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ON THE TRAJECTORIES OF U(1)-KEPLER PROBLEMS
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Abstract. The classical U(1)-Kepler problems at level n ≥ 2 were formu-
lated, and their trajectories are determined via an idea similar to the one used
by Kustaanheimo and Stiefel in the study of Kepler problem. It is found that
a non-colliding trajectory is an ellipse, a parabola or a branch of hyperbola
according as the total energy is negative, zero or positive, and the complex
orientation-preserving linear automorphism group of Cn acts transitively on
both the set of elliptic trajectories and the set of parabolic trajectories.
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1. Introduction

The quantum U(1)-Kepler problems, which are higher dimensional generalizations
of the MICZ-Kepler problems [9, 16], have been introduced and studied [10] for
quiet a while. Their intimate connection with representation theory [1], especially
local theta-correspondence [3], has been demonstrated in [10] as well. However,
their corresponding classical models, though not difficult to be formulated, seem
to be difficult to solve, that is why there is a significant delay of the current work.
The clue to solve these classical models finally came after a closer examination of
[4, 7, 8] and [12–15].
To formulate these classical models, we start with the euclidean Jordan algebra
Hn(C) of complex hermitian matrices of order n. (Euclidean Jordan algebras were
initially introduced by Jordan [5], and were subsequently classified by Jordan, von
Neuman and Wigner [6]. A good reference for euclidean Jordan algebras is [2].)
Next, we introduce the space C1 of rank one semi-positive elements in Hn(C).
Thirdly, we observe that there are two canonical structures on the space C1:

219
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I. The Kepler metric

ds2K =
trx

n2
tr(dx L̄−1

x (dx)) (1)

where tr is the matrix trace, d is the exterior differential operator, and L̄−1
x

denotes the inverse of the linear automorphism of the tangent space TxC1
induced from the Jordan multiplication by x. (A detailed description of L̄−1

x ,
valid for any simple euclidean Jordan algebra, is given in the first paragraph
of [11]. For more details on Kepler metric, one can consult [12, 14] )

II. The Kepler form

ωK := −i
tr(x dx ∧ dx)

(trx)3
· (2)

Here, the multiplication of matrices is the ordinary matrix multiplication and
“i” is the imaginary unit.

Finally, for each real number µ, we introduce the symplectic form

ωµ := ωC1 + 2µπ∗ωK

on T ∗C1. Here, ωC1 is the canonical symplectic form on T ∗C1, π∗ωK is the pull-
back of ωK under the cotangent bundle projection map

π : T ∗C1 −→ C1.

The symplectic manifold (T ∗C1, ωµ) will serve as the phase space of the U(1)-
Kepler problem with magnetic charge µ, and is denoted by Mµ hereafter.

Definition 1. Let n ≥ 2 be an integer and µ be a real number. The classical U(1)-
Kepler problem at level n with magnetic charge µ is the Hamiltonian system for
which the phase space is Mµ and the Hamiltonian is

Hµ =
1

2
||P ||2 + n2µ2

2(trx)2
− n

trx
(3)

where ||P || denotes the length of the cotangent vector P , measured in terms of the
Kepler metric on C1, and x = π(P ).

Remark 2. In the quantization of this model,
ωµ

2π
is required to represent a degree

two integral cohomology class of TC1 (homotopy equivalent to CPn−1). Then µ
must be a half of an integer.

Note that, a trajectory is the path traced by a motion, so it is oriented by the velocity
of the motion. By analyzing the trajectories of U(1)-Kepler problems we shall
show that a trajectory of the U(1)-Kepler problem at level n with magnetic charge
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µ is always the intersection of C1 with a real plane inside Hn(C), consequently,
since

C1 = {x ∈ Hn(C) ; x2 = trxx, trx > 0}
a trajectory is a quadratic curve. In fact, it will be shown that a non-colliding
trajectory is an ellipse, a parabola or a branch of a hyperbola according as the total
energy E is negative, zero or positive, moreover, the group GL(n,C)/U(1) – the
quotient group of GL(n,C) by the image of the diagonal imbedding of U(1) into
U(1)× · · · ×U(1)︸ ︷︷ ︸

n

– acts transitively on both the set of elliptic trajectories and the

set of parabolic trajectories of the U(1)-Kepler problems at level n.

Remark 3. The U(1)-Kepler problem at level two with magnetic charge 0 is just
the Kepler problem. The group GL(n,C)/U(1) is the complex-orientation pre-
serving linear automorphism group of Cn.

1.1. Notations

If w is a complex number, then Rew and Imw denote the real and imaginary
part of w respectively. We use w̄ to denote the complex conjugate of w and |w to
denote the length of w. For example, if w = 3 − 4i, then Rew = 3, Imw = −4,
w̄ = 3 + 4i, and |w| = 5. Note that, if z and w are two complex numbers, then
zw = z̄w̄. Now if

z = (z1, . . . , zn)
t, w = (w1, . . . , wn)

t

where each zi and each wi is a complex number, then

z · w := z1w1 + · · ·+ znwn, |z|2 := z · z̄ =
∑
i

|zi|2.

2. A Local Description of the Model

In this section we shall count the row number and column number of a matrix from
zero, so the top row of an n× n-matrix x is [x00, x01, . . .]. Note that, if x is semi-
positive, then xii ≥ 0 for all 0 ≤ i < n. For each 0 ≤ i < n, we introduce the
dense open set

Ui := {x ∈ C1 ; xii > 0}.
It is clear that Ui’s form an open cover for C1.
We shall work out a local description for the model on each Ui. In fact, due
to symmetry, it suffices to do it on U0. For x ∈ U0, we introduce coordinate
(r, z1, . . . , zn−1)

zi :=
xi0
x00

, r :=
x00
n

(1 + |z|2).
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Since x ∈ C1, we have trx x = x2, so trxx00 =
∑

i x0ixi0 =
∑

i |x0i|2, then

r =
trx

n
·

In terms of this coordinate, the Kepler form can be written as

ωK = i

(
dz ∧ dz̄

1 + |z|2
− (z̄ · dz) ∧ (z · dz̄)

(1 + |z|2)2

)
and the Kepler metric can be written as

ds2K = dr2 + 4r2
(1 + |z|2)|dz|2 − |z̄ · dz|2

(1 + |z|2)2
· (4)

The key step in verifying (4) is to verify the identity

tr
(
dx L̄−1

x (dx)
)
= 4

(
|dZ|2 −

(
Im(Z̄ · dZ)

|Z|

)2
)

(5)

for x = ZZ†. The proof of equation (5) is omitted here because it is very similar
to the detailed proof of identity (2.3) in [11] for Hn(R).
The coordinate functions r, zi, z̄i on U0 induce the coordinate functions r, zi, z̄i,
Pr, Pzi , Pz̄i on T ∗U0. One can check that ωK = dA with

A =
Im(z̄ · dz)
1 + |z|2

=: Az · dz +Az̄ · dz̄ (6)

consequently, on T ∗C1|U0 = T ∗U0, we have

ωµ = dpr ∧ dr + pz · dz + pz̄ · dz̄

where pr = Pr, pz = Pz + 2µAz and pz̄ = Pz̄ + 2µAz̄ = pz . Therefore, on
T ∗C1|U0 , the only nontrivial basic Poisson relations are

{r, pr} = 1 and {zi, pzi} = {z̄i, pz̄i} = 1 for each 1 ≤ i < n. (7)

In physics, p := pr dr+pz ·dz+pz̄ ·dz̄ is called the canonical momentum because
of above canonical Poisson relations.

Proposition 4. On T ∗C1|U0 = T ∗U0, the Hamiltonian (3) can be written as

Hµ =
1

2
p2r +

(1 + |z|2)
2r2

(
|pz̄ − 2µAz̄|2 + |z̄ · (pz̄ − 2µAz̄)|2

)
+

µ2

2r2
− 1

r
· (8)

Proof: From equation (4) we know that the nontrivial metric tensor components
are

grr = 1, gz̄izj = 2r2
(1 + |z|2)δij − ziz̄j

(1 + |z|2)2
= gzj z̄i .



On the trajectories of U(1)-Kepler Problems 223

Since r =
trx

n
, all we need to verify is that the nontrivial tensor components for

the inverse of the metric are

grr = 1, gz
iz̄j =

1 + |z|2

2r2
(δij + ziz̄j) = gz̄

jzi .

But this can be easily verified.
�

3. Conformal Kepler Problems

To continue the discussion, we need to introduce also Iwai’s [4] conformal Kepler
problem.

Definition 5. The n-th complex conformal Kepler problem is a dynamic problem
with configuration space Cn

∗ and Lagrangian

L = 2|Z|2|Ż|2 + 1

|Z|2
(9)

where |Z|2 = Z · Z̄ and |Ż|2 = Ż · ˙̄Z.

Since the Lagrangian in equation (9) is clearly invariant under the U(1) action on
Cn
∗ , via Noether’s theorem, the iR-valued

M := |Z|2(Z̄ · Ż − Z · ˙̄Z) (10)

on TCn
∗ must be a constant of motion. As we shall see in the proof of Proposition 7

that ImM can be identified with the magnetic charge, so M is refereed to as the
magnetic momentum. The total energy is

E = 2|Z|2|Ż|2 − 1

|Z|2
(11)

and the equation of motion is(
|Z|2 d

dt

)2

Z =
E

2
Z. (12)

The following proposition from [11], is adapted for this article.

Proposition 6. 1) If E < 0, then the solution to equation (12) is

Z(t) = cos τ u+ sin τ v (13)
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for some u ∈ Cn
∗ and v ∈ Cn. Here τ is an increasing function of t implicitly

defined via equation

t =
√

2(|u|2 + |v|2)
(
|u|2 + |v|2

2
τ +

|u|2 − |v|2

4
sin(2τ)

+
Re(ū · v)

2
(1− cos(2τ))

)
.

Moreover, for this solution we have

M = i

√
2

|u|2 + |v|2
Im(ū · v), E = − 1

|u|2 + |v|2
·

2) If E = 0, then the solution to equation (12) is

Z(t) = u+ τv (14)

for some u ∈ Cn
∗ and v ∈ Cn with |v|2 = 1

2 . Here τ is an increasing function of t
implicitly defined via equation

t = |u|2τ +Re(ū · v) τ2 + 1

6
τ3.

Moreover, for this solution we have

M = 2i Im(ū · v).

3) If E > 0, then the solution to equation (12) is

Z(t) = cosh τ u+ sinh τ v (15)

for some u ∈ Cn
∗ and v ∈ Cn with |v|2 > |u|2. Here τ is an increasing function of

t implicitly defined via equation

t =
√

2(|v|2 − |u|2)
(
|u|2 − |v|2

2
τ +

|u|2 + |v|2

4
sinh(2τ)

+
Re(ū · v)

2
(cosh(2τ)− 1)

)
.

Moreover, for this solution we have

M = i

√
2

|v|2 − |u|2
Im(ū · v), E =

1

|v|2 − |u|2
·
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4. Solving Equation of Motion for U(1)-Kepler Problems

The equation of motion for the Kepler problem was ingeniously solved by Kus-
taanheimo and Stiefel in [7] in which the nonlinear equation of motion was trans-
formed into a linear ordinary differential equation (ODE). This transformation,
referred to as the KS transformation in literatures, is based on the quadratic map
from C2 → R3: z 7→ z†σ⃗z, where σ⃗ = σ1⃗i + σ2j⃗ + σ3k⃗ with σi being the Pauli
matrices.
We shall use a similar idea to solve the equation of motion for U(1)-Kepler prob-
lems. The similar transformation that we shall use, which turns the equation of
motion into a linear ODE, is based on the following quadratic map

q : Cn → Hn(C), Z 7→ nZZ† (16)

where Z† is the complex hermitian conjugate of the column vector Z and ZZ† is
the matrix multiplication of Z with Z†. Map q, when restricted to Cn

∗ := Cn \{0},
becomes a principal U(1)-bundle over C1

q̄ : Cn
∗ −→ C1. (17)

One can check that the iR-valued differential one-form

Θ =
Z̄ · dZ − Z · dZ̄

2|Z|2
(18)

on Cn
∗ is a connection form on this principal bundle, and the curvature form

dΘ =
dZ̄ ∧ dZ

|Z|2
− (Z · dZ̄) ∧ (Z̄ · dZ)

|Z|4

on Cn
∗ is the pullback of ωK in (2) under the bundle projection map (17).

Proposition 7. 1) Let Z(t) be a solution to equation (12) with magnetic momen-
tum M . Then q(Z(t)) is a solution to the equation of motion of the U(1) Kepler
problem at level n with magnetic charge −iM .
2) Any solution to the equation of motion of the U(1) Kepler problem at level n
with magnetic charge µ is of the form q(Z(t)) for some solution Z(t) to equation
(12) with magnetic momentum iµ.

Proof: For each 0 ≤ i < n, take Ui to be the i-th dense open sets of C1 introduced
in Section 2, and let Ũi be the inverse image of Ui under the map q̄ in equation
(17). Then the Ũi’s form an open cover for Cn

∗ . Let

q̄i := q̄|Ũi
: Ũi → Ui.

1) Assume that Z(t) is a solution to equation (12) with magnetic momentum M .
To verify that q(Z(t)) is a solution to the U(1) Kepler problem at level n with
magnetic charge −iM , we just need to do it on each Ui. Due to symmetry, we just
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need to do it on U0 only. For Z := (Z0, Z1, . . .)
t ∈ Ũ0, we introduce coordinate

(g, r, z1, . . . , zn−1)

g = ei
α
2 :=

Z0

|Z0|
, r := |Z|2, zi :=

Zi

Z0
·

One can check that, under the map q̄0, a point in Ũ0 with coordinates (g, r, z1, . . . ,
zn−1) is mapped into a point in U0 with coordinate (r, z1, . . . , zn−1). Moreover,
in terms of coordinates (α, r, z1, . . . , zn−1), Lagrangian (9) can be written as

L =
1

2
ṙ2 + 2r2

(1 + |z|2)|ż|2 − |z̄ · ż|2

(1 + |z|2)2
+ 2r2

(
α̇

2
+

Im(z̄ · ż)
1 + |z|2

)2

+
1

r

so the conjugate momentums are

pα = 2r2
(
α̇

2
+

Im(z̄ · ż)
1 + |z|2

)
= −iM , pr = ṙ

pz̄ = 2r2
(1 + |z|2)ż − (z̄ · ż)z

(1 + |z|2)2
+ 2pαAz̄.

Then the Hamiltonian, obtained from the Legendre transform of L, can be written
as

H =
1

2
p2r +

(1 + |z|2)
2r2

(|Pz̄|2 + |z̄ · Pz̄|2) +
p2α
2r2

− 1

r
(19)

where

Pz̄ = pz̄ − 2pαAz̄.

By comparing with the Hamiltonian Hµ in Proposition 4, in view of the fact that
under the map q̄0, a point in Ũ0 with coordinate (g, r, z1, . . . , zn−1) is mapped to a
point in U0 with coordinate (r, z1, . . . , zn−1), we conclude that, for those solutions
to equation (12) with with magnetic momentum M , equation (12) becomes the
equation of motion of the U(1) Kepler problem at level n with magnetic charge
−iM , augmented with one more equation for g

2r2
(
ġg−1 +

z̄ · ż − z · ˙̄z
2(1 + |z|2)

)
= M . (20)

Therefore, if Z(t) is a solution to equation (12) with magnetic momentum M , then
q(Z(t)) is a solution to the equation of motion of the U(1) Kepler problem at level
n with magnetic charge −iM for those t such that Z(t) in Ũ0, hence in any Ũi due
to symmetry.
2) Assume that x(t) is a solution to the equation of motion of the U(1) Kepler
problem at level n with magnetic charge µ. Without loss of generality, we may
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assume that x(t0) ∈ U0. Let v be the unique point in TŨ such that, i) T q̄0(v) =
ẋ(t0), ii) if (g, r, z, ġ, ṙ, ż) is the local coordinate for v, then

g = 1, 2r2
(
ġg−1 +

z̄ · ż − z · ˙̄z
2(1 + |z|2)

)
= iµ.

Now, if we let Z(t) be the unique solution to the conformal Kepler problem with
initial condition (Z(t0), Ż(t0)) = v, then the analysis in part 1) of this proof
says that the magnetic momentum for Z(t) is iµ and q(Z(t)) is a solution to the
equation of motion of U(1) Kepler problem at level n with magnetic charge µ,
moreover, since q(Z(t)) and x(t) have the same initial condition at t0, we have
x(t) = q(Z(t)). �

The analysis in Section 3, when combined with Proposition 7 here, yields all solu-
tions to the equation of motion of the U(1)-Kepler problem at level n with magnetic
charge µ, though the dependence on time t is only implicitly given. Moreover, for
any solution Z(t) to the equation of motion of the complex conformal Kepler prob-
lem we have obtained in Section 3, one can check that the total trace of q(Z(t)),
i.e., the trajectory of the motion represented by q(Z(t)), always lies inside a real
plane inside Hn(C). Therefore, results in Section 3 and Proposition 7 together
imply

Theorem 8. For the U(1)-Kepler problem at level n with magnetic charge µ, the
followings are true.
1) A trajectory is always the intersection of the space C1 with a real plane inside
Hn(C), and it is bounded or unbounded according as the total energy E is negative
or not.
2) A bounded trajectory can be parametrized as α(τ) = q(cos τ u + sin τ v) for
some u ∈ Cn

∗ and v ∈ Cn with

µ =

√
2

|u|2 + |v|2
Im(ū · v).

Moreover, any parametrized curve of this form is a bounded trajectory with nega-

tive total energy E = − 1

|u|2 + |v|2
·

3) An unbounded trajectory with zero total energy can be parametrized as α(τ) =
q(u+ vτ) for some u ∈ Cn

∗ and v ∈ Cn with |v|2 = 1
2 and

µ = 2 Im(ū · v).

Moreover, any parametrized curve of this form is a trajectory with zero total energy.
4) An unbounded trajectory with positive total energy can be parametrized as
α(τ) = q(cosh τ u + sinh τ v) for some u ∈ Cn

∗ and v ∈ Cn with |v|2 > |u|2
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and

µ =

√
2

|v|2 − |u|2
Im(ū · v).

Moreover, any parametrized curve of this form is a trajectory with positive total

energy E =
1

|v|2 − |u|2
·

5. Non-Colliding Trajectories

The interesting trajectories are the non-colliding ones, i.e., the ones such that in
their parametrization α(τ) given in Theorem 8, α(τ) ̸= 0 ∈ Hn(C) for any τ ∈ R.
It is evident that if v is a complex scalar multiple of u in theorem 8, then α(τ) = 0
for some finite value of τ and it is not hard to check that the converse is also true.
Therefore, being applied to non-colliding trajectories, Theorem 8 becomes

Theorem 9. For a non-colliding trajectory of a U(1)-Kepler problem at level n,
the followings are true.
1) It is an ellipse, a parabola or a branch of hyperbola according as the total
energy E is negative, zero or positive.
(We assume in the next three statements that the variable τ runs over the entire R.)
2) If it is an ellipse then it can be parametrized as α(τ) = q(cos τ u+ sin τ v) for
some complex linearly independent u, v ∈ Cn with

µ =

√
2

|u|2 + |v|2
Im(ū · v).

Moreover, any parametrized curve of this form is an elliptic trajectory with nega-

tive total energy E = − 1

|u|2 + |v|2
·

3) If it is a parabola then it can be parametrized as α(τ) = q(u + vτ) for some
complex linearly independent u, v ∈ Cn with

µ =

√
2

|v|
Im(ū · v).

Moreover, any parametrized curve of this form is a parabolic trajectory with zero
total energy.
4) If it is a branch of hyperbola then it can be parametrized as α(τ) = q(cosh τ u+
sinh τ v) for some complex linearly independent u, v ∈ Cn with |v|2 > |u|2 and

µ =

√
2

|v|2 − |u|2
Im(ū · v).
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Moreover, any parametrized curve of this form is a hyperbolic trajectory with pos-

itive total energy E =
1

|v|2 − |u|2
·

Note that, in statement 3) of Theorem 9 the condition |v|2 = 1
2 is no longer needed

because one can rescale v due to the fact that τ ∈ R. Let GL(n,C)/U(1) be the
quotient group of GL(n,C) by the image of the diagonal imbedding of U(1) into
U(1)× · · · ×U(1)︸ ︷︷ ︸

n

. Since the standard linear action of GL(n,C) on Cn (n ≥ 2)

acts transitively on the set of complex linearly independent pairs of vectors in Cn,
Theorem 9 implies the following

Corollary 10. For the U(1)-Kepler problems at level n, the group GL(n,C)/U(1)
acts transitively on both set of elliptic trajectories and the set of parabolic trajec-
tories.

Since

SL(2,C)× R+ −→ GL(2,C)/U(1), (A, c) 7→ [cA]

is a two-to-one covering map, and SL(2,C) is the double cover of the identity com-
ponent of the Lorentz group O(3, 1), this corollary for n = 2 is just a restatement
of parts 3) and 4) in Theorem 2 in [15].
Finally we note that GL(n,C)/U(1) is the orientation-preserving linear automor-
phism group of Cn.
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