ON THE TRAJECTORIES OF U(1)-KEPLER PROBLEMS

GUOWU MENG
Department of Mathematics, Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong

Abstract

The classical U(1)-Kepler problems at level $n \geq 2$ were formulated, and their trajectories are determined via an idea similar to the one used by Kustaanheimo and Stiefel in the study of Kepler problem. It is found that a non-colliding trajectory is an ellipse, a parabola or a branch of hyperbola according as the total energy is negative, zero or positive, and the complex orientation-preserving linear automorphism group of \mathbb{C}^{n} acts transitively on both the set of elliptic trajectories and the set of parabolic trajectories.

MSC: 53D20, 53Z05, 70F05, 70G65, 70H06
Keywords: Kepler problem, Jordan algebra, super integrable models

1. Introduction

The quantum $\mathrm{U}(1)$-Kepler problems, which are higher dimensional generalizations of the MICZ-Kepler problems [9, 16], have been introduced and studied [10] for quiet a while. Their intimate connection with representation theory [1], especially local theta-correspondence [3], has been demonstrated in [10] as well. However, their corresponding classical models, though not difficult to be formulated, seem to be difficult to solve, that is why there is a significant delay of the current work. The clue to solve these classical models finally came after a closer examination of [4, 7, 8] and [12-15].
To formulate these classical models, we start with the euclidean Jordan algebra $\mathrm{H}_{n}(\mathbb{C})$ of complex hermitian matrices of order n. (Euclidean Jordan algebras were initially introduced by Jordan [5], and were subsequently classified by Jordan, von Neuman and Wigner [6]. A good reference for euclidean Jordan algebras is [2].) Next, we introduce the space \mathcal{C}_{1} of rank one semi-positive elements in $\mathrm{H}_{n}(\mathbb{C})$. Thirdly, we observe that there are two canonical structures on the space \mathcal{C}_{1} :

I. The Kepler metric

$$
\begin{equation*}
\mathrm{d} s_{K}^{2}=\frac{\operatorname{tr} x}{n^{2}} \operatorname{tr}\left(\mathrm{~d} x \bar{L}_{x}^{-1}(\mathrm{~d} x)\right) \tag{1}
\end{equation*}
$$

where tr is the matrix trace, d is the exterior differential operator, and \bar{L}_{x}^{-1} denotes the inverse of the linear automorphism of the tangent space $T_{x} \mathcal{C}_{1}$ induced from the Jordan multiplication by x. (A detailed description of \bar{L}_{x}^{-1}, valid for any simple euclidean Jordan algebra, is given in the first paragraph of [11]. For more details on Kepler metric, one can consult [12, 14])

II. The Kepler form

$$
\begin{equation*}
\omega_{K}:=-\mathrm{i} \frac{\operatorname{tr}(x \mathrm{~d} x \wedge \mathrm{~d} x)}{(\operatorname{tr} x)^{3}} \tag{2}
\end{equation*}
$$

Here, the multiplication of matrices is the ordinary matrix multiplication and " i " is the imaginary unit.

Finally, for each real number μ, we introduce the symplectic form

$$
\omega_{\mu}:=\omega_{\mathcal{C}_{1}}+2 \mu \pi^{*} \omega_{K}
$$

on $T^{*} \mathcal{C}_{1}$. Here, $\omega_{\mathcal{C}_{1}}$ is the canonical symplectic form on $T^{*} \mathcal{C}_{1}, \pi^{*} \omega_{K}$ is the pullback of ω_{K} under the cotangent bundle projection map

$$
\pi: \quad T^{*} \mathcal{C}_{1} \longrightarrow \mathcal{C}_{1}
$$

The symplectic manifold $\left(T^{*} \mathcal{C}_{1}, \omega_{\mu}\right)$ will serve as the phase space of the $\mathrm{U}(1)$ Kepler problem with magnetic charge μ, and is denoted by M^{μ} hereafter.

Definition 1. Let $n \geq 2$ be an integer and μ be a real number. The classical $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge μ is the Hamiltonian system for which the phase space is M^{μ} and the Hamiltonian is

$$
\begin{equation*}
H^{\mu}=\frac{1}{2}\|P\|^{2}+\frac{n^{2} \mu^{2}}{2(\operatorname{tr} x)^{2}}-\frac{n}{\operatorname{tr} x} \tag{3}
\end{equation*}
$$

where $\|P\|$ denotes the length of the cotangent vector P, measured in terms of the Kepler metric on \mathcal{C}_{1}, and $x=\pi(P)$.
Remark 2. In the quantization of this model, $\frac{\omega_{\mu}}{2 \pi}$ is required to represent a degree two integral cohomology class of $T \mathcal{C}_{1}$ (homotopy equivalent to $\mathbb{C P}^{n-1}$). Then μ must be a half of an integer.

Note that, a trajectory is the path traced by a motion, so it is oriented by the velocity of the motion. By analyzing the trajectories of $U(1)$-Kepler problems we shall show that a trajectory of the $\mathrm{U}(1)$-Kepler problem at level n with magnetic charge
μ is always the intersection of \mathcal{C}_{1} with a real plane inside $\mathrm{H}_{n}(\mathbb{C})$, consequently, since

$$
\mathcal{C}_{1}=\left\{x \in \mathrm{H}_{n}(\mathbb{C}) ; x^{2}=\operatorname{tr} x x, \operatorname{tr} x>0\right\}
$$

a trajectory is a quadratic curve. In fact, it will be shown that a non-colliding trajectory is an ellipse, a parabola or a branch of a hyperbola according as the total energy E is negative, zero or positive, moreover, the group $\mathrm{GL}(n, \mathbb{C}) / \mathrm{U}(1)$ - the quotient group of $\mathrm{GL}(n, \mathbb{C})$ by the image of the diagonal imbedding of $\mathrm{U}(1)$ into $\underbrace{\mathrm{U}(1) \times \cdots \times \mathrm{U}(1)}_{n}$ - acts transitively on both the set of elliptic trajectories and the set of parabolic trajectories of the $\mathrm{U}(1)$-Kepler problems at level n.
Remark 3. The $\mathrm{U}(1)$-Kepler problem at level two with magnetic charge 0 is just the Kepler problem. The group $\mathrm{GL}(n, \mathbb{C}) / \mathrm{U}(1)$ is the complex-orientation preserving linear automorphism group of \mathbb{C}^{n}.

1.1. Notations

If w is a complex number, then $\operatorname{Re} w$ and $\operatorname{Im} w$ denote the real and imaginary part of w respectively. We use \bar{w} to denote the complex conjugate of w and $\mid w$ to denote the length of w. For example, if $w=3-4$, then $\operatorname{Re} w=3, \operatorname{Im} w=-4$, $\bar{w}=3+4 \mathrm{i}$, and $|w|=5$. Note that, if z and w are two complex numbers, then $\overline{z w}=\bar{z} \bar{w}$. Now if

$$
z=\left(z_{1}, \ldots, z_{n}\right)^{t}, \quad w=\left(w_{1}, \ldots, w_{n}\right)^{t}
$$

where each z_{i} and each w_{i} is a complex number, then

$$
z \cdot w:=z_{1} w_{1}+\cdots+z_{n} w_{n}, \quad|z|^{2}:=z \cdot \bar{z}=\sum_{i}\left|z_{i}\right|^{2}
$$

2. A Local Description of the Model

In this section we shall count the row number and column number of a matrix from zero, so the top row of an $n \times n$-matrix x is $\left[x_{00}, x_{01}, \ldots\right]$. Note that, if x is semipositive, then $x_{i i} \geq 0$ for all $0 \leq i<n$. For each $0 \leq i<n$, we introduce the dense open set

$$
U_{i}:=\left\{x \in \mathcal{C}_{1} ; x_{i i}>0\right\} .
$$

It is clear that U_{i} 's form an open cover for \mathcal{C}_{1}.
We shall work out a local description for the model on each U_{i}. In fact, due to symmetry, it suffices to do it on U_{0}. For $x \in U_{0}$, we introduce coordinate $\left(r, z^{1}, \ldots, z^{n-1}\right)$

$$
z^{i}:=\frac{x_{i 0}}{x_{00}}, \quad r:=\frac{x_{00}}{n}\left(1+|z|^{2}\right) .
$$

Since $x \in \mathcal{C}_{1}$, we have $\operatorname{tr} x x=x^{2}$, so $\operatorname{tr} x x_{00}=\sum_{i} x_{0 i} x_{i 0}=\sum_{i}\left|x_{0 i}\right|^{2}$, then

$$
r=\frac{\operatorname{tr} x}{n}
$$

In terms of this coordinate, the Kepler form can be written as

$$
\omega_{K}=\mathrm{i}\left(\frac{\mathrm{~d} z \wedge \mathrm{~d} \bar{z}}{1+|z|^{2}}-\frac{(\bar{z} \cdot \mathrm{~d} z) \wedge(z \cdot \mathrm{~d} \bar{z})}{\left(1+|z|^{2}\right)^{2}}\right)
$$

and the Kepler metric can be written as

$$
\begin{equation*}
\mathrm{d} s_{K}^{2}=\mathrm{d} r^{2}+4 r^{2} \frac{\left(1+|z|^{2}\right)|\mathrm{d} z|^{2}-|\bar{z} \cdot \mathrm{~d} z|^{2}}{\left(1+|z|^{2}\right)^{2}} \tag{4}
\end{equation*}
$$

The key step in verifying (4) is to verify the identity

$$
\begin{equation*}
\operatorname{tr}\left(\mathrm{d} x \bar{L}_{x}^{-1}(\mathrm{~d} x)\right)=4\left(|\mathrm{~d} Z|^{2}-\left(\frac{\operatorname{Im}(\bar{Z} \cdot \mathrm{~d} Z)}{|Z|}\right)^{2}\right) \tag{5}
\end{equation*}
$$

for $x=Z Z^{\dagger}$. The proof of equation (5) is omitted here because it is very similar to the detailed proof of identity (2.3) in [11] for $\mathrm{H}_{n}(\mathbb{R})$.
The coordinate functions r, z^{i}, \bar{z}^{i} on U_{0} induce the coordinate functions r, z^{i}, \bar{z}^{i}, $P_{r}, P_{z^{i}}, P_{\bar{z}^{i}}$ on $T^{*} U_{0}$. One can check that $\omega_{K}=\mathrm{d} A$ with

$$
\begin{equation*}
A=\frac{\operatorname{Im}(\bar{z} \cdot \mathrm{~d} z)}{1+|z|^{2}}=: A_{z} \cdot \mathrm{~d} z+A_{\bar{z}} \cdot \mathrm{~d} \bar{z} \tag{6}
\end{equation*}
$$

consequently, on $\left.T^{*} \mathcal{C}_{1}\right|_{U_{0}}=T^{*} U_{0}$, we have

$$
\omega_{\mu}=\mathrm{d} p_{r} \wedge \mathrm{~d} r+p_{z} \cdot \mathrm{~d} z+p_{\bar{z}} \cdot \mathrm{~d} \bar{z}
$$

where $p_{r}=P_{r}, p_{z}=P_{z}+2 \mu A_{z}$ and $p_{\bar{z}}=P_{\bar{z}}+2 \mu A_{\bar{z}}=\bar{p}_{z}$. Therefore, on $\left.T^{*} \mathcal{C}_{1}\right|_{U_{0}}$, the only nontrivial basic Poisson relations are

$$
\begin{equation*}
\left\{r, p_{r}\right\}=1 \quad \text { and } \quad\left\{z^{i}, p_{z^{i}}\right\}=\left\{\bar{z}^{i}, p_{z^{i}}\right\}=1 \quad \text { for each } 1 \leq i<n \tag{7}
\end{equation*}
$$

In physics, $p:=p_{r} \mathrm{~d} r+p_{z} \cdot \mathrm{~d} z+p_{\bar{z}} \cdot \mathrm{~d} \bar{z}$ is called the canonical momentum because of above canonical Poisson relations.
Proposition 4. On $\left.T^{*} \mathcal{C}_{1}\right|_{U_{0}}=T^{*} U_{0}$, the Hamiltonian (3) can be written as

$$
\begin{equation*}
H_{\mu}=\frac{1}{2} p_{r}^{2}+\frac{\left(1+|z|^{2}\right)}{2 r^{2}}\left(\left|p_{\bar{z}}-2 \mu A_{\bar{z}}\right|^{2}+\left|\bar{z} \cdot\left(p_{\bar{z}}-2 \mu A_{\bar{z}}\right)\right|^{2}\right)+\frac{\mu^{2}}{2 r^{2}}-\frac{1}{r} . \tag{8}
\end{equation*}
$$

Proof: From equation (4) we know that the nontrivial metric tensor components are

$$
g_{r r}=1, \quad g_{\bar{z}^{i} z^{j}}=2 r^{2} \frac{\left(1+|z|^{2}\right) \delta_{i j}-z^{i} \bar{z}^{j}}{\left(1+|z|^{2}\right)^{2}}=g_{z^{j} \bar{z}^{i}}
$$

Since $r=\frac{\operatorname{tr} x}{n}$, all we need to verify is that the nontrivial tensor components for the inverse of the metric are

$$
g^{r r}=1, \quad g^{z^{i} \bar{z}^{j}}=\frac{1+|z|^{2}}{2 r^{2}}\left(\delta_{i j}+z^{i} \bar{z}^{j}\right)=g^{\bar{z}^{j} z^{i}}
$$

But this can be easily verified.

3. Conformal Kepler Problems

To continue the discussion, we need to introduce also Iwai's [4] conformal Kepler problem.

Definition 5. The n-th complex conformal Kepler problem is a dynamic problem with configuration space \mathbb{C}_{*}^{n} and Lagrangian

$$
\begin{equation*}
L=2|Z|^{2}|\dot{Z}|^{2}+\frac{1}{|Z|^{2}} \tag{9}
\end{equation*}
$$

where $|Z|^{2}=Z \cdot \bar{Z}$ and $|\dot{Z}|^{2}=\dot{Z} \cdot \dot{\bar{Z}}$.
Since the Lagrangian in equation (9) is clearly invariant under the $U(1)$ action on \mathbb{C}_{*}^{n}, via Noether's theorem, the $i \mathbb{R}$-valued

$$
\begin{equation*}
\mathscr{M}:=|Z|^{2}(\bar{Z} \cdot \dot{Z}-Z \cdot \dot{\bar{Z}}) \tag{10}
\end{equation*}
$$

on $T \mathbb{C}_{*}^{n}$ must be a constant of motion. As we shall see in the proof of Proposition 7 that $\operatorname{Im} \mathscr{M}$ can be identified with the magnetic charge, so \mathscr{M} is refereed to as the magnetic momentum. The total energy is

$$
\begin{equation*}
E=2|Z|^{2}|\dot{Z}|^{2}-\frac{1}{|Z|^{2}} \tag{11}
\end{equation*}
$$

and the equation of motion is

$$
\begin{equation*}
\left(|Z|^{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\right)^{2} Z=\frac{E}{2} Z \tag{12}
\end{equation*}
$$

The following proposition from [11], is adapted for this article.
Proposition 6. 1) If $E<0$, then the solution to equation (12) is

$$
\begin{equation*}
Z(t)=\cos \tau u+\sin \tau v \tag{13}
\end{equation*}
$$

for some $u \in \mathbb{C}_{*}^{n}$ and $v \in \mathbb{C}^{n}$. Here τ is an increasing function of t implicitly defined via equation
$t=\sqrt{2\left(|u|^{2}+|v|^{2}\right)}\left(\frac{|u|^{2}+|v|^{2}}{2} \tau+\frac{|u|^{2}-|v|^{2}}{4} \sin (2 \tau)\right.$

$$
\left.+\frac{\operatorname{Re}(\bar{u} \cdot v)}{2}(1-\cos (2 \tau))\right) .
$$

Moreover, for this solution we have

$$
\mathscr{M}=\mathrm{i} \sqrt{\frac{2}{|u|^{2}+|v|^{2}}} \operatorname{Im}(\bar{u} \cdot v), \quad E=-\frac{1}{|u|^{2}+|v|^{2}} .
$$

2) If $E=0$, then the solution to equation (12) is

$$
\begin{equation*}
Z(t)=u+\tau v \tag{14}
\end{equation*}
$$

for some $u \in \mathbb{C}_{*}^{n}$ and $v \in \mathbb{C}^{n}$ with $|v|^{2}=\frac{1}{2}$. Here τ is an increasing function of t implicitly defined via equation

$$
t=|u|^{2} \tau+\operatorname{Re}(\bar{u} \cdot v) \tau^{2}+\frac{1}{6} \tau^{3}
$$

Moreover, for this solution we have

$$
\mathscr{M}=2 \mathrm{i} \operatorname{Im}(\bar{u} \cdot v) .
$$

3) If $E>0$, then the solution to equation (12) is

$$
\begin{equation*}
Z(t)=\cosh \tau u+\sinh \tau v \tag{15}
\end{equation*}
$$

for some $u \in \mathbb{C}_{*}^{n}$ and $v \in \mathbb{C}^{n}$ with $|v|^{2}>|u|^{2}$. Here τ is an increasing function of t implicitly defined via equation

$$
\begin{aligned}
t=\sqrt{2\left(|v|^{2}-|u|^{2}\right)}\left(\frac{|u|^{2}-|v|^{2}}{2} \tau+\frac{|u|^{2}+|v|^{2}}{4}\right. & \sinh (2 \tau) \\
& \left.+\frac{\operatorname{Re}(\bar{u} \cdot v)}{2}(\cosh (2 \tau)-1)\right) .
\end{aligned}
$$

Moreover, for this solution we have

$$
\mathscr{M}=\mathrm{i} \sqrt{\frac{2}{|v|^{2}-|u|^{2}}} \operatorname{Im}(\bar{u} \cdot v), \quad E=\frac{1}{|v|^{2}-|u|^{2}} .
$$

4. Solving Equation of Motion for $\mathrm{U}(1)$-Kepler Problems

The equation of motion for the Kepler problem was ingeniously solved by Kustaanheimo and Stiefel in [7] in which the nonlinear equation of motion was transformed into a linear ordinary differential equation (ODE). This transformation, referred to as the KS transformation in literatures, is based on the quadratic map from $\mathbb{C}^{2} \rightarrow \mathbb{R}^{3}: z \mapsto z^{\dagger} \vec{\sigma} z$, where $\vec{\sigma}=\sigma_{1} \vec{i}+\sigma_{2} \vec{j}+\sigma_{3} \vec{k}$ with σ_{i} being the Pauli matrices.
We shall use a similar idea to solve the equation of motion for $U(1)$-Kepler problems. The similar transformation that we shall use, which turns the equation of motion into a linear ODE, is based on the following quadratic map

$$
\begin{equation*}
q: \mathbb{C}^{n} \rightarrow \mathrm{H}_{n}(\mathbb{C}), \quad Z \mapsto n Z Z^{\dagger} \tag{16}
\end{equation*}
$$

where Z^{\dagger} is the complex hermitian conjugate of the column vector Z and $Z Z^{\dagger}$ is the matrix multiplication of Z with Z^{\dagger}. Map q, when restricted to $\mathbb{C}_{*}^{n}:=\mathbb{C}^{n} \backslash\{\mathbf{0}\}$, becomes a principal $\mathrm{U}(1)$-bundle over \mathcal{C}_{1}

$$
\begin{equation*}
\bar{q}: \quad \mathbb{C}_{*}^{n} \longrightarrow \mathcal{C}_{1} \tag{17}
\end{equation*}
$$

One can check that the i \mathbb{R}-valued differential one-form

$$
\begin{equation*}
\Theta=\frac{\bar{Z} \cdot \mathrm{~d} Z-Z \cdot \mathrm{~d} \bar{Z}}{2|Z|^{2}} \tag{18}
\end{equation*}
$$

on \mathbb{C}_{*}^{n} is a connection form on this principal bundle, and the curvature form

$$
\mathrm{d} \Theta=\frac{\mathrm{d} \bar{Z} \wedge \mathrm{~d} Z}{|Z|^{2}}-\frac{(Z \cdot \mathrm{~d} \bar{Z}) \wedge(\bar{Z} \cdot \mathrm{~d} Z)}{|Z|^{4}}
$$

on \mathbb{C}_{*}^{n} is the pullback of ω_{K} in (2) under the bundle projection map (17).
Proposition 7. 1) Let $Z(t)$ be a solution to equation (12) with magnetic momentum \mathscr{M}. Then $q(Z(t))$ is a solution to the equation of motion of the $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge $-\mathrm{i} \mathscr{M}$.
2) Any solution to the equation of motion of the $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge μ is of the form $q(Z(t))$ for some solution $Z(t)$ to equation (12) with magnetic momentum $\mathrm{i} \mu$.

Proof: For each $0 \leq i<n$, take U_{i} to be the i-th dense open sets of \mathcal{C}_{1} introduced in Section 2, and let \tilde{U}_{i} be the inverse image of U_{i} under the map \bar{q} in equation (17). Then the \tilde{U}_{i} 's form an open cover for \mathbb{C}_{*}^{n}. Let

$$
\bar{q}_{i}:=\left.\bar{q}\right|_{\tilde{U}_{i}}: \tilde{U}_{i} \rightarrow U_{i} .
$$

1) Assume that $Z(t)$ is a solution to equation (12) with magnetic momentum \mathscr{M}. To verify that $q(Z(t))$ is a solution to the $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge $-\mathrm{i} \mathscr{M}$, we just need to do it on each U_{i}. Due to symmetry, we just
need to do it on U_{0} only. For $Z:=\left(Z_{0}, Z_{1}, \ldots\right)^{t} \in \tilde{U}_{0}$, we introduce coordinate $\left(g, r, z^{1}, \ldots, z^{n-1}\right)$

$$
g=\mathrm{e}^{\mathrm{i} \frac{\alpha}{2}}:=\frac{Z_{0}}{\left|Z_{0}\right|}, \quad r:=|Z|^{2}, \quad z^{i}:=\frac{Z_{i}}{Z_{0}}
$$

One can check that, under the map \bar{q}_{0}, a point in \tilde{U}_{0} with coordinates $\left(g, r, z^{1}, \ldots\right.$, $\left.z^{n-1}\right)$ is mapped into a point in U_{0} with coordinate $\left(r, z^{1}, \ldots, z^{n-1}\right)$. Moreover, in terms of coordinates $\left(\alpha, r, z^{1}, \ldots, z^{n-1}\right)$, Lagrangian (9) can be written as

$$
L=\frac{1}{2} \dot{r}^{2}+2 r^{2} \frac{\left(1+|z|^{2}\right)|\dot{z}|^{2}-|\bar{z} \cdot \dot{z}|^{2}}{\left(1+|z|^{2}\right)^{2}}+2 r^{2}\left(\frac{\dot{\alpha}}{2}+\frac{\operatorname{Im}(\bar{z} \cdot \dot{z})}{1+|z|^{2}}\right)^{2}+\frac{1}{r}
$$

so the conjugate momentums are

$$
\begin{array}{r}
p_{\alpha}=2 r^{2}\left(\frac{\dot{\alpha}}{2}+\frac{\operatorname{Im}(\bar{z} \cdot \dot{z})}{1+|z|^{2}}\right)=-\mathrm{i} \mathscr{M}, \quad p_{r}=\dot{r} \\
p_{\bar{z}}=2 r^{2} \frac{\left(1+|z|^{2}\right) \dot{z}-(\bar{z} \cdot \dot{z}) z}{\left(1+|z|^{2}\right)^{2}}+2 p_{\alpha} A_{\bar{z}}
\end{array}
$$

Then the Hamiltonian, obtained from the Legendre transform of L, can be written as

$$
\begin{equation*}
H=\frac{1}{2} p_{r}^{2}+\frac{\left(1+|z|^{2}\right)}{2 r^{2}}\left(\left|P_{\bar{z}}\right|^{2}+\left|\bar{z} \cdot P_{\bar{z}}\right|^{2}\right)+\frac{p_{\alpha}^{2}}{2 r^{2}}-\frac{1}{r} \tag{19}
\end{equation*}
$$

where

$$
P_{\bar{z}}=p_{\bar{z}}-2 p_{\alpha} A_{\bar{z}}
$$

By comparing with the Hamiltonian H_{μ} in Proposition 4, in view of the fact that under the map \bar{q}_{0}, a point in \tilde{U}_{0} with coordinate $\left(g, r, z^{1}, \ldots, z^{n-1}\right)$ is mapped to a point in U_{0} with coordinate $\left(r, z^{1}, \ldots, z^{n-1}\right)$, we conclude that, for those solutions to equation (12) with with magnetic momentum \mathscr{M}, equation (12) becomes the equation of motion of the $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge -i \mathscr{M}, augmented with one more equation for g

$$
\begin{equation*}
2 r^{2}\left(\dot{g} g^{-1}+\frac{\bar{z} \cdot \dot{z}-z \cdot \dot{\bar{z}}}{2\left(1+|z|^{2}\right)}\right)=\mathscr{M} \tag{20}
\end{equation*}
$$

Therefore, if $Z(t)$ is a solution to equation (12) with magnetic momentum \mathscr{M}, then $q(Z(t))$ is a solution to the equation of motion of the $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge $-\mathrm{i} \mathscr{M}$ for those t such that $Z(t)$ in \tilde{U}_{0}, hence in any \tilde{U}_{i} due to symmetry.
2) Assume that $x(t)$ is a solution to the equation of motion of the $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge μ. Without loss of generality, we may
assume that $x\left(t_{0}\right) \in U_{0}$. Let v be the unique point in $T \tilde{U}$ such that, i) $T \bar{q}_{0}(v)=$ $\dot{x}\left(t_{0}\right)$, ii) if $(g, r, z, \dot{g}, \dot{r}, \dot{z})$ is the local coordinate for v, then

$$
g=1, \quad 2 r^{2}\left(\dot{g} g^{-1}+\frac{\bar{z} \cdot \dot{z}-z \cdot \dot{\bar{z}}}{2\left(1+|z|^{2}\right)}\right)=\mathrm{i} \mu
$$

Now, if we let $Z(t)$ be the unique solution to the conformal Kepler problem with initial condition $\left(Z\left(t_{0}\right), \dot{Z}\left(t_{0}\right)\right)=v$, then the analysis in part 1) of this proof says that the magnetic momentum for $Z(t)$ is $\mathrm{i} \mu$ and $q(Z(t))$ is a solution to the equation of motion of $\mathrm{U}(1)$ Kepler problem at level n with magnetic charge μ, moreover, since $q(Z(t))$ and $x(t)$ have the same initial condition at t_{0}, we have $x(t)=q(Z(t))$.

The analysis in Section 3, when combined with Proposition 7 here, yields all solutions to the equation of motion of the $\mathrm{U}(1)$-Kepler problem at level n with magnetic charge μ, though the dependence on time t is only implicitly given. Moreover, for any solution $Z(t)$ to the equation of motion of the complex conformal Kepler problem we have obtained in Section 3, one can check that the total trace of $q(Z(t))$, i.e., the trajectory of the motion represented by $q(Z(t))$, always lies inside a real plane inside $\mathrm{H}_{n}(\mathbb{C})$. Therefore, results in Section 3 and Proposition 7 together imply

Theorem 8. For the $\mathrm{U}(1)$-Kepler problem at level n with magnetic charge μ, the followings are true.

1) A trajectory is always the intersection of the space \mathcal{C}_{1} with a real plane inside $\mathrm{H}_{n}(\mathbb{C})$, and it is bounded or unbounded according as the total energy E is negative or not.
2) A bounded trajectory can be parametrized as $\alpha(\tau)=q(\cos \tau u+\sin \tau v)$ for some $u \in \mathbb{C}_{*}^{n}$ and $v \in \mathbb{C}^{n}$ with

$$
\mu=\sqrt{\frac{2}{|u|^{2}+|v|^{2}}} \operatorname{Im}(\bar{u} \cdot v)
$$

Moreover, any parametrized curve of this form is a bounded trajectory with negative total energy $E=-\frac{1}{|u|^{2}+|v|^{2}}$.
3) An unbounded trajectory with zero total energy can be parametrized as $\alpha(\tau)=$ $q(u+v \tau)$ for some $u \in \mathbb{C}_{*}^{n}$ and $v \in \mathbb{C}^{n}$ with $|v|^{2}=\frac{1}{2}$ and

$$
\mu=2 \operatorname{Im}(\bar{u} \cdot v)
$$

Moreover, any parametrized curve of this form is a trajectory with zero total energy.
4) An unbounded trajectory with positive total energy can be parametrized as $\alpha(\tau)=q(\cosh \tau u+\sinh \tau v)$ for some $u \in \mathbb{C}_{*}^{n}$ and $v \in \mathbb{C}^{n}$ with $|v|^{2}>|u|^{2}$
and

$$
\mu=\sqrt{\frac{2}{|v|^{2}-|u|^{2}}} \operatorname{Im}(\bar{u} \cdot v) .
$$

Moreover, any parametrized curve of this form is a trajectory with positive total energy $E=\frac{1}{|v|^{2}-|u|^{2}}$.

5. Non-Colliding Trajectories

The interesting trajectories are the non-colliding ones, i.e., the ones such that in their parametrization $\alpha(\tau)$ given in Theorem $8, \alpha(\tau) \neq \mathbf{0} \in \mathrm{H}_{n}(\mathbb{C})$ for any $\tau \in \mathbb{R}$. It is evident that if v is a complex scalar multiple of u in theorem 8 , then $\alpha(\tau)=\mathbf{0}$ for some finite value of τ and it is not hard to check that the converse is also true. Therefore, being applied to non-colliding trajectories, Theorem 8 becomes

Theorem 9. For a non-colliding trajectory of a $\mathrm{U}(1)$-Kepler problem at level n, the followings are true.

1) It is an ellipse, a parabola or a branch of hyperbola according as the total energy E is negative, zero or positive.
(We assume in the next three statements that the variable τ runs over the entire \mathbb{R}.) 2) If it is an ellipse then it can be parametrized as $\alpha(\tau)=q(\cos \tau u+\sin \tau v)$ for some complex linearly independent $u, v \in \mathbb{C}^{n}$ with

$$
\mu=\sqrt{\frac{2}{|u|^{2}+|v|^{2}}} \operatorname{Im}(\bar{u} \cdot v) .
$$

Moreover, any parametrized curve of this form is an elliptic trajectory with negative total energy $E=-\frac{1}{|u|^{2}+|v|^{2}}$.
3) If it is a parabola then it can be parametrized as $\alpha(\tau)=q(u+v \tau)$ for some complex linearly independent $u, v \in \mathbb{C}^{n}$ with

$$
\mu=\frac{\sqrt{2}}{|v|} \operatorname{Im}(\bar{u} \cdot v) .
$$

Moreover, any parametrized curve of this form is a parabolic trajectory with zero total energy.
4) If it is a branch of hyperbola then it can be parametrized as $\alpha(\tau)=q(\cosh \tau u+$ $\sinh \tau v)$ for some complex linearly independent $u, v \in \mathbb{C}^{n}$ with $|v|^{2}>|u|^{2}$ and

$$
\mu=\sqrt{\frac{2}{|v|^{2}-|u|^{2}}} \operatorname{Im}(\bar{u} \cdot v) .
$$

Moreover, any parametrized curve of this form is a hyperbolic trajectory with positive total energy $E=\frac{1}{|v|^{2}-|u|^{2}}$.

Note that, in statement 3) of Theorem 9 the condition $|v|^{2}=\frac{1}{2}$ is no longer needed because one can rescale v due to the fact that $\tau \in \mathbb{R}$. Let $\mathrm{GL}(n, \mathbb{C}) / \mathrm{U}(1)$ be the quotient group of $\mathrm{GL}(n, \mathbb{C})$ by the image of the diagonal imbedding of $\mathrm{U}(1)$ into $\underbrace{\mathrm{U}(1) \times \cdots \times \mathrm{U}(1)}_{n}$. Since the standard linear action of GL (n, \mathbb{C}) on $\mathbb{C}^{n}(n \geq 2)$ acts transitively on the set of complex linearly independent pairs of vectors in \mathbb{C}^{n}, Theorem 9 implies the following

Corollary 10. For the $\mathrm{U}(1)$-Kepler problems at level n, the group $\mathrm{GL}(n, \mathbb{C}) / \mathrm{U}(1)$ acts transitively on both set of elliptic trajectories and the set of parabolic trajectories.

Since

$$
\mathrm{SL}(2, \mathbb{C}) \times \mathbb{R}_{+} \longrightarrow \mathrm{GL}(2, \mathbb{C}) / \mathrm{U}(1), \quad(A, c) \mapsto[c A]
$$

is a two-to-one covering map, and $\mathrm{SL}(2, \mathbb{C})$ is the double cover of the identity component of the Lorentz group $\mathrm{O}(3,1)$, this corollary for $n=2$ is just a restatement of parts 3) and 4) in Theorem 2 in [15].
Finally we note that $\mathrm{GL}(n, \mathbb{C}) / \mathrm{U}(1)$ is the orientation-preserving linear automorphism group of \mathbb{C}^{n}.

References

[1] Enright T., Howe R. and Wallach N., A Classification of Unitary Highest Weight Modules, In: Representation Theory of Reductive Groups, Progress in Math. 40, P. Trombi (Ed), Birkhäuser, Boston 1983, pp. 97-143.
[2] Faraut J. and Korányi A., Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford 1994.
[3] Howe R., Dual Pairs in Physics: Harmonic Oscillators, Photons, Electrons, and Singletons, Lectures in Appl. Math. 21, Amer. Math. Soc., Providence 1985.
[4] Iwai T., On a 'Conformal’ Kepler Problem and its Reduction, J. Math. Phys. 22 (1981) 1633-1639.
[5] Jordan P., Über die Multiplikation quantenmechanischer Größen, Z. Phys. 80 (1933) 285-291.
[6] Jordan P., von Neumann J. and Wigner E., On an Algebraic Generalization of the Quantum Mechanical System, Ann. Math. 35 (1934) 29-64.
[7] Kustaanheimo P. and Stiefel E., Perturbation Theory of Kepler Motion Based on Spinor Regularization, J. Reine Angew. Math. 218 (1965) 204-219.
[8] Levi-Civita T., Sur la régularisation du problème des trois corps, Acta Math. 42 (1920) 99-144.
[9] McIntosh H. and Cisneros A., Degeneracy in the Presence of a Magnetic Monopole, J. Math. Phys. 11 (1970) 896-916.
[10] Meng G., The U(1)-Kepler Problems, J. Math. Phys. 51 (2010) 122105.
[11] Meng G., On the Trajectories of $\mathrm{O}(1)$-Kepler Problems, arXiv:1411.7068 [math-ph].
[12] Meng G., Euclidean Jordan Algebras, Hidden Actions, and J-Kepler Problems, J. Math. Phys. 52 (2011) 112104.
[13] Meng G., The Universal Kepler Problems, J. Geom. Symmetry Phys. 36 (2014) 4757.
[14] Meng G., Generalized Kepler Problems I: Without Magnetic Charge, J. Math. Phys. 54 (2013) 012109.
[15] Meng G., Lorentz Group and Oriented McIntosh-Cisneros-Zwanziger-Kepler Orbits, J. Math. Phys. 53 (2012) 052901.
[16] Zwanziger D., Exactly Soluble Nonrelativistic Model of Particles with Both Electric and Magnetic Charges, Phys. Rev. 176 (1968) 1480-1488.

