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Abstract. Discussed are classical and quantized models of affinely rigid mo-
tion with degenerate dimension, i.e., such ones that the geometric dimensions
of the material and physical spaces need not be equal to each other. More pre-
cisely, the material space may have dimension lower than the physical space.
Physically interesting are special cases m = 2 or m = 1 and n = 3, first
of all m = 2, n = 3, i.e., roughly speaking, the affinely deformable coin in
three–dimensional Euclidean space. We introduce some special coordinate
systems generalizing the polar and two–polar decompositions in the regular
case. This enables us to reduce the dynamics to two degrees of freedom. In
quantum case this is the reduction of the Schrödinger equation to multicom-
ponent wave functions of two deformation invariants.
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1. Introduction

The mechanics of affine motion was a subject of plenty of our papers [16–18, 22–
24,26–29]. There are also papers of many other people who developed the subject
and discussed various applications and generalizations [3, 5–9, 11, 13–15, 25, 33].
Below we consider the classical and quantum generalizations to dimensionally de-
generate models, i.e., such ones that the material space may be lower–dimensional
than the physical space. Of course, we have in mind mainly the special case of two–
dimensional material space and the three–dimensional physical Euclidean space.
Roughly speaking, this is the mechanics of affinely–rigid body moving in the usual
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space. The degenerate problem is mathematically much more complicated than the
non–degenerate one. Nevertheless, there are some common methods, like general-
ized polar and two–polar decomposition of degrees of freedom. One must be care-
ful nevertheless, because many concepts well–defined in the regular case become
ill–defined or should be modified in a remarkable way. This concerns e.g., affine
velocities, because the inverse mappings to configurations are not defined. But,
surprisingly enough, the corresponding Hamiltonian concepts like the affine spin,
spatial or co–moving, are well-defined. Because of this it seems that Hamiltonian
methods are more reliable then. This is especially interesting in the quantum case
which is mathematically based on the classical Hamiltonian description. Some in-
troductory part is presented for the general values of n, m. It has to do with the
Stiefel and Grassmann manifolds. Nevertheless we concentrate on the special case
m = n−1, both because of practical, computational simplicity and because of our
natural interest in the special case of deformable coin, when m = 3, n = 2.

The model, including the general case of (n,m) is interesting in itself from the
point of view of purely mathematical theory of dynamical systems on homoge-
neous spaces. Let us notice that the configuration space of affinely rigid body with
degenerate dimension is a homogeneous space of the affine group in the physical
space, but not of the material affine group. Such models are mathematically very
interesting.

Nevertheless, they are also applicable in physical problems. First of all, one can use
them in the theory of structured bodies, e.g., ones consisting of planar or almost
planar molecules. Let us mention, e.g., the historical model of what Max Born
called “Schwungrad” in early days of quantum theory, in particular in dynamics
of molecules [4]. Two–dimensional structure elements are physically realized as
three–atom molecules like CO2, S3, H2O. Also more complicated molecules con-
centrated around some almost “flat” core may be described in this way. Molecular
physics and nanophysics must be described in quantum terms. They are particu-
larly interesting also from the point of view of foundation of quanta. Namely, their
theory may shed some light onto paradoxes of quantum mechanics, like the border
between classical and quantum physics, decoherence and measurement paradoxes.

We are to follow here the classical ⇒ quantum line of reasoning. Namely, we
begin with formulating the classical theory of affine constraints based on the clas-
sical d’Alembert procedure. The motion is then classically confined to some Rie-
mannian submanifold of the primary configuration space. And then one performs
the usual quantization procedure of the classical problem on the manifold of con-
straints. This is what we are going to do. But to be honest, one should mention the
another, not fully equivalent to the above one, procedure. We mean here something
that might be called the classical ⇒ quantum line of reasoning. So, according to
this line, one should consider the rigorous quantum theory of the non–constrained
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system, writing its Hamiltonian in the form

Ĥ = Ĥ0 +W

where Ĥ0 is a background expression, and W is a potential term describing the
confinement to the constraints manifold. The characteristic feature of W is that it
vanishes on the submanifold of constraints but grows very quickly when depart-
ing from it. This leads to the splitting of quantum motion into quantum vibrations
“across” the constraints manifold and the constrained quantum dynamics “along”
the classical constraints. Because of this there appear some energy levels of the
dynamics across constraints and they split into some bands of energy levels of the
dynamics of the along–constraints motion. It is reasonable to expect that the only
across–constraints factor that is relevant here is some ground state of vibrations.
Otherwise there is something like the Jahn–Teller effect that may obscure the pic-
ture. But here we do not get into those problems and simply consider everything
on the level classical ⇒ quantum.

2. Classical Ideas

Affine motion consists of spatial translations, rotations, and homogeneous defor-
mations. The configuration space of an n-dimensional affinely–rigid body for some
fixed Cartesian coordinates and reference coordinates is identified with

Q = GAf (n,R) ≃ GL (n,R)⊗s Rn

where Rn the center of mass motion (physical space identified with Rn), Qint =
GL (n,R) is the general linear group which describes internal degrees of freedom.
In continuum case one should use rather Qint = GL+(n,R)-the group of proper
linear transformations. The sign ⊗s denotes the semi–direct product of groups.
It is customary to use two logically different affine spaces (M,V )-the physical
affine space of dimension n, and (N,U)-the material space of the same dimension
n. Here V denotes the linear space of translations in M , and U respectively, the
linear space of translations in N . The configuration space is identified with the
manifold Q = AfI (N,M) of affine isomorphisms of N onto M .The co–moving
mass distribution is described by a fixed, time–independent positive measure µ on
N . When µ(N) < ∞, the Lagrangian center of mass is well–defined as a point
v ∈ N such ∫

−→va dµ (a) = 0 (1)

where −→va ∈ U denotes the translation vector carrying over v into a. If Φ ∈
AfI (N,M), then vΦ : = Φ (v) denotes the current position of the center of mass
in M .
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The configuration space may be identified with the Cartesian product

Q = M × L (U, V )

where L (U, V ) denotes the manifold of linear isomorphisms of U onto V . The
configuration (x, φ) ∈ M × L (U, V ) is understood in such a way that x ∈ M is
just the temporary position of the center of mass in M and φ ∈ L (U, V ) describes
the relative motion configuration. The material point labelled by a ∈ N occupies
such a spatial position y ∈ M that −→xy = φ · −→va.
When some Cartesian coordinates are fixed in M and N , and the center of mass
has Lagrangian (reference) coordinates ak = 0, we write analytically that

Φ: yi = xi + φi
KaK .

The motion is described by the time dependence of xi (translational motion) and
φi

K (internal, or relative, motion).
In usual mechanical models based on the d’Alembert principle the effective ki-
netic energy is obtained by a restriction of the multiparticle kinetic energy to the
manifold of affine constraints. The resulting expression is controlled by two con-
stant inertial quantities, i.e., the total mass M and the second–order moment of the
measure µ with respect to Lagrangian coordinates

M =

∫
dµ (a) , JKL =

∫
aKaLdµ (a) = JLK (2)

where M characterizes translational inertia and J characterize internal inertial
properties of the body. It is interesting that the same quantity J describes rota-
tional and deformative inertia. The usual tensor of inertia known from the rigid
body mechanics is a linear function of J (and conversely). J ∈ U ⊗ U is a twice
contravariant, symmetric, nonsingular, positively–definite tensor in U .
The multiparticle kinetic energy of affine motion is given by

T = Ttr + Tint =
M

2
gij

dxi

dt

dxj

dt
+

1

2
gij

dφi
A

dt

dφj
B

dt
JAB

where g ∈ V ∗ ⊗ V ∗ denotes the metric tensor of the physical space. Ttr is the
kinetic energy of the translational motion and Tint refers to the internal/relative
motion.
If we use Cartesian orthonormal coordinates, gij = δij and putting M = N =
U = V = Rn, Qint = GL (n,R) we can rewrite the kinetic energy in the following
matrix description

T = Ttr + Tint =
M

2

dxT

dt

dx

dt
+

1

2
Tr

(
J
dφT

dt

dφ

dt

)
. (3)
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In non–dissipative models without external magnetic or gyroscopic forces one de-
rives equations of motion from Lagrangians

L = T −V (x, φ)

as variational Euler–Lagrange equations. We concentrate just on such models and
on the corresponding Hamiltonian description. The Legendre transformation

pi =
∂L

∂ẋi
=

∂T

∂ẋi
, pAi =

∂L

∂φ̇i
A

=
∂T

∂φ̇i
A

(4)

i.e., explicitly

pi = Mgij
dxj

dt
, pAi = gij

dφj
B

dt
JBA (5)

allows us to construct the Hamiltonian as a function of generalized coordinates xi,
φi

A and their conjugate canonical momenta pi, pAi

H = T +V = Ttr + Tint +V =
1

2M
gij pi pj +

1

2
J̃AB pAi p

B
j g

ij +V (6)

where J̃ ∈ U∗ ⊗ U∗ is the reciprocal tensor of J , i.e., J̃AC JCB = δA
B .

The linear groups GL(V ), GL(U) act on the internal configuration space Qint =
L(U, V ) according to the following rule

A ∈ GL(V ) : L(U, V ) ∋ φ 7→ Aφ ∈ L(U, V ) (7)

B ∈ GL(U) : L(U, V ) ∋ φ 7→ φB ∈ L(U, V ). (8)

They are, respectively, spatial and material transformations. Restricting A, B to
orthogonal subgroups O(V, g), O(U, η) (η ∈ U∗ ⊗ U∗ is the metric tensor of
the material space), one can study isotropy properties and rotational invariance of
dynamical models. For example, the kinetic energy is always spatially isotropic,
but in general it is materially anisotropic, unless J is proportional to η.
Qint is a homogeneous space with respect to the actions of GL(V ) and GL(U) (7).
Its isotropy groups are trivial, i.e., the action of both groups is free. Let us stress,
however, that the action of GL(V )×GL(U)

φ 7→ AφB

is non–effective, because the dilatation subgroups of GL(V ) and GL(U), i.e.,{
(ℓ IdV , ℓ

−1 IdU ) ; ℓ ∈ R+
}

act in the same way as transformation groups. Therefore, the non–effectiveness
kernel consists of elements of the form (ℓ IdV , ℓ

−1 IdU ), where ℓ runs over the set
of non–vanishing reals, IdV and IdU are identity transformations, respectively, in
V and U .
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2.1. Degenerate Dimension, Deformable Coin

Now let us turn to the proper subject of our paper, i.e., to affinely–rigid bodies
with degenerate dimension. The standard continuum theory deals with such ob-
jects, e.g., membranes, strings, etc. In fundamental physics strings and membranes
are objects of intensive investigations within the framework of quantum field the-
ory and the theory of elementary particles. Some classical and later on quantum
toy models of such objects may be formulated as our affine bodies of degenerate
dimension. We shall consider m-dimensional affinely–rigid bodies moving in n-
dimensional spaces m < n. Obviously, in standard physical applications only the
special cases n = 3, m = 1, 2 are of direct interest. And in fact, below we con-
centrate on n = 3, m = 2, i.e., two–dimensional affine plates moving in the usual
three–dimensional space.
The material and physical spaces will be affine spaces (N,U), (M,V ), respec-
tively of dimensions m, n, where m < n. The configuration space of affinely–
rigid body consists of affine injections, monomorphisms from N to M , Q =
AfM(N,M). Just as previously, the Lagrangian (co–moving) mass distribution
is described by some fixed, time–independent positive measure µ on N . The cen-
ter of mass in N (cf (1)), the total mass M and the inertial quadrupole J ∈ U ⊗U
given by (2) are defined just as in the regular case (when m = n). Lagrange co-
ordinates aK , K = 1, . . . ,m, are also chosen in such a way that aK = 0 for the
center of mass in N . The configuration space may be identified with

Q = AfM(N,M) = M × LM(U, V )

where LM(U, V ) is the set of linear monomorphisms (injections) from U to V .
The formula

yi = xi + φi
K aK

remains valid. The n×m matrix [φi
K ] has rank m.

All the above expressions for kinetic energy (3), Legendre transformation (4) (5),
Hamiltonians (6), transformation groups (7) (8) are also formally correct. Some
difference appears in the structure of group actions (7) (8). Namely, Qint =
LM(U, V ) is a homogeneous space for the left–hand side action of GL(V ) but it
fails to be homogeneous with respect to the material transformations, i.e., the right–
hand side action of GL(U). Indeed, the right–hand side action of GL(U) is non–
transitive and its orbits consist of such φ-s that have the same images φ(U) ⊂ V .
Only such φ1, φ2 for which φ1(U) = φ2(U) may be joined by right action.
When we put V = Rn, U = Rm, Q = Rn × LM(m,n), Qint = LM(m,n),
the above actions become matrix multiplications, just as in the regular case (7) (8)
they were simply left and right regular translations on GL(n,R) or GL+(n,R).
Our afore–mentioned system has f = n +mn = n(m + 1) degrees of freedom,
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n translational and m ·n internal (relative) ones. We are not particularly interested
in the translational motion. We concentrate on φ-type degrees of freedom on Qint.
LM(U, V ) is a homogeneous space with respect to spatial transformations, i.e.,
with respect to the left–hand side action of GL(V ). Let us fix some standard linear
monomorphism Ψ of U into V . So, we may say that if translational motion is
neglected, N and M are identified with U and V respectively, then LM(U, V )
may be obtained from Ψ by the left actions

LM(U, V ) ∋ Ψ 7→ φ = AΨ ∈ LM(U, V ), A ∈ GL(V )

where A runs over GL(V ). What is the stabilizer subgroup H[Ψ] ⊂ GL(V ) of
the reference configuration Ψ? It consists of those elements of GL(V ) which do
not only preserve the linear subspace Ψ(U) ⊂ V , but also preserve separately any
element of this subspace.
Let us put U = Rm, V = Rn. We identify Rm with the subspace of Rn and
assume Ψ(U) to have zeros at (n−m) places

[
a1, . . . , am, 0, . . . , 0

]T
Ψ
(
a1, . . . , am

)
=


a1

...
am

o


where o is an (n−m)× 1 dimensional zero matrix. Then H is given by[

Im A
o B

]
where Im is the m × m identity matrix, A is the m × (n − m) matrix, B is the
(n−m)× (n−m) matrix, and o is the (n−m)×m zero matrix. The matrices A,
B subject only to the restriction that the total matrix is nonsingular. When taken
together, the matrices A, B involve m(n−m)+(n−m)2 = n(n−m) parameters
and the quotient manifold GL(n,R)/H : n2 − n(n − m) = nm parameters, the
dimension of L(m,n) on LM(m,n). H is indeed a subgroup[

I A1

o B1

] [
I A2

o B2

]
=

[
I A1B2 +A2

o B1B2

]
.

One defines affine velocity (Eringen’s gyration) Ω ∈ L(V ) ≃ GL(V )′ in spatial
representations and Ω̂ ∈ L(U) ≃ gl(U)′ in material representations

Ω =
dφ

dt
φ−1, Ω̂ = φ−1dφ

dt
= φ−1Ωφ.

They are defined for m = n but do not exist when m < n. More precisely, the right
inverse ρ such that φρ = IdV does not exist at all. The left inverse λ, λφ = IdU
does exist but is non–unique; various versions coincide only on φ(U) ⊂ V .
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But affine spins Σ, Σ̂ and affine momenta pAj do exist. Affine spins are objects Σ ∈
L(V )∗ ≃ L(V ), Σ̂ ∈ L(U)∗ ≃ L(U) (identification through the trace formula,
⟨A,B⟩ = Tr(AB)) well–defined as follows

Σi
j = φi

A pAj , Σ̂A
B = pAi φ

i
B (9)

where p ∈ L(V,U) ≃ L(U, V )∗ is the canonical momentum conjugate to φ. Just as
in the regular case, the components Σi

j are Hamiltonian generators [2] of GL(V )

left–acting on LM(U, V ), and Σ̂A
B are Hamiltonian generators of the right action

of GL(U) on LM(U, V ). They are not spatial and material components of any
object, because there is no isomorphism between U and V .
The canonical spin Si

j and vorticity VA
B are also defined as the doubled skew–

symmetric parts of Σ and Σ̂ (9)

Si
j : = Σi

j − gikgjl Σ
l
k, VA

B : = Σ̂A
B − ηACηBD Σ̂D

C (10)

where g ∈ V ∗ ⊗ V ∗, η ∈ U∗ ⊗ U∗ denote the metric tensors in V and U . S
and V are Hamiltonian generators (momentum mapping) of the proper orthogonal
subgroups SO(V, g) ⊂ GL(V ), SO(U, η) ⊂ GL(U) acting, respectively, on the
left and right on LM(U, V ), i.e., Hamiltonian generators of spatial and material
rotations.
Contravariant tensor objects may be transferred (push–forwarded) from the ma-
terial space to the physical one, but not conversely, because φ is non–invertible.
Unlike this, covariant tensors may be transferred from V to U (pull–back), but
not from U to V . For example, the translational canonical momentum p ∈ V ∗

conjugate to x gives rise to the object p̂ ∈ U∗

p̂A = piφ
i
A.

Affine spin and canonical momentum (9) are Hamiltonian generators of the spatial
affine group GAf(M). Poisson brackets are given by structure constants of this
group {

Σi
j ,Σ

k
l

}
= δilΣ

k
j − δkjΣ

i
l{

Σi
j + xipj , pk

}
= δikpj

{pi, pj} = 0{
Σi

j + xipj ,Σ
k
l + xkpl

}
= δil

(
Σk

j + xkpj

)
− δkj

(
Σi

l + xipl
)

{
Σi

j , pk
}
= 0.

For the material affine spin the following holds{
Σ̂A

B, Σ̂
C
D

}
= δCBΣ̂

A
D − δADΣ̂

C
B,

{
Σi

j , Σ̂
A
B

}
= 0
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because the left action of GL(V ) commutes with the right action of GL(U).
The following Poisson brackets hold{

xi, pj
}
= δij ,

{
φi

A, p
B
j

}
= δij δ

B
A .

We do not quote similar formulas for Si
j , VA

B (10) in terms of structure constants
of SO(V, g), SO(U, η). If F depends only on the configuration (x, φ), then{

Σi
j , F

}
= −φi

A

∂F

∂φj
A

,
{
Σ̂A

B, F
}
= −φk

B

∂F

∂φk
A

·

Let us also quote the covariant Green tensor G ∈ U∗ ⊗ U∗ and contravariant
deformation Cauchy tensor C̃ ∈ V ∗ ⊗ V ∗

G = φ∗ · g, C̃ = φ∗ · η̃ (11)

analytically

GAB = gijφ
i
Aφ

j
B, C̃ij = φi

Aφ
j
Bη

AB (12)

and in matrix terms

G = φTφ, C̃ = φφT (13)

where U = Rm, V = Rn, and φ ∈ LM(m,n).
We are particularly interested in doubly–isotropic dynamical models, when the
potential V depends on φ through deformation invariants only. Let us mention
that deformation invariants λ, ℓ are assigned to the pairs of tensors (GAB, ηAB),(
Cij , gij

)
det [GAB − ληAB] = 0, det

[
Cij − 1

ℓ
gij
]
= 0.

If m = n, then λ = ℓ. If m < n, then λ-s depends on ℓ-s.
In the case of non–degenerate affine bodies, when m = n, we based on the polar
and two–polar decompositions of φ ∈ GL+(n,R)

φ = RL = ΛR, φ = V DU−1

where R, V, U ∈ SO(n,R) are proper rotations (orthogonal matrices of deter-
minant +1), L and Λ = RLR−1 are symmetric and positively definite, and D is
diagonal and positive.
There are counterparts of the above decompositions in the mechanics of degenerate
affine bodies, when m < n. So, we write

φ = R

[
L
o

]
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where R ∈ SO(n,R) is a special orthogonal matrix, L ∈ Symm(m,R) is a
symmetric m × m matrix, o is the (n − m) × m zero matrix. In the above for-
mula and in almost all forthcoming ones we simply put U = Rm, V = Rn,
LM(U, V ) = LM(m,n) ⊂ L(m,n).
It is obvious that dimSO(n,R) = n(n−1)/2 and that one of dimSymm(m,R) =
m(m + 1)/2. Then it is seen that for general values of m, n the total number of
these parameters

n(n− 1)

2
+

m(m+ 1)

2
does not equal the number of internal degrees of freedom, i.e., to (nm). Because
of some redundant variables the configuration space cannot be identified with the
Cartesian product SO(n,R)×Symm(m,R). Because the subgroup SO(n−m,R)
of rotations acting on the (n−m)-tuple of the last variables in Rn does not affect[
L
o

]
when multiplying it on the left.

Let us take the subgroup K ⊂ SO(n,R) composed of

R =

[
Im oT

o u

]
where Im is an m × m identity matrix, while o (n − m) × m is the zero ma-
trix and u ∈ SO(n − m,R) is an arbitrary (n − m) × (n − m) rotation matrix.
The subgroup K (isomorphic with SO(n − m,R)) is (n − m)(n − m − 1)/2-
dimensional. The quotient manifold of left cosets, SO(n,R)/K, has the dimen-
sion n(n − 1)/2 − (n − m)(n − m − 1)/2 = mn − m(m + 1)/2. The config-
uration space of internal (relative) degrees of freedom Qint is diffeomorphic with
(SO(n,R)/K)× Symm(m,R). And the Cartesian product is an mn-dimensional
manifold, just as Qint = LM(m,n,R) itself.
Let Ψ ∈ LM(U, V ) be a reference configuration. It is a linear mapping from
U to V . Ψ(U) ⊂ V is a linear subspace and K(Ψ) ⊂ SO(V, g) denote a
subgroup preserving every point of Ψ(U), the more Ψ(U) itself. It acts triv-
ially on Ψ(U) and is the group of rotations on Ψ(U)⊥. The quotient manifold
SO(V, g)/K(Ψ) describes rotational degrees of freedom. Without using Ψ: this
manifold is F(V, g;m), Stiefel manifold. When V = Rn, U = Rm, F(V, g;m) =
SO(n,R)/SO(n−m,R).
Remark 1. Stiefel manifold differs from Grassmann one. The latter are sets of m-
dimensional linear subspaces in V , these subspaces are simply linear shells of the
mentioned m-frames, thus, they contain less information. Grassmann manifolds
may be identified with

SO (n,R) /SO (n−m,R)× SO (m,R) .
Their dimension equals to m(n−m).
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The “polar” decomposition identifies the internal configuration space with

(SO (n,R) /SO (n−m,R))× Symm(m,R) .

In general, it is not very easy to parametrize Stiefel manifolds. Fortunately when
m = n − 1 (physically two), then SO(1,R) = {1} and SO(n,R)/SO(1,R) =
SO(n,R). In this case Qint is just

Qint = SO(n,R)× Symm(n− 1,R).

In particular, when physically n = 3 and m = 2 we have

Qint = SO(3,R)× Symm(2,R).

Our practical interest is concentrated on this special case where n = 3 and m = 2,
i.e., homogeneously deformable flat membrane.
The “two–polar” decomposition has the form

φ = V

[
D
o

]
U−1

where V ∈ SO(n,R) with the same provisos concerning fictitious degrees of free-
dom described by SO(n −m,R), D = diag(D1, . . . , Dm) is an m ×m positive
diagonal matrix, and U ∈ SO(m,R) is an arbitrary m × m proper orthogonal
matrix.
Physically, when n = 3 and m = 2 the configurations are correctly represented by
the triples (V,D,U). The “polar” and “two–polar” decompositions have the forms

φ = R

 ξ α
α ζ
0 0

 , φ = V

 λ 0
0 µ
0 0

U−1(θ)

where R, V ∈ SO(3,R), U [θ] =

[
cos θ − sin θ
sin θ cos θ

]
∈ SO(2,R). As every angular

variable, θ is taken modulo 2π, and (ξ, α, ζ), (λ, µ) are systems of real coordinates
subject only to the positive–definiteness conditions

ξ > 0, ξζ − α2 > 0, λ > 0, µ > 0

where (ξ, α, ζ), (λ, µ) are global variables (although subject to unilateral con-
straints). If our planar affine system of material points is discrete, or if affine
degrees of freedom are essentially internal, the mentioned unilateral constraints
may be weakened or even omitted.
The group SO(3,R) is parametrized by local coordinates well–known from the
rigid body mechanics and from geometry of the corresponding group manifold
like e.g., Euler angles, rotation vector etc. The particular choice depends on the
structure of dynamical model one uses.
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We introduce angular velocities in the co–moving representation [2]

ω = R−1dR

dt
=

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0



χ = V −1dV

dt
=

 0 χ3 −χ2

−χ3 0 χ1

χ2 −χ1 0


ϑ = U−1dU

dt
=

dU

dt
U−1 =

dθ

dt

[
0 −1
1 0

]
.

The internal kinetic energy in the “polar” representation has the form

T = −1

2
Tr

([
LJL oT

o On−m

]
ω2

)
+Tr

([
LJL̇ oT

o On−m

]
ω

)
+

1

2
Tr
(
JL̇2

)
where On−m is a (n−m)× (n−m)-dimensional zero matrix.

The three terms of above energy are interpreted as

1. Trot - it has the form of the kinetic energy of the top with degrees of freedom
described by SO(n,R). This term describes the coupling between angular
velocity and the deformation matrix L.

2. Trot−def - this term describes the coupling between angular velocity and the
deformation velocity, i.e., Coriolis term.

3. Tdef - this term describes the kinetic energy of deformation.

We obtain the complete form of the kinetic energy for such a case

T = Trot + Trot−def + Tdef

where

Trot =
J1α

2 + J2ζ
2

2
ω2
1 +

J1ξ
2 + J2α

2

2
ω2
2

+
J1ξ

2 + J2ζ
2 + (J1 + J2)α

2

2
ω2
3 − (J1ξ + J2ζ)αω1ω2

Trot−def =

(
J1α

dξ

dt
+ (J2ζ − J1ξ)

dα

dt
− J2α

dζ

dt

)
ω3

Tdef =
J1
2

(
dξ

dt

)2

+
J2
2

(
dζ

dt

)2

+
J1 + J2

2

(
dα

dt

)2

.
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In the “two–polar” case, when JAB = JδAB is isotropic, the kinetic energy has
the following form

T =
J

2

(
µ2χ2

1 + λ2χ2
2 +

(
λ2 + µ2

)
χ2
3

)
+ 2Jλµχ3

dθ

dt

+
J
(
λ2 + µ2

)
2

(
dθ

dt

)2

+
J

2

((
dλ

dt

)2

+

(
dµ

dt

)2
)
.

This is the high symmetry case when the system is doubly isotropic, i.e., invariant
under both physical and material rigid rotations.
We assume that the potential V depends only on the deformation, i.e., depends on φ
through the Green deformation tensor; in other words, we assume that the problem
is isotropic in the physical space. The Green deformation tensor G (11) (12) (13)
is given by the following formula GAB = δijφ

i
A φj

B . Obviously, GT = G. The
Green matrix G is non–sensitive to the left orthogonal mappings. Of course, the
deformation invariants, i.e., eigenvalues of the symmetric matrix G, are invariant
under both space and material rigid rotations.
The potential V adapted to the “two–polar” decomposition is a function of quan-
tities λ, µ. In the “polar” description it is convenient to use V as a function of
α, ξ, ζ. Our Lagrangian has the form L = T − V(φ) with velocity–independent
potential.
In the Hamiltonian formalism all physical quantities, in particular the energy, are
expressed in terms of canonical momenta and generalized coordinates. Starting
with Lagrangian description based on velocities one has to invert the Legendre
transformation (4) (5) and express generalized velocities through canonical mo-
menta and generalized coordinates. We describe the Legendre transformation in
the following form pi = ∂L/∂q̇i = ∂T/∂q̇i, si = ∂L/∂ωi = ∂T/∂ωi, where pi
are canonical momenta conjugate to the all generalized coordinates qi except those
contained in R, and si are canonical spins [2].
Legendre transformation in the “polar” case

pα = (J1 + J2)
dα

dt
− (J1ξ − J2ζ)ω3

pξ = J1

(
dξ

dt
+ αω3

)
, pζ = J2

(
dζ

dt
− αω3

)
s1 =

(
J1α

2 + J2ζ
2
)
ω1 − α (J1ξ + J2ζ)ω2

s2 = −α (J1ξ + J2ζ)ω1 +
(
J1ξ

2 + J2α
2
)
ω2

s3 = α

(
J1

dξ

dt
− J2

dζ

dt

)
− dα

dt
(J1ξ − J2ζ)

+
(
J1ξ

2 + (J1 + J2)α
2 + J2ζ

2
)
ω3.
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Legendre transformation in the “two–polar” case

pλ = J
dλ

dt
, pµ = J

dµ

dt
, pθ = J

(
λ2 + µ2

) dθ
dt

+ 2Jλµχ3

s1 = Jµ2χ1, s2 = Jλ2χ2, s3 = 2Jλµ
dθ

dt
+ J

(
λ2 + µ2

)
χ3.

After inverting these expressions, i.e., expressing q̇i, ωi as functions of pi, si and
substituting these functions into the formula for the kinetic energy we obtain the
kinetic energy expressed in the canonical terms.
Kinetic energy in the “polar” case

T =
J1(ξs1 + αs2)

2 + J2(αs1 + ζs2)
2

2(α2 − ξζ)2J1J2
+

(
ξ2J1 + ζ2J2

)
pα

2

2(ξ + ζ)2J1J2

+

(
α2J1 +

(
α2 + (ξ + ζ)2

)
J2

)
pξ

2 +
((

α2 + (ξ + ζ)2
)
J1 + α2J2

)
pζ

2

2(ξ + ζ)2J1J2

+
(J1 + J2) (s3 (s3 − 2αpζ) + 2αpξ (s3 − αpζ))

2(ξ + ζ)2J1J2

+
2 (ξJ1 − ζJ2) pα (αpζ − αpξ + s3)

2(ξ + ζ)2J1J2
·

Kinetic energy in the “two–polar” case

T =
1

2J
p2λ +

1

2J
p2µ +

λ2 + µ2

2J (λ2 − µ2)2
p2θ +

1

2Jµ2
s21

+
1

2Jλ2
s22 +

λ2 + µ2

2J (λ2 − µ2)2
s23 −

2λµ

J (λ2 − µ2)2
pθs3.

The Hamiltonian (total energy) (6) has the following form H = T +V(α, ξ, ζ) for
the “polar” decomposition and H = T + V(λ, µ) for the “two–polar” decompo-
sition, where V’s are invariant under permutations of its arguments. Similarly as
in the Newtonian description, the canonical equations of motion lead to the closed
subsystem of equations imposed on parameters qi, pi, si

dqi

dt
=
{
qi, H

}
,

dsi
dt

= {si,H} , dpi
dt

= {pi,H} .

Poisson brackets on the right–hand sides can be easily calculated by the help of the
standard rules

{f, g} = −{g, f} , {f, F (g)} = {f, g} dF

dg

{{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0.
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One should substitute here the following basic formula [2], [27], [1]{
qi, pj

}
= δij , {si, sj} = −εijksk, {pi, sj} = 0, {qi, sj} = 0

where εijk is the completely antisymmetric tensor and ε123 = 1.
The equations of motions in canonical terms in the case of “two–polar” decompo-
sition have the following form

dλ

dt
=

pλ
J
,

dµ

dt
=

pµ
J
,

dθ

dt
=

(
λ2 + µ2

)
pθ

J (λ2 − µ2)2
− 2λµpθ

J (λ2 + µ2)2

ds1
dt

=
λ
(
2λ3pθ + λ

(
µ2 − 3λ2

)
s3
)
s2

J(λ3 − λµ2)2

ds2
dt

=
λ
(
2µ3pθ + λ

(
λ2 − 3µ2

)
s3
)
s1

J(µ3 − µλ2)2

ds3
dt

=

(
µ2 − λ2

)
s1s2

Jλ2µ2
,

dpθ
dt

= 0

dpλ
dt

= K +
λ
(
λ2 + 3µ2

)
p2θ

J(λ2 − µ2)3
+

s22
Jλ3

−
2
(
3λ2µ+ µ3

)
pθs3

J(λ2 − µ2)3
+

λ
(
λ2 + 3µ2

)
s23

J(λ2 − µ2)3

dpµ
dt

= P −
(
3λ2µ+ µ2

)
p2θ

J(λ2 − µ2)3
+

s21
Jµ3

+
2
(
3λµ2 + λ3

)
pθs3

J(λ2 − µ2)3
−
(
3µλ2 + µ3

)
s23

J(λ2 − µ2)3

where K and P depend on the appropriate potentials. They are build of derivatives
of the potential terms.
The resulting equations are strongly non–linear and terribly complicated. But there
exist some special solutions - stationary ellipses as solutions on which the Green
deformation tensor and angular velocities are constant. They are analogous to the
stationary ellipsoids well–known in the astrophysics and geophysics as equilibrium
figures, e.g., in the theory of the shape of the Earth.
We have shown these solutions related to components of canonical spins si in the
cases of three kinds of potentials

•
V = k

(
λ2 + µ2

)
/2 (14)

This is the harmonic oscillator in deformation invariants. Non–limited ex-
tensions of the body are excluded. Although contraction is not forbidden,
solutions of this kind are exceptional (measure–zero set), as usually solu-
tions passing through the equilibrium are so in multidimensional oscilla-
tors. But some other requirements of macroscopic elasticity are not satis-
fied. Nevertheless, it may be applicable as some simplified model.
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•
V = c

(
1

λ2
+ λ2

)
+ c

(
1

µ2
+ µ2

)
(15)

With this potential both the unlimited extension and contraction are for-
bidden. This potential has the minimum at the natural non–deformed state
λ = µ = 1. Nevertheless, certain conditions from the macroscopic elastic-
ity are not satisfied. Namely, there is no direct relationship between becom-
ing longer in one direction and shorter in another.

•

V = k

(
1

λµ
+

λ2 + µ2

2

)
(16)

This potential has some very interesting features, because in the purely two–
dimensional case with the isotropic inertial tensor, it admits separation of
variables in the Hamilton–Jacobi equation. This admits solution in terms of
quadratures, i.e., the resulting system is completely integrable. This is seen
when we use the polar coordinates in (x, y)-plane

x = ϱ cos ε, y = ϱ sin ε

and λ, µ are replaced by their combinations

x =
1√
2
(λ+ µ) , y =

1√
2
(λ− µ) .

3. Quantization Ideas

In previous section we discussed the mechanics of the affinely–rigid body with de-
generate dimension from the classical point of view. The problem of dynamical
systems on the manifolds of affine injections is also applicable in the theory of
structured bodies, i.e., bodies consisting of small planes, like planar molecules and
perhaps some submolecular elements. Applications in nanophysics are possible,
e.g., flat or approximately flat molecules or the historical model of “Schwungrad”
used in molecular dynamics [4]. Microstructure two–dimensional elements appear
in condensed matter theory, e.g., as three–atomic molecules like CO2, S3, H2O, or
perhaps larger molecules, e.g., with some relatively stable two–dimensional skele-
ton. One–dimensional elements appear as constituents of liquid crystals.
Applications in nanophysics must be based on the quantum theory. Some very
interesting phenomena may appear there, because one deals in such problems with
some convolution, overlap of the classical and quantum levels.
Let us mention one–dimensional constituents of liquid crystals which are struc-
ture elements of degenerate dimension. They are well known in condensed matter
theory. Two–dimensional objects appear as three–atomic molecules like H2O, S3,
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CO2 and molecules consisting of a larger number of atoms, but having some al-
most “flat” core.

One must be careful when applying concepts like “rigid body” or “affinely rigid
body” or other constraints based on classical intuitions to objects in the molecular,
atomic, or nuclear scale of physical phenomena. In any case one should express
what is the meaning of the used terms on the level of Quantum Mechanics. In
this paper we mean the following: The primary classical model is subject to ideal
constraints and then the resulting mechanical system in a Riemannian configura-
tion space of classical holonomic constraints is quantized according to the standard
Schrödinger procedure. In this respect we follow some standard treatises like [12],
[19], [20]. Nevertheless we are aware that such a procedure is not identical with
that based on the reversed sequence: first to quantize and only then to impose con-
straints in a proper way. The first procedure, used below, is simpler and leads more
directly to some results. The complete discussion of the problem goes fairly out-
side the scope of this paper and is a subject for the separate study of the general
problem of quantum constraints. Roughly speaking, the idea is that the quantum
Hamilton operator has the structure which approximately looks like

Ĥ = Ĥ0 +W

where Ĥ0 is some background term and W is a confinement potential term. The
peculiarity of W is that it vanishes on some submanifold Q of the original (uncon-
strained) configuration space M and grows very quickly (is very “tough”) when
departing from Q. So there are quantum vibrations in the “across-Q-variables” and
“constrained” quantum dynamics in Q (“along-Q-variables”). There are some vi-
brational energy levels of the “across-Q-dynamics” and they split into some bands
of energy levels of the “along-Q-dynamics”. It is natural to expect that it is only
ground state of quantized “across-Q-vibrations” that is relevant. Because of this
there is some correspondence between two approaches

1. classically confine and then Schrödinger–quantize
2. Schrödinger–quantize and then investigate the bands of energy levels corre-

sponding to the ground state of “across-Q-vibrations”.

The quantum operator of the internal kinetic energy has the form proportional to
the Laplace–Beltrami operator

T = − ~2

2J
∆Γ

where ~ is the “crossed” Planck constant, J is the scalar moment of inertia of the
isotropic disc, and ∆ is the Laplace–Beltrami operator.
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Laplace–Beltrami operator corresponding to the metric Γ is given by

∆Ψ =
∑
µν

1√
|Γ|

∂

∂Qµ

(√
|Γ|Γµν ∂Ψ

∂Qν

)
where |Γ| = |det [Γµν ]| and Γµν(Q) is given by the underlying classical kinetic
energy

Tint =
1

2
Γµν(Q)

dQµ

dt

dQν

dt
where Qν are generalized coordinates of internal motion. In a more geometric
notation Laplace–Beltrami operator has a form

∆Ψ = Γµν∇µ∇νΨ

where ∇ is the covariant differentiation in the Levi–Civita sense.
The Hilbert space of wave functions of internal degrees of freedom is L2(Qint, ν),
where ν is the induced Γ-Riemannian measure

dν(Q) =
√

Γ(Q) dQ1 . . . dQ6.

The scalar product is given by

⟨Ψ,Φ⟩ =
∫

Ψ(Q)Φ(Q)dν(Q).

In our problem the direct calculation would be very embarrassing and the result
would not be readable. To calculate anything in detail is difficult, but there exists a
simple expression based on the group–theoretic structure of the problem. Namely,
one can replace the spin variables sa by the quantum operators Sa generating right
rotations of V

f (V (I + ε)) = f(V ) + εiRif(V ) = f(V ) +
i

~
εiSif(V ) + ~o(ε) (17)

where Ri are generators

ε =

 0 ε3 −ε2
−ε3 0 ε1
ε2 −ε1 0


and o(ε)

ε → 0 when ε → 0. Quantum spin operators Si satisfy the relations in
quantum Poisson brackets

1

i~
[Sa,Sb] = −εabcSc

where “i” is the imaginary unit.
The classical quantity pθ will be replaced by the operator

pθ =
~
i

∂

∂θ
· (18)
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The operator Tint = − ~2
2J∆ may be expressed as

Tint =
S1

2

2Jµ2
+

S2
2

2Jλ2
+

(
λ2 + µ2

)
S3

2

2J (λ2 − µ2)2
+

(
λ2 + µ2

)
pθ

2

2J (λ2 − µ2)2

(19)

− 2λµpθS3

J (λ2 − µ2)2
− ~2

2J

1

P

[
∂

∂λ
P ∂

∂λ
+

∂

∂µ
P ∂

∂µ

]
where the weight factor P is given by

P = λµ
∣∣λ2 − µ2

∣∣ .
We can rewrite P with the analogous expression in mechanics of the affine body
with non–degenerate dimension [26–29]. When we write down explicitly the dif-
ferential terms with respect to λ and µ, we obtain

Tint =
S1

2

2Jµ2
+

S2
2

2Jλ2
+

(
λ2 + µ2

)
S3

2

2J (λ2 − µ2)2
+

(
λ2 + µ2

)
pθ

2

2J (λ2 − µ2)2

(20)

− 2λµpθS3

J (λ2 − µ2)2
− ~2

2J

∂2

∂λ2
− ~2

2J

∂ lnP
∂λ

∂

∂λ
− ~2

2J

∂2

∂µ2
− ~2

2J

∂ lnP
∂µ

∂

∂µ
·

Derivation of this formula is analogous to the one used in [10, 28, 29]. It is based
on using some non–holonomic frame in the configuration space. The idea of this
frame is to use the triple of basic left–invariant vector fields on SO(3,R), i.e., on
the manifold of V -type degrees of freedom. They are just given by the triple of
first–order differential operators Ri (17).
The remaining vector fields of the frame form, i.e., its “holonomic part”, they given
by ∂/∂λ, ∂/∂µ, ∂/∂θ. An interesting feature of the formulas for Tint, Tint is the
characteristic entanglement of deformation invariants λ, µ. Just like in the three–
dimensional case, this is a consequence of the fact that SO(3,R) is simple. In what
follows we will assume that the potential energy is also spatially and materially
isotropic, just like Tint, thus it has a form V(λ, µ) and depends only on λ and µ.
The total operator of the kinetic energy is given by

T = Ttr +Tint

where the translational part is given by

Ttr = − ~2

2m
∆tr = − ~2

2m
gij

∂

∂xi
∂

∂xj
= − ~2

2m

∑
i

∂2

∂xi2
·

In the rectilinear coordinates ∆tr is just the usual Laplace operator in R3. The total
volume element in the full configuration space Q = Qtr ×Qint is given by

dvvol(x, V, λ, µ, φ) = d3x dν(V, λ, µ, U(θ))
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where ν denotes the Γ-Riemannian volume measure on the internal configuration
space Qint.
When JAB = IηAB , i.e., the body is isotropic and the potential depends only on
invariants λ, µ, then the solving procedure of Schrödinger equation may be par-
tially algebraized. Namely, one can perform the Fourier analysis on SO(3,R),
SO(2,R). What concerns the group SO(2,R) it is the usual Fourier series expan-
sion on the circle, i.e., the function series combining the functions eikθ, k ∈ Z.
The dependence on V -arguments is expanded into series combining the matrix
elements of irreducible representations of the group SO(3,R), according to the
Peter–Weyl Theorem [32]. These functions (found by Wigner) are traditionally
denoted by Dj

mm′ , where j = 0, 1, 2, . . . (the set of non–negative integers) and
m,m′ = −j,−j +1, . . . ,−1, 0, 1, . . . , j − 1, j (i.e., integers from −j to j). It is a
good place here to mention that perhaps it might be reasonable to admit the situa-
tions with half–integer internal angular momentum, and so with j running over the
range of non–negative multiples of number 1/2, i.e., j = 0, 1/2, 1, 3/2, . . .. The
quantum numbers m,m′ then run over the range from −j to j jumping by one. In
both cases m,m′ run over (2j + 1) values. Then the situations with half–integer j
would occur only in coincidence with half–integer values of k in functions eikθ. In
any case, it is quite reasonable to proceed in this way when dealing with rigid and
affine bodies in the dimension 3 [27–29]. However, here we do not go into details
of this problem.
Usually to parametrize the group SO(3,R) one use the rotation vector k, that is
canonical coordinates of the first kind

V (k̄) = exp (kaEa) , (Ea)
b
c = −εa

b
c

where Ea, a = 1, 2, 3, are basic antisymmetric matrices and ε is the completely
antisymmetric Ricci symbol, and the shifting of indices is understood in a trivial
sense of the Kronecker “delta” δab. The length of vector k̄, scalar k =

√
k̄ · k̄ is

the angle of rotation, and the versor n̄ = k̄
k is his axis oriented in accordance with

the right–hand rule. The scalar k runs over range [0, π] and V (πn̄) = V (−πn̄),
n̄ · n̄ = 1.
If we wish to admit “half integral spin”, then instead of the group SO(3,R) we
would have to use its covering SU(2), i.e., unitary unimodular complex 2 × 2
matrices. Then

SU(2) ∋ u(k̄) = exp (kaea) = cos
k

2
I2 − i

ka

k
sin

k

2
σa

where σa are Pauli matrices, ea =
(
− i

2

)
σa and the “angle of rotation” runs over

the range [0, 2π] thus twice larger. For any versor n̄ (n̄ · n̄ = 1), we have then
u (2πn̄) = −I2, where I2 is the identity matrix 2× 2.
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We find that the j-th irreducible representation of G = SU(2) (or SO(3,R)) is
given by

Dj(k̄) = exp

(
i

~
kaSj

a

)
where Sj

a are Wigner matrices of the angular momentum with the Casimir quan-
tum number j and the square of magnitudes ~2j (j + 1)). In any case, Dj are
unitary (2j + 1)× (2j + 1) matrices.
The operators Sa and Sa are given by

Sa =
~
i
La, Sa =

~
i
Ra (21)

which are proportional to the generators of the left and right regular translations in
SO(3,R). They are self–adjoint in the sense of L2(SO(3,R), κ) or L2(SO(2), κ),
and for the functions Ψ(φ) = Ψ(V,U, λ, µ) in the sense of L2(Q, ν). For “small”
values of ε̄ we have

f
(
V (k̄)V (ε̄)

)
= f

(
V (k̄)

)
+ εiRif

(
V (k̄)

)
+ o(ε)

f
(
V (ε̄)V (k̄)

)
= f

(
V (k̄)

)
+ εiLif

(
V (k̄)

)
+ o(ε)

where o(ε) is small of higher order than ε are formally self–adjoint and may be
expressed in terms of the radius vector k̄ by the formulas

La =
k

2
cot

k

2

∂

∂ka
+

(
1− k

2
cot

k

2

)
ka
k

kb

k

∂

∂kb
+

1

2
εab

ckb
∂

∂kc
(22)

Ra =
k

2
cot

k

2

∂

∂ka
+

(
1− k

2
cot

k

2

)
ka
k

kb

k

∂

∂kb
− 1

2
εab

ckb
∂

∂kc
· (23)

Using the operator which is the generator of rotations of the rotation vector, that is
the internal automorphism in the group SO(3,R)

Da = La −Ra

we can rewrite (22) and (23) in the following form

La =
ka
2

∂

∂k
− 1

2
εab

ckbDc +
1

2
Da

Ra =
ka
2

∂

∂k
− 1

2
εab

ckbDc −
1

2
Da.

The Casimir invariants have the form

L2 = R2 = L1
2 + L2

2 + L3
2 = R1

2 +R2
2 +R3

2

=

(
∂2

∂k2
+ cot

k

2

∂

∂k

)
+

1

4 sin2 k
2

D2
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where
D2 = D2

1 +D2
2 +D2

3

is the Casimir invariant for Da. Let us remind that Sa (21) are operators of the
internal angular momentum (spin) in the laboratory representation, and Sa (21) are
auxiliary operators, components of the spin in the system of axes connected with
the moving top. The left–hand Poisson brackets have the following form

1

i~
[Sa,Sb] = εab

cSc,
1

i~
[Sa,Sb] = −εab

cSc.

Obviously

S2 =
∑
a

(Sa)
2 = S2 =

∑
a

(Sa)
2.

We have the following relations

SaD
j = Sj

aD
j , SaD

j = DjSj
a, S2Dj = S2Dj = ~2j(j + 1)Dj

S3D
j

m m′ = ~mDj

m m′ , S3D
j

m m′ = ~m
′
Dj

m m′ .

Operators Sa, Sa, pθ, H = T+V (λ, µ), where T given by (19), (20) are formally
self–adjoint.
Let us make the aforementioned Weyl–Peter expansion

Ψ(V ;λ, µ; θ) =
∑

j,m,m′ ,k

f j,k

m′ ,m
(λ, µ) Dj

m m′ (V ) eikθ.

Expansion expression has a compact form in matrix terms

Ψ(V ;λ, µ; θ) =
∑
j,k

Tr
(
f j,k(λ, µ) Dj(V )

)
eikθ.

The action of the operators Sa and Sa on Ψ is algebraically represented in such a
way that the reduced amplitudes f j,k

m′,m interpreted with the fixed values of j, k as
(2j + 1)× (2j + 1) matrices with indices m′,m are transformed as follows

f j,k 7→ Sj
af

j,k, f j,k 7→ f j,kSa
j .

and pθ (18) acts on Ψ by a rule

f j,k 7→ ~kf j,k.

If we use the isotropic internal Hamiltonian

H = T+ V(λ, µ)

then the stationary Schrödinger equation

HΨ = EΨ
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becomes reduced to the system of independent equations for the matrix amplitudes
f j,k(λ, µ)

Hj,kf j,k = Ej,kf j,k

where

Hj,kf j,k =
Sj
1

2

2Jµ2
f j,k +

Sj
2

2

2Jλ2
f j,k +

λ2 + µ2

2J (λ2 − µ2)2
Sj
3

2
f j,k

+
λ2 + µ2

2J (λ2 − µ2)2
~2k2f j,k − 2λµ

J (λ2 − µ2)2
Sj
3

2
~kf j,k

− ~2

2J

1

P
∂

∂λ

(
P ∂

∂λ
f j,k

)
− ~2

2J

1

P
∂

∂µ

(
P ∂

∂µ
f j,k

)
+ V f j,k.

We obtain, the family of reduced Schrödinger equations for the system of matrix–
valued amplitudes f j,k(λ, µ). These amplitudes are dependent on deformation
invariants.
In this way the number of degrees of freedom of internal motion of our model is
effectively reduced from six to two. The price we pay is that we obtain the system
of Schrödinger equations for multicomponent complex amplitudes, however, de-
pending only on two variables. Surprisingly enough, at least on this general level,
the quantum theory is simpler than the classical one. On the classical level there is
no direct way to reduce effectively the number of degrees of freedom and perform
the partial reduction to relatively autonomous dynamics of deformation invariants.
This reduction is possible only for models with high symmetries, when both the
inertial tensor and the potential energy are isotropic. For example for the potentials
which we use in the classical case (14), (15) and (16).
Comments: And what about the possibility of half–integer spin? In non–dege-
nerate three–dimensional models it appeared in a natural way by taking instead
of GL(3,R) its covering group GL(3,R). In the two–polar decomposition the
orthogonal group SO(3,R) had to be replaced by the universal covering group
SU(2). The same may be done here. Namely, the SO(3,R)-factor of the decom-
position must be replaced by SU(2). And the resulting wave functions must satisfy
a condition that they combine expressions Dj

mm′ (u)eikθ in such a way that either
both j and k in the admissible superposition are integers, or both of them are half–
integers.
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