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1. Introduction

This note is a summary and a selection of a longer paper which deals with the
issue of integrability in two-dimensional non-linear sigma models [14]. The inter-
est in this subject stems from the fact that, in the past, only few of such theories
were known to be integrable. These are the principal chiral model [19], the Wess-
Zumino-Witten model and their various modifications. However, recently, more
studies have been devoted to this problem and more integrable non-linear sigma
models have been discovered [1–4,7,10–13,17,18]. These theories were found by
pure guesses or by brute force. The aim of this short contibution is to provide a
systematic method for searching for integrable two-dimensional non-linear sigma
models. The result of this work is a ‘master equation’ whose solutions yields all
the, so far, known integrable non-linear sigma models.

250



Classically Integrable Two-Dimensional Non-Linear Sigma Models 251

2. Zero Curvature Representation of Non-Linear Sigma Models

A two-dimensional non-linear sigma model is an interacting theory for some scalar
fields φi (z , z̄) as described by the action1

S =

∫
dzdz̄ Qij (φ) ∂φ

i∂̄φj . (1)

The metric and the anti-symmetric tensor fields of this theory are defined as

gij =
1

2
(Qij +Qji) , bij =

1

2
(Qij −Qji) . (2)

We will assume that the metric gij is invertible and its inverse is denoted gij . In-
dices are raised and lowered using this metric. We will also define, respectively,
the Christoffel symbols, the torsion and the generalised connection as follows

Γk
ij =

1

2
gkl (∂iglj + ∂jgli − ∂lgij)

Hk
ij =

1

2
gkl (∂lbij + ∂jbli + ∂ibjl) (3)

Ωk
ij = Γk

ij −Hk
ij .

The equations of motion of this theory can be written as

E l ≡ ∂̄∂φl +Ωl
ij∂φ

i∂̄φj = 0. (4)

The derivative ∂i =
∂

∂φi and summation is implied over repeated indices.

Let us now construct a linear system whose consistency conditions are equivalent
to these equations of motion (a zero curvature representation). By looking at the
form of the equations of motion, this linear system must have the following form[

∂ +
1

1 + λ
(Ki − Li) ∂φ

i

]
Ψ = 0,

[
∂̄ +

1

1− λ
(Kj + Lj) ∂̄φ

j

]
Ψ = 0 (5)

where the matrices Ki(φ) and Li(φ) are functions of the field φi but are indepen-
dent of the spectral parameter λ.
The compatibility condition of the linear system (the zero curvature condition)
is found by acting with ∂̄ and ∂, respectively, on the first equation and second

1Here, the two-dimensional coordinates are (τ, σ) with ∂0 = ∂
∂τ

and ∂1 = ∂
∂σ

· In the rest of
the paper, however, we will use the complex coordinates (z = τ + iσ , z̄ = τ − iσ) together with
∂ = ∂

∂z
and ∂̄ = ∂

∂z̄
·
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equation of the set (5) and demanding that ∂̄∂Ψ = ∂∂̄Ψ. This leads to the condition

F ≡ 1

1− λ2

{
2Li ∂∂̄φ

i + (∂iKj − ∂jKi + ∂iLj + ∂jLi

+ [Ki − Li , Kj + Lj ]) ∂φ
i∂̄φj

}
(6)

+
λ

1− λ2

{
2Ki ∂∂̄φ

i + (∂iKj + ∂jKi + ∂iLj − ∂jLi) ∂φ
i∂̄φj

}
= 0.

The non-linear sigma model is integrable if the linear system (5) is compatible
only when the equations of motion of the non-linear sigma model are obeyed. This
means that

F = E iµi = 0 (7)

for some linearly independent matrices µi (φ). By comparing the terms involving
∂∂̄φi and ∂φi∂̄φj on both sides of (7) we deduce that

µi =
2

1− λ2
(Li + λKi) (8)

and we must have

1

1− λ2
(∂iKj − ∂jKi + ∂iLj + ∂jLi + [Ki − Li , Kj + Lj ])

+
λ

1− λ2
(∂iKj + ∂jKi + ∂iLj − ∂jLi) =

2

1− λ2
Ωl
ij (Ll + λKl) . (9)

This relation must hold for all values of the spectral parameter λ. Therefore one
gets the equations

∂iKj − ∂jKi + ∂iLj + ∂jLi + [Ki − Li , Kj + Lj ] = 2Ωl
ijLl

(10)
∂iKj + ∂jKi + ∂iLj − ∂jLi = 2Ωl

ijKl.

We name this set of equations the ‘master equation’ behind the integrability of
two-dimensional non-linear sigma models. In this set of equations the unkowns
are the matrices Ki and Li as well as the Christoffel symbols Γi

jk and the torsion
Hijk. We will provide below some known solutions to these equations.

2.1. Symmetries

We would like now to spell out the geometry and the special features behind the
non-linear sigma models admitting the Lax representation given in (5). In terms of
the tensor Qij = gij + bij of the non-linear sigma model, the two sets of equations
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in (10) can be cast in the form

LLQij = −
[
∂i

(
Kj + bjlL

l
)
− ∂j

(
Ki + bilL

l
)]

(11)
− [Ki − Li , Kj + Lj ]

LK Qij = −
[
∂i

(
Lj + bjlK

l
)
− ∂j

(
Li + bilK

l
)]

(12)

where Ki = gijKj and Li = gijLj and the Lie derivative with respect to Ki is

LK Qij = K l∂lQij +Qlj∂iK
l +Qil∂jK

l. (13)

A similar expression holds for LLQij with Ll replacing K l.
The relation in (12) says that the non-linear sigma model (1) possesses the isometry
symmetry [8, 9]

δφi = αABKi
AB (14)

where Ki
AB are the entries of the matrix Ki and αAB are constant infinitesimal

parameters. This is a major requirement for a non-linear sigma model to accept a
Lax pair representation of the form (5).

2.2. Solutions

Let us now define the two currents

J = (Ki − Li) ∂φ
i, J̄ = (Kj + Lj) ∂̄φ

j . (15)

Using the set of equations in (10), these two currents satisfy

∂J̄ + ∂̄J = 2Ki E i, ∂J̄ − ∂̄J +
[
J , J̄

]
= 2Li E i. (16)

where E l ≡ ∂̄∂φl+Ωl
ij∂φ

i∂̄φj = 0 are the equations of motion of the non-linear
sigma model.
This last set of equations suggests the study of three different cases:

1) Ki = 0 and Li ̸= 0
In this case the two currents J and J̄ satisfy the equation ∂J̄ + ∂̄J = 0
independently of the equations of motion of the non-linear sigma model.
Therefore, the two currents J and J̄ are topological currents. Furthermore,
the equations in (10) reduce to

∂iLj − Γl
ij Ll = 0, 2H l

ij Ll = [Li , Lj ] . (17)

This set has a unique solution given by Li = 2κTi, where Ti satisfy the Lie
algebra [Ti , Tj ] = fk

ijTk and the integrable non-linear sigma model is

S =

∫
dzdz̄

(
ηij + κ

2

3
ηkl f

l
ijφ

k

)
∂φi∂̄φj (18)
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where κ is a constant and ηij satifies ηijf
j
kl + ηkjf

j
il = 0. The properties of

this theory were investigated by Nappi [15].
2) Li = 0 and Ki ̸= 0

Here the two currents J and J̄ are the conserved currents corresponding
to the isometry symmetry δφi = αABKi

AB of the non-linear sigma model
and satisfy, independently of the equations of motion, the Bianchi identity
∂J̄ − ∂̄J +

[
J , J̄

]
= 0. In this case the set (10) gives

∂iKj + ∂jKi − 2Γl
ij Kl = 0

2H l
ij Kl = 0 (19)

∂iKj − ∂jKi + [Ki , Kj ] = 0.

We immediately see that the last equation admits the solution Ki = g−1∂ig,
for some Lie group element g(φ), and the integrable theory is the principal
chiral non-linear sigma model

S (g) =

∫
dzdz̄Tr

[(
g−1∂g

) (
g−1∂̄g

)]
. (20)

Here g−1∂g = Ki∂φ
i and g−1∂̄g = Kj ∂̄φ

j .
3) Ki ̸= 0 and Li ̸= 0

This case means that the integrable non-linear sigma model must possess
the isometry symmetry (14) whose conserved currents are J and J̄ (namely,
∂J̄ + ∂̄J = 0 on shell). Moreover, the field strength ∂J̄ − ∂̄J +

[
J , J̄

]
vanishes only when the equations of motion are obeyed and is no longer a
Bianchi identity as in the previous case.

As seen earlier, the first two cases are unique and lead to known integrable non-
linear sigma models. Therefore, any new integrable non-linear sigma model (hav-
ing (5) as a Lax pair) must fit in this third class. The integrable non-linear sigma
models found in [1–4, 7, 10–13, 17, 18] enter all in this third category. Further
solutions are also found in the longer version of this note [14].
Finally, we should mention that integrable non-linear sigma models are of rele-
vance to string theory as advocated in [5, 6, 16].
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