1
2(Id+H2)Q0 are also determined thus finding

all the functions Ak needed for the Lax representation of (13) (or (14)).

The above suggests that ΛS1 defined in (11) could be the recursion operator we
are looking for since we can obtain recursively all Q+a

k though the situation is not
quite as it is usally. In support of this opinion we remark that the operator ΛS1

(or rather its square) has been proposed in [6] to be the recursion operator for the
rational GMV system using some other type of argument. In order to introduce
it we sketch the construction from that work the more reason that the form of the
relations in [6] does not permit to verify immediately our claim.

5. The Recursion Operator Defined Through
Adjoint Solutions

According to [6] the recursion operator could be constructed from the requirement
that for it some combinations of the adjoint solutions for LS±1 (see (4)) are eigen-
functions. Let χ be a fundamental solution to LS±1χ = 0. Then if A is a fixed
constant matrix, the function ΦA = χAχ̂ will satisfy the equation

i∂xΦA + [λS1 + λ−1S−1,ΦA] = 0.

Let us introduce the functions

ΦA;k = λkΦA + λ−kH2(ΦA), k = 0,±1,±2, . . . .

The interest in these functions is motivated by the fact that they enter in some
Wronskian identities (in that case A must be diagonal) which are essential in the
theory (see [3] for their derivation and more explanations). In fact one can notice
that in the relations enter only the projections π+ΦA;1(x, λ) = Φ+a

A;1(x, λ) on the
orthogonal complement gS1 to the Cartan subalgebra hS1 . Even more, because all
diagonal matrices in g belong to g[0] in fact in the Wronskian relations enters only
the projection of π+Φ

[1]
A;1(x, λ) on g[0] which we denote by Φ

[1]+a
A;1 (x, λ) (recall that

π+ commutes with π[0] and π[1]) on the orthogonal complement gS1 to the Cartan
subalgebra hS1 . More generally, we introduce the splittings

ΦA;0 = Φ
[0]
A;0 +Φ

[1]
A;0, ΦA;1 = Φ

[0]
A;1 +Φ

[1]
A;1

corresponding to the splitting g = g[0] ⊕ g[1] and let us put

Φ
[0]+a
A;1 = (Φ

[0]
A;1)

+a = π+Φ
[0]
A;1, Φ

[1]+a
A;1 = (Φ

[1]
A;1)

+a = π+Φ
[1]
A;1.

(recall that π+ and the projectors π[0] and π[1] commute).
The experience one has from the study of GZS system and the CBC system is that
the functions Φ[1]+a

A;1 (x, λ) involved into these relations are eigenfunctions for the
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generating operators. Developing that idea, in [6] the equation for ΦA;1 into the
following equivalent form

i∂xΦA;1 − [S1 − S−1,ΦA;0] = −(λ+ λ−1)[S1,ΦA;1].

Our further calculations are in fact the same as in [6] but give them another from
that suits better our purposes. We notices that the above equation is similar to the
one we had in (10). This permits us to write immediately

ΛS1Φ
+a
A;1 = (λ+ λ−1)Φ+a

A;0. (15)

Using (12) from (15) we get

ΛS1Φ
[0]+a
A;1 = (λ+ λ−1)Φ

[1]+a
A;1 , ΛS1Φ

[1]+a
A;1 = (λ+ λ−1)Φ

[0]+a
A;1 .

As a consequence

Λ2
S1
Φ
[0]+a
A;1 = (λ+ λ−1)2Φ

[0]+a
A;1 , Λ2

S1
Φ
[1]+a
A;1 = (λ+ λ−1)2Φ

[1]+a
A;1 . (16)

There are number of terms that cancel when one calculates explicitly the action of
Λ2

S±1
on (Φ

[0]
A;1)

+a and (Φ
[0]
A;1)

+a so in [6] were introduced two operators Λ1,Λ2

such that

Λ2
S1
Φ
[0]+a
A;1 = Λ2Λ1Φ

[0]+a
A;1 , Λ2

S1
Φ
[1]+a
A;1 = Λ1Λ2Φ

[1]+a
A;1 . (17)

The situation as in (16) and (17) is rather typical when one has Z2 reductions, see
[11] and the comments at the end of section 3. What one has is that the operator
ΛS1 restricted to functions taking values in g[0] is equal to −Λ1 and restricted to
functions taking values in g[1] is equal to −Λ2.

6. Conclusions

As we mentioned the recursion operators associated with an auxiliary linear prob-
lem L appear in several different roles:

1. Resolve the recursion systems for the soliton equations associated with L.
2. For them some projections of the adjoint solutions of L are eigenfunctions.
3. Their adjoint relate two Hamiltonian structures for the NLEEs associated

with L.

We have shown that he operators ΛS1 resolve the recursion relations and we have
seen for them the projections of the adjoint solutions entering in the Wronskian
relations are eigenfunctions. It remains of course to establish completeness rela-
tions for these eigenfunctions in order to develop the theory. As to the geometric
properties of ΛS1 which will involve the Hamiltonian structures for the NLEEs
associated with the rational GMV until now it has not been treated and of course
this will be an interesting task for the future research.
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