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Abstract. Reviewed are ideas underlying our concept of affinely-rigid body.
We do this from the perspective of the Leonhard Euler two main achieve-
ments, known under his name: the mechanics of rigid body and the dynamics
of incompressible ideal fluid. But we formulate the theory which is some-
how placed between those two models. Our scheme is a finite-dimensional
dynamical system, but admitting deformative degrees of freedom. We also
stress the connection with the general idea of affine invariance in physics.
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1. Introduction

It is an apparently accidental fact that it was the same person, namely Leonhard Eu-
ler, who derived equations known under his name and concerning two completely
different theories in mathematical physics, describing two seemingly different ob-
jects, namely the rigid body and the incompressible ideal fluid. However, quite
recently it turned out that there is no accidence here. Namely, the free rigid body
is a left-invariant Hamiltonian system on the Lie group SO(3,R), whereas the in-
compressible ideal fluid is a right-invariant system under the group of all volume-
preserving diffeomorphisms of R3. The difference is just the mentioned left- and
right. A more serious difference is that SDiff(R3) being infinite-dimensional is
not a Lie group in the classical sense, nevertheless the invariance properties are
quite analogous. Our idea below is “to go between” two models. So we admit
deformations, but they are finite-dimensional, i.e., ruled by GL(3,R), or more
generally under GL(n,R). Discussed are some problems concerning the left- and
right-invariance. This enables one to understand better the deep and correct ideas
of Euler. Discussed are some problems connected with the left and right affine
invariance of the kinetic energy. In connection with this we mention the idea of
the basic affine invariance in fundamental physics. This is connected with certain
modern attempts of formulating affinely invariant physical theories, in the spirit of
Thales of Miletus [4, 5, 15, 26–28, 34, 41, 42, 55–57, 59, 61, 70, 71].
Let us begin with the three-dimensional rigid body without translational motion,
e.g., fastened at the center of mass. Its configuration space Q may be identified
with the orthogonal group in three dimensions

Q = SO(3,R) =
{
φ ∈ GL(3,R) ; φTφ = I, detφ = +1

}
.

Therefore, only proper rotations are admitted, translations neglected, and reflec-
tions are forbidden. Motions are described by curves in Q

R ∋ t 7→ φ(t) ∈ Q.

Angular velocities are non-holonomic, namely in the spatial representations they
are given by [2, 3, 7, 8, 14, 15]

Ω =
dφ

dt
φ−1 = φΩ̂φ−1 = −ΩT .

The co-moving representation is given by

Ω̂ = φ−1dφ

dt
= φ−1Ωφ = −Ω̂T . (1)

They are elements of the Lie algebra so(3), so as written above they are skew-
symmetric. And only in the exceptional case of the two-dimensional body, n = 2,
they are holonomic. And for any n > 2 they fail to be so.
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In three dimensions there is an isomorphism between skew-symmetric second-
order tensors and axial vectors [2, 3]

Ω =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 , Ω̂ =

 0 −Ω̂3 Ω̂2

Ω̂3 0 −Ω̂1

−Ω̂2 Ω̂1 0


where obviously

Ωi = φi
AΩ̂

A.

Kinetic energy of rotations is given by

T =
1

2
IABΩ̂

AΩ̂B =

3∑
A=1

IA
2

(
Ω̂A

)2

where IAB are constant co-moving components of the inertial tensor [8, 9]. The
extreme right hand side of this equation is valid in material coordinates diagonal-
izing the tensor of inertia. The constancy of IAB , IA is very important. Namely,
it implies that for any orthogonal transformation U ∈ SO(3,R) the corresponding
left translation

φ 7→ Uφ (2)

preserves Ω̂ and therefore, the kinetic energy T is also conserved. The transfor-
mations acting on the left (in the commonly used definition of the superposition
of mappings) describe spatial rotations, therefore in the geodetic case (no exter-
nal forces) one obtains the spin conservation from the left translations. For the
right-invariant geodetic models which fail to be simultaneously left-invariant this
conservation law does not hold. Obviously, geodetic models which are simultane-
ously left- and right- invariant correspond to the spherical top, i.e., such one that

I1 = I2 = I3 = I

this is the spherical top.

Let the vector Ni denote the spatial torque (moment of forces) and N̂A - its co-
moving representation. Roughly speaking, N̂A are projections of N onto the main
co-moving axes

N̂ = φ−1N.

We speak here about vectors in the Euclidean space, so there are no reasons to
distinguish between contravariant and covariant vectors. It is convenient to write
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down equations of motion in the co-moving terms

I1
dΩ̂1

dt
= (I2 − I3) Ω̂2Ω̂3 + N̂1

I2
dΩ̂2

dt
= (I3 − I1) Ω̂3Ω̂1 + N̂2 (3)

I3
dΩ̂3

dt
= (I1 − I2) Ω̂1Ω̂2 + N̂3.

In geodetic case, when Ni = 0 (i.e., also N̂A = 0) those equations become Ω̂-
autonomous, i.e., independent of φ. The same holds when N̂A-s are constant or
dependent only on Ω̂, not on φ. For those reasons this form of equations is conve-
nient: we begin (in principle) from solving them with respect to Ω̂, and later on one
obtains φ(t) by solving (1) with respect to φ. In any case this is the programme.
But in this form they are useful in control problems. Let us stress that geodetic
equations are invariant under (2).

Let us reformulate these results in terms of the co-moving and spatial components
of spin (internal angular momentum) with respect to the centre of mass

Σ̂A =
∂T

∂Ω̂A
= IABΩ

B = IAΩ
A, Σa = Σ̂B

(
φ−1

)B
a.

The corresponding expression for kinetic energy has the form

T =
1

2
ĨABΣ̂AΣ̂B =

3∑
A=1

1

2IA
Σ̂2
A.

Let us remind the following expressions for the Poisson brackets of “sigmas”

{Σa,Σb} = εab
cΣc, {Σ̂A, Σ̂B} = −εAB

CΣ̂C , {Σa, Σ̂B} = 0.

Let us be aware of the difference in sign on the right-hand sides of the first and
second equations. The fact that spatial and co-moving components of spin have
different in sign Poisson brackets has deep geometric reasons, namely one has to
do respectively with the representation and anti-representation action of SO(3,R)
on the configuration space.
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When expressed in spin terms, the Euler equations (3) acquire the following form
[2, 3]

dΣ̂1

dt
=

(
1

I3
− 1

I2

)
Σ̂2Σ̂3 + N̂1

dΣ̂2

dt
=

(
1

I1
− 1

I3

)
Σ̂3Σ̂1 + N̂2 (4)

dΣ̂3

dt
=

(
1

I2
− 1

I1

)
Σ̂1Σ̂2 + N̂3.

When the rigid body is spherical, I1 = I2 = I3 = I , i.e., its kinetic energy is
invariant under both left and right translations, then obviously (4) reduces to

dΣ̂a

dt
= N̂a.

Let us observe that in the spatial representation the balance law

dΣa

dt
= Na

is universally valid, independently on the particular values of Ia. Nevertheless,
those values are hidden in the structure of equations.
Geodetic motions of the spherical rigid body are given by the exponential formula

φ(t) = exp(tω)φ(0) = φ(0)exp(tω̂), ω̂ = φ(0)−1ωφ(0)

where ω, ω̂ are arbitrary. Quite a different situation occurs when the inertial co-
moving tensor is anisotropic. Then there exist exponential solutions of the geodetic
problem, nevertheless they are exceptional and correspond to rotations about the
axes of inertia. But their knowledge is very desirable and contains much of infor-
mation about the stability problem.
Let us now review the main ideas of the group approach to the hydrodynamics of
incompressible fluids [2, 3, 36, 37]. The basic equation is given by

ϱ
dv

dt
= ϱ

(
∂v

∂t
+

(
v · ∇

)
v

)
= −∇p+ ϱg

where v is the Euler velocity field, ϱ is the Euler density of fluid, p is the field of
pressure, and g denotes the Earth acceleration. The assumed iso-entropic condition
may be formulated as

ds

dt
=

∂s

∂t
+ v grad s = 0

i.e.,
∂ (ϱs)

∂t
+ div (ϱsv) = 0.
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Equations of motion may be written as

∂

∂t
ϱvi = −∂Πik

∂xk
, Πik = pgik + ϱvivj .

The scalar product of the volume preserving vector fields is given by

⟨v1, v2⟩ =
∫
D

v1 · v2 dx

where D is the region occupied by fluid, v is tangent to the boundary of D, and
div v = 0 inside D. Therefore, in the incompressible case the kinetic energy is
given by

T =
ϱ

2
⟨v, v⟩ = ϱ

2

∫
D

gijv
ivjdn(x; g)

where dn(x; g) denotes the g-Riemannian element of volume in the physical space.
At the time instant t the fluid configuration is given by gt ∈ SDiff(D). At the
time instant t + τ the configuration is exp (vτ) gt, where τ is small. The velocity
field v obtained from the vector ġ tangent at g to the group SDiff(D) is invariant
under the right action in this group. But be careful: the left/right actions are not the
only difference between both cases. Namely, SDiff(M) is infinite-dimensional, so
it is not a Lie group in the literal sense. Nevertheless, some a general Lie group
techniques may be used and they lead to certain correctly looking expressions for
the fluid motion. Once guessed in this way, they may be independently proved to
be correct. Without the mentioned “heuristic” level it would be simply impossible
to find them. And at the same time the similarity between two approaches: rigid
body and incompressible ideal fluid is striking and convincing. Nevertheless, it
is interesting to discuss finite-dimensional models admitting deformations. In a
sense, it turns out that such models were suggested in a quite different aspect by
C. Eringen in his micromorphic theory [10, 11, 16–18], and many years earlier by
some Russian mathematician [53].

2. Our Idea: to Admit Finite-Dimensional Deformations. Affine
Philosophy of Thales of Miletus. GAff-Invariance

Let us begin with remarks concerning dynamical systems on Lie groups or rather
on their cotangent bundles. We assume that our Lie group G is linear, e.g., G ⊂
GL(N,R) or G ⊂ GL(N,C) (but being real, e.g., U(n)).
Lie algebra of G will be denoted by g, it is respectively the linear subspace of
L(n,R), L(n,C)

g ⊂ L(n,R) = TeGL(n,R), g ⊂ L(n,C) = TeGL(n,C).
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In exponential representation the relationship between Lie algebras and Lie groups
is exponential

q
(
t1, . . . , tk

)
= exp

(
tkEk

)
∈ GL(n,R),GL(n,C)

where t1, . . . , tk are canonical coordinates on our k-dimensional Lie groups. Ob-
viously, the structure constants are given by

[Ek, Ej ] = Cm
kjEm.

Let us remind that in matrix manifolds

exp(A) =
∞∑
n=0

1

n!
An.

The Lie co-algebra consists of linear functions on g. Although very often, in best-
known special examples. g∗ ≃ g, namely in the sense of

⟨f, x⟩ = Tr(fx).

Motions are described by curves R ∋ t 7→ q(t) ∈ G. Usually one operates with
Lie-algebraic velocities in two representations: “spatial” and “co-moving”

Ω(t) = q̇(t)q(t)−1, Ω̂ = q(t)−1q̇(t).

Obviously, the following holds

Ω(t) = Adq(t)Ω̂(t), Adq(x) = qxq−1.

In terms of dual bases {. . . , Ea, . . .}, {. . . , Ea, . . .} in g and g∗ we have

Ω = Ωa(t)Ea, Ω̂ = Ω̂a(t)Ea, Ωa(t) =
(
Adq(t)

)a
bΩ̂

b(t).

If G is non-Abelian, quasi-velocities Ωa, Ω̂a are non-holonomic i.e., they fail to
be time derivatives of any generalized coordinates. Nevertheless, they are very
convenient in applications. Let us remind the concept of angular velocity.
Left-invariant kinetic energy forms are given by

T =
1

2
γabΩ̂

aΩ̂b =
1

2
γ
(
Ω̂, Ω̂

)
where γab are constants, so we are dealing with the algebraic quadratic forms of Ω̂.
Tangent and cotangent bundles are trivial

TG ≃ G× g, T ∗G ≃ G× g∗.

Using the cotangent language we can write

Σ = ΣaE
a, Σ̂ = Σ̂aE

a

with the following trivialization mappings

Σa = Σa
i(q)pi, Σ̂a = Σ̂a

i(q)pi
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where
ΣaΩ

a = Σ̂aΩ̂
a = piq̇

i.

These quantities have the following transformation properties under the left-acting
and right-acting group translations in G.
In the left translations

Lg : x 7→ gx

we have

Ω 7→ gΩg−1 = AdgΩ, Ω̂ 7→ Ω̂

Σ 7→ gΣg−1 = Ad∗−1
g Σ, Σ̂ 7→ Σ̂.

And conversely, under the right translations

Rg : x 7→ xg

we have

Ω 7→ Ω, Ω̂ 7→ g−1Ω̂g = Ad−1
g Ω̂

Σ 7→ Σ, Σ̂ 7→ g−1Σ̂g = Ad∗gΣ̂.

This explains the difference in the structure of left-invariant and right-invariant
kinetic energies, i.e., metric tensor on G.
Similarly, Poisson brackets have the following forms

{Σi,Σj} = Ck
ijΣk, {Σ̂i, Σ̂j} = −Ck

ijΣ̂k, {Σi, Σ̂j} = 0.

Let us stress the difference in sign on the right-hand sides of Σi and Σ̂i-brackets.
It is analogous to the corresponding difference in the rigid body case and has ex-
actly the same group-theoretical origin. It is also interesting to quote the Poisson
brackets between Σ-s and configuration-dependent quantities

{Σa, f(q)} = −Σa
i(q)

∂f

∂qi
, {Σ̂a, f(q)} = −Σ̂a

i(q)
∂f

∂qi
·

Together with
{F (q), G(q)} = 0

they are sufficient to calculate any other Poisson bracket just on the basis of its
formal properties.
Let us stress that Σi are Hamiltonian generators of the group of left translations LG

and Σ̂i are generators of the right group RG. In other words, they are momentum
mappings of those groups. This is the reason of the above commutation relations.
Non-holonomic representation of Legendre transformations is given by the follow-
ing equivalent formulas

Σa =
∂T

∂Ωa
, Σ̂a =

∂T

∂Ω̂a
·
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The left-invariant and right-invariant kinetic energies are given in the canonical
language as follows

T =
1

2
γ̃abΣ̂aΣ̂b, T =

1

2
γ̃abΣaΣb

where the contravariant metric γ̃ is reciprocal to the covariant γ

γ̃acγcb = δab.

Equations of motion written in terms of the Poisson brackets have the form
df

dt
= {f,H}, H = T + V(q).

Euler equations for the left-invariant model of T have the following form

dΣ̂a

dt
= −γ̃cdCb

acΣ̂dΣ̂b + N̂a

where in the potential case

N̂a = Σ̂a
i(q)

∂V
∂qi

but one can also include a dissipative, Σ̂-dependent term. In terms of Ω̂ these
equations become

γab
dΩ̂b

dt
= −γbdC

b
acΩ̂

cΩ̂d + N̂a.

In mixed terms
dΣ̂a

dt
= −Cb

acΩ̂
cΣ̂b + N̂a. (5)

In the geodetic case, when N̂a = 0, those equations are automatically solved with
respect to Σ̂ or Ω̂. Then the configuration evolution may be found by solving the
equation

dq

dt
= q(t)Ω̂

with respect to q(t) with Ω̂ substituted from the solution of (5).
For the right-invariant models, when

T =
1

2
γabΩ

aΩb

equations of motion have the form
dΣa

dt
= γ̃cdCb

acΣdΣb +Na

where in the potential case

Na = Σa
i(q)

∂V
∂qi

but of course non-geodetic ones are also admissible.
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Let us observe that for the left-invariant geodetic models, but only for them, we
have

dΣa

dt
= 0

but for the general left-invariant case the following equations of motion are satisfied
dΣa

dt
= Na.

Let us mention, there are also doubly-invariant models. Obviously in the Abelian
groups and semisimple Lie groups and also in their certain Cartesian products.
Particularly interesting are semi-simple Lie groups. Their Killing metric tensors
are given by the following non-degenerate expressions [31]

γab = Ck
laC

l
kb.

The quantity C is then totally antisymmetric with respect to γ

Cijk = Ci
abγ̃

aj γ̃bk = −Cjik = −Ckji = −Cikj .

In the geodetic case the general solution is then exponential

q(t) = exp(Ωt)q(0) = q(0) exp(Ω̂t)

where obviously
Ω̂ = q(0)−1Ωq(0) = Ad−1

q(0)Ω (6)

and Ω, Ω̂ are quite arbitrary. Let us repeat that in the case of non-Killing one-side
symmetry such solutions, so-called stationary ones do exist only for some special
values of Ω, Ω̂.
Let us also stress that (6) is a general solution for arbitrary initial conditions Ω, Ω̂
also in the situation when

G = XN
k=1Gk

where the subgroups Gk are simple and the metric γ is given by

γ = ⊕N
K=1CKπ⋆

KγK .

Obviously, πK : G → GK is the natural projection, γK’s are Killing metrics on
the groups GK , and CK are arbitrary constants.

3. Affinely-Rigid Body. Homogeneously Deformable Gyroscope

It is convenient to begin with the general case Q = GL(n,R) and to specify n
to 3, 2, 1 only at some final stage. Or, to be quite honest, it is definitely better to
replace the group structure of Q by some homogeneous space with trivial, never-
theless, not canonically defined isotropy groups [23, 35–37, 71, 74, 77, 78, 84, 85].
So, we are dealing with two affine spaces: the material space (N,U,→ η) and the
physical one (M,V,→ g). Here N denotes the manifold of material points, U –
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the linear space of translations acting in it, →: N ×N → U – the linear space of
radius-vectors in N , and η ∈ U⋆ ⊗ U⋆-the material metric tensor in N . And simi-
larly, M is the affine manifold of instantaneous positions of material points in the
physical space, V – the linear space of translations acting in M , →: M ×M → V
– the linear space of radius-vectors in the affine space M , and g ∈ V ⋆ ⊗ V ⋆ – the
metric tensor of M .
It is easy to see that the configuration space of affine motion may be canonically
identified with the manifold

Q = M × LI(U, V ) (7)

where LI(U, V ) denotes the set of linear isomorphisms of U onto V . Obviously,
the first factor in (7) refers to translational motion, i.e., to the position of the center
of mass in M , and the second one corresponds to internal degrees of freedom (or,
using more careful terms, to degrees of freedom of the relative motion). When
for simplicity we put: M = N = U = V , then Q becomes identified with the
semi-direct product

Q = GL(n,R)×s Rn (8)

or, when we deal with the continuous medium and insist on the orientation-pre-
serving motions, we replace (8) by

Q = GL+(n,R)×s Rn.

Let us notice however that this restriction is too strong when we deal with discrete
systems of material points. Analytically, for any Φ ∈ Q we can write

Φ(t, a)i = φi
K(t)aK + xi(t). (9)

Let us repeat that xi(t) are coordinates of the centre of mass position in M and
φi

K(t) are internal coordinates.
Inertial properties of the body are described by the total mass m and by the second-
order co-moving inertial moment with respect to the centre of mass [59, 60]

m =

∫
N
dµ(a), JKL =

∫
N
aKaLdµ(a).

JKL is analytically equivalent to the co-moving tensor of inertia, although liter-
ally different from it. Let us stress that the measure µ is constant and defined on
N . Similarly, JKL is constant and expressed through the integration of Lagrange
variables with respect to µ, thus also in the material space. Our assumption that
the material centre of mass is placed at aK = 0 implies that the dipole momentum
of µ vanishes

JK =

∫
N
aKdµ(a) = 0. (10)



The Two Apparently Different but Hiddenly Related Euler Achievements . . . 47

Let us observe that (10) is based exactly on the assumption that the material center
of mass is given by aK = 0.
One can ask about higher-order material inertial tensor like

JK1...Km =

∫
N

aK1 . . . aKmdµ(a).

However, in the usual dynamics of affine bodies we do not need them because
neither the kinetic energy nor anything else essential for affine motion depends on
them, One can also show that when releasing affine constraints and still wishing to
use the multipole expansion for the dependence of Φi on aK , we must admit Φi to
be general analytic functions.
The kinetic energy obtained from the substituting constraints (9) to the usual ex-
pression for the kinetic energy of a general multi-particle system has the form

T = Ttr + Tint =
m

2
gij

dxi

dt

dxj

dt
+

1

2
gij

dφi
A

dt

dφj
B

dt
JAB. (11)

The Legendre transformation corresponding to L = T −V (x, φ) has the following
obvious form

pi = mgij
dxi

dt
, pAi = gij

dφj
B

dt
JAB.

The corresponding kinetic part of the Hamiltonian is given by

T =
1

2m
gijpipj +

1

2
J̃ABp

A
ip

B
jg

ij (12)

where
J̃ACJ

CB = δA
B, gikg

kj = δj
j .

We shall also need some formulas for the covariant and its reciprocal Cauchy and
Green deformation tensors. The Cauchy tensors are given by

Cij = ηAB

(
φ−1

)A
i

(
φ−1

)B
j , Cij = φi

Aφ
j
Bη

AB.

And similarly, for the Green tensors we have:

GAB = gijφ
i
Aφ

j
B, GAB =

(
φ−1

)A
i

(
φ−1

)B
jg

ij .

It is clear that the pairs of metric and metric-like tensors (gij , Cij), (ηAB, GAB)
give rise to the mixed tensors

Ĉi
j = gikCkj , ĜA

B = ηACGCB. (13)

And those quantities generate scalars known as deformation invariants:

Tr Ĉp, Tr Ĝp, p = 1, ..., n. (14)

There are n independent among them and in a consequence of the Caylay-Hamilton
theorem the invariants (14) form a functional basis of the set of invariants. Let us
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remind that invariants are defined as functions on Qint = LI(UV ) non-sensitive
with respect to the spatial and material rotations. From the algebraic point of view
their set is infinite-dimensional, nevertheless there are always only n functionally
independent among them. The choices (14) belong to the infinity of all possibili-
ties, sometimes most convenient ones, but not always.

Let us quote some non-doubtful range of physical applications of our model

L = T − V (φ), H = T + V (φ).

Those are, e.g.,

• macroscopic elasticity when the length of excited waves is comparable with
the linear size of the body, e.g., soap bubbles [6, 19–22, 24, 25, 32, 33, 38–
40, 43–52, 54, 58, 60, 62–66, 69, 72, 73, 75, 76, 81, 86],

• micromorphic continua with internal degrees of freedom [10, 11, 17, 36, 37,
68, 70, 71, 79, 86],

• molecular vibrations, dynamics of molecular crystals[16–18,29,60,69–71],
• nuclear dynamics (collective droplet model of the atomic nuclei) [46,67,68,

87],
• astrophysical objects, vibrating stars, shape of Earth [6, 60, 68, 70, 71],
• integrable one-dimensional lattices and n-dimensional affinely rigid body

[68, 70, 71].

There are, however some obvious drawbacks of the model based on kinetic energy
(11), (12). Let us quote them

1. First of all, geodetic models, i.e., ones without potentials, only with L = T
(11) are completely non-physical, predict both the unlimited expansion and
concentration to the situations with the vanishing volume. Of course, both
the situations are completely non-physical. To prevent them, one must in-
troduce appropriate models of the potential energy. But in the usual (met-
rically) rigid body such a procedure, although admitted and often looking
necessary is not so-to-speak qualitatively necessary to obtain sensibility-
looking solutions. Is it possible to help this?

2. There is no dynamical affine invariance of equations of motion. Again only
kinematical one. Quite unlike the theory of metrically rigid body. but this
is very important. Namely, all advantages of the group structure are lost.
In the theory of systems on Lie groups, in general the invariance of the
dynamics under the group which rules the geometry of degrees of free-
dom is possible, although not necessary. In the mechanics of affinely rigid
body based on (11), (12) the dynamics of affine motion simply must be
not affinely-invariant. Therefore the following system of questions appears:
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What would be affinely-invariant dynamical models? Do they exist for-
mally? And if so, are they realistic? What is relationship between models
based on the d’Alembert constraints and the affinely-invariant models of the
kinetic energy?

Let us begin again from the geometric analysis of the material and purely affine
aspects of the mechanics of affine bodies. But now let us use again carefully the
language of homogeneous spaces, not one of Lie groups.
Our canonical objects are coordinates

(
xi, φi

A

)
and their canonical object, namely

pi, p
A
i conjugate to xi, φi

A.

For Lagrangians L = T − V (x, φ) the Legendre transformation is given by:

pi =
∂T

∂vi
= mgijv

j = mgij ẋ
j

(15)
pAi =

∂T

∂φ̇i
A

= gijφ̇
j
BJ

BA = gijVj
BJ

BA

Internal Lie-algebraic objects, i.e., affine velocities are given by following expres-
sions:

Ω = φ̇φ−1 ∈ L(V ), Ω̂ = φ−1φ̇ ∈ L(U).

Eringen used for them the term “gyration”. Obviously, Ω is a spatial and Ω̂- a
material representation

Ω = φΩ̂φ−1, Ω̂ = φ−1Ωφ.

Analytically they are given by

Ωi
j = φ̇i

Aφ
−1A

j , Ω̂A
B = φ−1A

iφ̇
i
B.

They are evidently non-holonomic velocities, i.e., they fail to be time derivatives
of any generalized coordinates. Nevertheless, they are not only geometrically dis-
tinguished, but also very convenient practically. For example, the Euler field of
velocities in M is given by:

V i(ξ) = vi +Ωi
j(ξ

j − xj).

The g- and η-skew-symmetric part of Ω, Ω̂ are angular velocities, respectively in
the spatial and co-moving representations

ωi
j = Ωi

j − Ωj
i = Ωi

j − gjkg
ilΩk

l

ω̂A
B = Ω̂A

B − Ω̂B
A = Ω̂A

B − ηBCη
ADΩ̂C

D.

To be completely honest, ω̂ is not literally the system of co-moving components of
ω (although Ω̂ is so for Ω). The next important concept is affine spin, also in the
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spatial and co-moving representation

Σ = φπ, Σ̂ = πφ

i.e., analytically

Σi
j = φi

Aπ
A
j , Σ̂A

B = πA
iφ

i
B.

Obviously, π-s are canonical momenta conjugate to φ.

Let us observe that Σ, Σ̂ are defined all over the configuration space, unlike affine
velocities which are geometrically built of φ−1 . Obviously, Σ and Σ̂ are Hamil-
tonian generators, i.e., momentum mappings of the groups GL(V ), GL(U) acting
on Qint

φ 7→ Aφ, φ 7→ φB

A ∈ GL(V ), B ∈ GL(U).

Their g-and η-skew-symmetric parts are respectively generators of spatial and ma-
terial isomorphisms

Si
j = Σi

j − Σj
i = Σi

j − gikgjlΣ
l
k

V A
B = Σ̂A

B − Σ̂B
A = Σ̂A

B − ηBCη
ADΣ̂C

D.

Warning: V A
B , Σi

j are not related to each other via φ, i.e., their relationship is
much more complicated than in the case of metrically-rigid motion.

The quantities Σ, Σ̂ satisfy the following transformation rules under linear map-
pings: φ → Aφ, φ → Bφ

A : Σ 7→ AΣA−1, Σ̂ 7→ Σ̂

B : Σ 7→ Σ, Σ̂ 7→ B−1Σ̂B

A : Ω 7→ AΩA−1, Ω̂ 7→ Ω̂

B : Ω 7→ Ω, Ω̂ 7→ B−1Ω̂B.

It is clear that the Ω− and Σ-objects transform in an analogous way.
Let us also introduce the co-moving translational objects

v̂A = φ−1A
iv

i, p̂A = piφ
i
A.

The resulting Poisson brackets have the following form

{Σi
j ,Σ

k
l} = δilΣ

k
j − δkjΣ

i
l

{Σ̂A
B, Σ̂

C
D} = δCBΣ̂

A
D − δADΣ̂

C
B

{Σi
j , Σ̂

A
B} = 0, {Σ̂A

B, p̂C} = δAC p̂B

{I(O)ij , pk} = {Λ(O)ij , pk} = δikpj
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where, obviously

I(O)ij := Λ(O)ij +Σi
j , Λ(O)ij := xipj

and xi are Cartesian coordinates of the O-radius vector of the current position of
the centre of mass in M .
For any function F depending only on the configuration variables the following
Poisson relations hold

{F,Σi
j} = φi

A
∂F

∂φj
A
, {F,Λi

j} = xi
∂F

∂xj
, {F, Σ̂A

B} = φi
B

∂F

∂φi
A
·

The dipole distribution of linear momentum, i.e., canonical affine spin, is given by

Kij =

∫ (
yi − xi

) (
ẏj − ẋj

)
dµφ(y) =

∫ (
yi − xi

)
φ̇j

KaKdµ(a)

= φi
A
dφj

B

dt
JAB

Obviously, this is an affine spin with respect to the instantaneous position of the
center of mass. Similarly, the affine torque, i.e., affine moment of forces with
respect to the center of mass is defined as

N ij =

∫ (
yi − xi

)
F j (y) dµ(y)

where F j is the distribution of forces per unit mass and the total force acting on
the center of mass is given by

F i =

∫
F j(y)dµ(y).

Equations of motion following from the d’Alembert principle applied to affine
motion imply that

m
d2xi

dt2
= F i, φi

A
d2φj

B

dt2
JAB = N ij . (16)

In the potential case in Euclidean space we have

F i = −gij
dV

dxj
, N ij = −φi

A
∂V

∂φk
A
gkj . (17)

Let us mention that in the potential case we must base on the formulas (13), (14).
Or to be more honest-deformation invariants are very often the arguments of the
potential function.
Incidentally, let us quote a few remarks concerning the concept of deformation
invariants. As mentioned above, there are only n functionally independent among
them, e.g.,

Ka[φ] = Tr
(
Ĝ[φ]a

)
= Tr

(
Ĉ[φ]−a

)
, a = 1 . . . , n. (18)
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As mentioned, the range of a in (18) may be any set of subsequent n integers,
not necessarily 1, . . . , n; this a consequence of the Caylay-Hamilton theorem. In
general, one can say that deformation invariants are functions invariant under

φ → LφR, L,R ∈ O(n,R)

So they are defined on the manifold of double cosets

O(n,R)\GL(n,R) ̸ O(n,R).

For example, they are often defined as coefficients in the following eigenequations
for λ

det
(
Ĝ[φ]− λ[φ]In

)
=

n∑
k=0

(−1)k In−k (φ)λ
k.

Obviously, I0 = 1 is standard. In−k is a sum of products of (n− k) different
eingenvalues

I0 = 1, I1 =
∑
i

λi, . . . , In =
∏
i

λi = λ1, . . . λn.

In the physical three-dimensional case we have

I1 = λ1 + λ2 + λ3, I2 = λ2λ3 + λ3λ1 + λ1λ2, I3 = λ1λ2λ3.

Let us observe that in mechanics of systems of affinely deformable bodies we can
also use something which may be called mutual deformation tensors. Namely,
if φ,Ψ are linear isomorphisms of U onto V , then the corresponding Green and
Cauchy mutual deformations G ∈ U∗ ⊗ U∗, C ∈ V ∗ ⊗ V ∗ are given by the
following analytical formulas

G[Ψ, φ]AB = gijΨ
i
Aφ

j
B, C[Ψ, φ]ij = ηAB φ−1A

i Ψ
−1B

j

and similarly for their inverses

G[Ψ, φ]−1AB
= Ψ−1A

i φ
−1B

jg
ij , C[Ψ, φ]−1 ij = φ i

A Ψ j
Bη

AB.

Obviously
G[Ψ,Ψ] = g[Ψ], C[Ψ,Ψ] = C[Ψ]. (19)

Clearly, for any A ∈ O(V, g), B ∈ O(U, η) the following holds

G[AΨ, Aφ] = G[Ψ, φ], C[ΨB,φB] = C[Ψ, φ].

But there is no lucid expression if A,B are non-orthogonal. For any linear map-
pings A ∈ GL(U), B ∈ GL(V ), the following holds

G[ΨA,φA] = A∗G[Ψ, φ], C[BΨ, Bφ] = B−1
∗ C[Ψ, φ].
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In terms of coordinates

G[ΨA,φA]KL = G[Ψ, φ]MNAM
KAN

L
(20)

C[BΨ, Bφ]ij = C[Ψ, φ]rs B
−1 r

i B
−1 s

j .

However, also other kind of mutual displacement-kind quantities may be defined,
namely

Γ[Ψ, φ] = Ψ−1φ, Σ[Ψ, φ] = φΨ−1.

If Ψ and φ are orthogonal mappings, then this definition reduces to the previous
one. Namely, when Ψ, φ ∈ O(U, η : V, g)

Γ[Ψ, φ] = G[Ψ, φ], Σ[Ψ, φ] = C[Ψ, φ].

Those quantities may be exactly interpreted as group-theoretical analogues of the
displacement vector in the Abelian group of translational degrees of freedom. And
at the same time they are not only material, but also affine invariants. Namely, for
any A ∈ GL(U), B ∈ GL(V ) they satisfy

Γ[AΨ, Aφ] = Γ[Ψ, φ], Σ[AΨ, Aφ] = A∗Σ[Ψ, φ]
(21)

Γ[ΨB,φB] = B−1
∗ Γ[Ψ, φ], Σ[ΨB,φB] = Σ[Ψ, φ]

The parts of (21) with the transformation rules A∗, B
−1
∗ may be written down an-

alytically as follows

Σ[AΨ, Aφ]ij = Ai
kΣ[Ψ, φ]km A−1m

j

Γ[ΨB,φB]KL = B−1K
DΓ[Ψ, φ]DEB

E
L.

This means that Γ is invariant under spatial affine mappings and satisfies the in-
verse adjoint rule under material affine mappings. Conversely, Σ transforms under
spatial affine mappings and is invariant under material affine transformations. It
is important that the quantities G[Ψ, φ], C[Ψ, φ],Γ[Ψ, φ],Σ[Ψ, φ] generate scalar
variables which may be used as independent variables (arguments) of the poten-
tial energy of mutual interactions between different affine bodies.Typical metrical
scalars are

Ka[Ψ, φ] = Tr (G[Ψ, φ]a) = Tr
(
C[Ψ, φ]−a

)
, a = 1, . . . , n.

They are invariant under spatial and material rotations, so that for any A ∈ O(V, g),
B ∈ O(U, η) the following equation is satisfied

Ka[AΨB,AφB] = Ka[Ψ, φ].

The quantities Γ,Σ give rise to more general invariants which are non-sensitive
with respect to all affine transformations, not only with respect to rigid rotations.
They are given by

Ma[Ψ, φ] = Tr (Γ[Ψ, φ]a) = Tr (Σ[Ψ, φ]a) .
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It follows from their construction that they are affinely-invariant, i.e., for any A ∈
GL(U), B ∈ GL(V )

Ma[AΨφ,AφB] = Ma[Ψ, φ]. (22)

Therefore, it is possible to construct the hierarchy of invariants non-sensitive with
respect to affine groups like in (22), or to their isometric subgroups. This extends
the aprioric hierarchy of our models and in particular, enables one to discuss the
influence and physical meaning of affinely-invariant part of mutual potentials.
Equations of motion (16), (17) follow from the d’Alembert principle and from the
following obvious expression for the power of forces in affine motion

P = Ptr + Pint = Fiv
i +N ijΩij = Fiv

i +N i
jΩ

j
i. (23)

Hence F i, N ij denote respectively the total force and affine moment of forces act-
ing on the body. In they are built of given forces and reactions of affine con-
straints. But according to the d’Alembert principle the expression (20) with reac-
tions F (R)

i, N
(R) i

j substituted to the expression produces a zero result. Therefore,
equations (16), (17) contain only given forces and it is just the reason of their form.
Namely, reactions, although non-vanishing, are automatically removed from them.
Let us observe that equations of affine motion may be written as balance laws for
the affine spin Kij and the usual linear momentum ki = gijpj and the affine spin
Kij

dki

dt
= F i

(24)
dKij

dt
=

dφi
A

dt

dφj
B

dt
JAB +N ij .

Why this balance form is so essential? Why without solving with respect to
d2φi

A/dt
2? It is again the formula (23) for the power forces. The form (??),

(24) enables one to introduce constraints of group-theoretical origin in an almost
automatic way.

For example, when the motion is metrically rigid, then Ω̂i
j is the g-antisymmetric

part of equations of motion in the form (24)

dSij

dt
=

d

dt

(
Kij −Kji

)
= N ij −N ji = N ij

i.e.,

φi
A
d2φj

B

dt2
− φj

A
d2φi

B

dt2
= N ij −N ji = N ij .
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Similarly,when affine motion is incompressible, equations of motion are given by
the trace-less part of original equations of motion

φi
A
d2φj

B

dt2
JAB − 1

n
gab φ

a
A
d2φb

B

dt2
JABgij = N ij − 1

n
gabN

ab gij .

And now something really new example of constraints, namely constraints of spa-
tially rotation-less motion. Let us remind that constraints of the purely rotational
motion, may be written both in the usual holonomic way

φ ∈ O(U, η;V, g)

i.e., than φ is an isometry, but also in apparently non-holonomic way

Ωi
j +Ωj

i = Ωi
j + gjk g

il Ωk
l = 0. (25)

Strictly speaking, (25) are semi-holonomic constrains, i.e., they describe the folia-
tion of the configuration space by the family holonomic constraints of gyroscopic
type . Therefore the constraints of rotation-free motion may be defined as opposite,
complementary to (25), i.e., such ones that Ω is g−symmetric

Ωi
j − Ωj

i = Ωi
j − gjk g

il Ωk
l = 0. (26)

The corresponding equations of motion are then given by

φi
A
d2φj

B

dt2
JAB + φj

A
d2φi

B

dt2
JAB = N ij +N ji (27)

or, more precisely, they are given by the system (26), (27). It is very surprising
that these constraints are non-holonomic. Indeed, g−symmetric matrices Ωi

j do
not from a Lie algebra and the Pfaff system (26) is non-integrable. Therefore, the
rotation-less motions do not generate any manifold of rotation-less configurations.
This way was naturally expected because g−symmetric matrices do not from a
Lie subalgebra or Lie subgroups. And certainly it would be incorrect to define the
set of mutually non-rotated configurations by anything like the symmetry demand
for the matrix

[
φi

A

]
because the indices i, A refer to different linear spaces and

the symmetry would be a completely artificial, in any case non-transitive feature.
Constraints of rotation-less motion may appear in the study of affine motion of
inclusion injected into very viscous fluid.
Let us also mention that there is also another kind of rotation-less motion, namely,
materially non-rotational one. The corresponding constraints are obviously also
non-holonomic but the equation (26) is then replaced by another, non-equivalent
material equation

Ω̂A
B − Ω̂B

A = Ω̂A
B − ηBC ηAD Ω̂C

D.

And further one should again proceed according to the d’Alembert principle of
ideal, i.e., non-working reaction forces.
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Let us go back to our general equations of affine motion. In gyroscopic case they
were balance equations of the Euler type, reducing to the angular momentum con-
servation laws in the geodetic case. But for the affine motion it is no longer the
case-affine symmetry of degrees of freedom becomes reduced to orthogonal one

dKij

dt
= 2

∂Tint

∂gij
+N ij , 2

∂Tint

∂gij
=

dφi
A

dt

dφj
B

dt
JAB.

This is not a conservation law even in the geodetic case. Let us write explicitly the
system of equations of motion in terms of balance laws

dk̂A

dt
= −k̂BJ̃BCK̂

CA + F̂A

(28)
dK̂AB

dt
= −K̂AC J̃CDK̂

DB + N̂AB

In many problems it is convenient to use the velocity representation of those equa-
tions

m
dv̂A

dt
= −mΩ̂A

B v̂
B + F̂A

(29)

JAC dΩ̂B
C

dt
= −Ω̂B

DΩ̂
D
CJ

CA + N̂AB.

Of course, (28), (29) are written in terms of material (co-moving representation),
nevertheless they have never the rigorous Euler form. The main circumstance is
that they are never affinely invariant. Only geometry of internal degrees of freedom
is ruled by affine group, but no longer their dynamics.

4. What Would Be Affine Models?

So, we are faced with the following challenge: we must answer the question if
affinely-invariant dynamics does exist formally. And if yes, one should formulate
some hypotheses concerning the physical applications of the corresponding models.
It is very easy to answer the existence questions when one does assume again the
kinetic energy in the form of the sum of internal and translational parts

T = Tint (φ; φ̇) + Ttr (x, φ; ẋ) . (30)

The affine groups GAff(M), GAff(N) act on Q = AffI(N,M) trough the left and
right regular translations

A ∈ GAff(M), B ∈ GAff(N) : Q ∋ Φ 7→ A ◦ Φ ◦ B ∈ Q.
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To be more precise, because the material center of mass in N is distinguished, we
are interested rather in the action of GAff(N) and GL(U) according to

A ∈ GAff(M), B ∈ GL(U) : (x, φ) 7→ (A(x), L [A]φ) , (x, φ) 7→ (x, φB)
where L [A] ∈ GL(V ) is the linear part of A in the sense

−−−−−−→
A(x)A(y) = L [A]−→xy.

Obviously, −→xy as usual denotes the vector from x to y.
Then the left-invariant kinetic energy is given by

Tint =
1

2
LB

A
D
CΩ̂

A
BΩ̂

C
D, Ttr =

m

2
Cij

dxi

dt

dxj

dt
=

m

2
ηAB v̂

Av̂B (31)

where LB
A
D
C are constants and LB

A
D
C = LD

C
B
A.

Leta us observe that in Ttr the role of the spatial metric tensor is played by the
Cauchy deformation tensor. This is responsible for the affine invariance of Ttr in
M . The corresponding equations of motion have the form

dpi
dt

= Qi,
dΣi

j

dt
= − 1

m
C−1ikpkpj +Qi

j

where

pi = Cij
dxj

dt
and Qi, Qi

j are generalized forces. In the potential case they are given by

Qi = −∂V

∂xi
, Qi

j = −φi
A

∂V

∂φj
A
·

One can write them in a more concise form
dpi
dt

= Qi,
dI(O)ij

dt
= Qtot(O)ij

with the following natural definitions

I(O)ij = Λ(O)ij +Σi
j = xipj +Σi

j

Qtot(O)ij = Qtr(O)ij +Qi
j = xiQj +Qi

j .

For the right-invariant models equations of motion have the following form

dp̂A
dt

= Q̂A, i.e.,
dpi
dt

= Qi,
dΣ̂A

B

dt
= Q̂A

B

where
Q̂A = Qiφ

i
A, Q̂A

B = φ−1A
iQ

i
jφ

j
B.

Unlike in the case of the usual, i.e., metrically-rigid body, there are no kinetic en-
ergy, i.e., non-degenerate metric models which would be simultaneously left- and
right-invariant under the total affine group. The reason is that the affine group is
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non-semisimple in a rather malicious way. There are only doubly-invariant models
on Qint, the submanifold of internal degrees of freedom

Tint =
A

2
Ωi

jΩ
j
i +

B

2
Ωi

iΩ
j
j =

A

2
Ω̂K

LΩ̂
L
K +

B

2
Ω̂K

KΩ̂L
L. (32)

However, independently on the choice of constants A and B this model is never
positively – nor negatively – definite. Unlike the first, bad impression this need
not disqualify them, moreover, they may be physically interesting. The main term
of (32) is the A-term, the B-term itself is degenerate and plays only the role of
some correction. However, the translational term Ttr always reduces the symmetry
group.
Let us observe that the right affinely-invariant models of kinetic energy have the
form (30) where

Tint =
1

2
Rj

i
l
k Ω

i
jΩ

k
l, Ttr =

m

2
gij

dxi

dt

dxj

dt
(33)

where Rj
i
l
k, gij are constants symmetric respectively in the pairs of indices and in

indices. Obviously, the expression (32) is a very special case of the first formulas of
(31), (33). In particular, it gives rise to two special, highly-symmetric cases of the
total formulas for T = Ttr + Tint. We denote them by T aff−met and Tmet−aff . The
first of them is invariant under the spatial affine group GAff(M) and the material
Euclidean group acting in N (or in U ). Writing this explicitly

T aff−met =
m

2
ηKLv̂

K v̂L +
I

2
ηKLΩ̂

K
M Ω̂L

NηMN

(34)
+
A

2
Ω̂K

LΩ̂
L
K +

B

2
Ω̂K

KΩ̂L
L

Tmet−aff =
m

2
gijv

ivj +
I

2
gijΩ

i
kΩ

j
lg

kl +
A

2
Ωi

jΩ
j
i +

B

2
Ωi

iΩ
j
j . (35)

Let us stress again that the last two expressions in both formulas are equal but
written in apparently different forms for aestetical reasons. Unlike this, the second
terms are different. And similarly the first terms. Let us respect that

m

2
ηKLv̂

K v̂L =
m

2
Cij(φ)v

ivj (36)

so that the metric tensor is replaced by the Cauchy deformation tensor depending
on φ. This resembles the procedure of introducing the tensor of effective mass in
solid state physics [29]. Let us observe that in the potential forces case the formulas
(34), (36) tell us that according to Legendre transformation

pi = Cij(φ)
dxj

dt
̸= gij

dxj

dt
· (37)
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But if there are no translational forces, pi is a constant of motion. Unlike this,
as seen from (37), due to the dependence on deformation variables φ, the transla-
tional velocity vi fails to be constant, both in the sense of direction and magnitude.
This strange phenomenon may be called the “drunk missile effect”. Of course,
it does not occur when (35), i.e., Tmet−aff is used as a kinetic energy term. The
corresponding model, i.e., (35) may be used as a discretized, final-dimensional,
version of the Arnold description of the ideal fluid. More precisely: it may be
so when Qint is replaced by the hypersurface of isochoric, i.e., volume-preserving
configurations.
It is interesting at least from the purely academic point of view to ask for the
geodetic motions corresponding to (34), (35) or to their internal φ-parts. If we
consider the doubly-invariant, i.e., left-invariant and right-invariant affine models,
then it is clear that the general solution is given by the exponential expression:

φ(t) = exp (Et)φ0 = φ0 exp
(
Êt

)
, Ê = φ0

−1Eφ0

where φ0 and E or Ê are arbitrary initial data.
But the situation becomes more complicated when we admit only one-side affine
invariance and one-side metrical invariance. Then there are some stationary condi-
tions.
In the case of (31), i.e., left affinely-invariant and right metrically-invariant kinetic
energy we also start from looking on exponential solutions

φ(t) = φ0 exp(Ft).

It may be shown that such solutions exist for any initial configuration φ0 but only
for the η-normal F -s; [

F, F η T
]
= FF η T − F η TF = 0

where, by definition (
F η T

)A
B = ηBD FD

C ηCA.

This holds in particular when

F η T = −F, F η T = F.

Let us now assume (33), i.e., left metrically-invariant and right affinely-invariant
model of T . We are looking for the stationary solutions given by

φ(t) = exp(Et)φ0.

It turns out that such solutions exist for an arbitrary initial configuration φ0, but E
is to be g-normal, i.e., [

E,EgT
]
= EEgT − EgTE = 0
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where (
EgT

)i
j = gjl E

l
k g

ki.

This holds, e.g., in special cases when

F gT = −F, F gT = F.

Obviously, the metric tensors on Q underlying (34), (35) are very special, just dis-
tinguished by the assumed invariance requirements. But because of this one can
say something about the solutions of equations of motion following from the cor-
responding Lagrangians. The question appears however concerning the physical
motivation and applicability of those models invariant under the left or right action
of the affine group on the configuration space Q. In what are the corresponding
metric tensors better than (11) following from the d’Alembert principle? Let us
notice that (34) (35) may be also interpreted in d’Alembert terms, however with a
new metric tensor on Q, not necessarily one derived from the spatial or material
metric g, η. Again the concept of effective mass in solid state physics suggests
something like that [29]. The more so, in such applications like the nuclear fluid
or neutrons star the usual mechanism of constraints need not be justified. Affine
motion may be some aspect of the averaged behavior of system, different than
constraints imposed on the configuration space. And then it is only the general
invariance assumption that may offer some guiding hints concerning the structure
of the kinetic energy expression.
Let us observe that after performing the Legendre transformation on the internal
part of the kinetic energy (34), (35) it becomes respectively

T aff met
int =

1

2α
Tr

(
Σ̂2

)
+

1

2β

(
Tr Σ̂

)2
− 1

2µ
Tr

(
V 2

)
(38)

T met aff
int =

1

2α
Tr

(
Σ2

)
+

1

2β
(TrΣ)2 − 1

2µ
Tr

(
S2

)
(39)

where, as usual, the skew-symmetric spatial and material tensors S, V denote the
canonical spin and vorticity. The parameters α, β, µ are expressed by the primary
constants A, B, C as follows

α = I +A, β = − 1

B
(I +A)(I +A+ nB), µ =

1

I
(I2 −A2).

Denoting by C(k) the k-th degree Casimir quantity we can rewrite (38) and (39)
as follows

Tint =
1

2α
C(2) +

1

2β
C(1)2 +

1

2µ
∥V ∥2 (40)

Tint =
1

2α
C(2) +

1

2β
C(1)2 − 1

2µ
∥S∥2 (41)



The Two Apparently Different but Hiddenly Related Euler Achievements . . . 61

where ∥V ∥, ∥S∥ denote the scalar magnitudes of V and S

∥V ∥2 = 1

2
Tr

(
V 2

)
, ∥S∥2 = 1

2
Tr

(
S2

)
.

Obviously, the Casimir invariants C(k) are given by

C(k) = Tr
(
Σ̂k

)
= Tr

(
Σk

)
.

It is seen that the first two doubly-affine expressions in (40), (41) are respectively
identical. The difference between (40), (41) consists in the third term proportional
to the Casimir invariants of the material and spatial group of (metrically) rigid
rotations. From the quantum point of view ∥S∥2, ∥V ∥2 may be interpreted re-
spectively as the squared magnitude of spin and of the isospin. This suggests us
to introduce a systematic description of the left- and right-rotationally invariant
models with the hierarchic ordering of rotationally-invariant and purely affinely-
invariant terms. Then instead of (40), (41) we obtain a linear combination of the
family of terms involving both ∥S∥2 and ∥V ∥2. It seems that the most general
form of the left- and right-isotropic constituents is given by

T =
1

2
(m1GAB +m2ηAB) v̂

Av̂B +
1

2
(I1GKLG

MN + I2ηKLη
MN

(42)
+I3GKLη

MN + I4ηKLG
MN )Ω̂K

M Ω̂L
N +

A

2
Ω̂I

J Ω̂
J
I +

B

2
Ω̂I

IΩ̂
J
J .

This expression may be rewritten in the following equivalent form

T =
1

2
(m1gij +m2Cij) v

ivj

+
1

2
(I1gklg

mn + I2CklC
mn + I3gklC

mn + I4Cklg
mn)Ωk

mΩl
n (43)

+
A

2
Ωi

jΩ
j
i +

B

2
Ωi

iΩ
j
j .

The simultaneous left- and right-invariance of T is impossible when translational
degrees of freedom are active. It becomes possible when we neglect them, i.e., put
m1 = 0, m2 = 0 and in addition I1 = 0, I2 = 0, I3 = 0, I4 = 0. The metric
tensor on Qint becomes then affinely-invariant both on the right (i.e., materially,
in the body) and on the left (in the physical space). The full affine invariance
in the right-hand side material sense appears when m1 = 0, I2 = 0, I3 = 0,
I4 = 0. The kinetic energy becomes spatially affine-invariant when we put in
(42), (43) that m1 = 0, I1 = 0, I3 = 0, I4 = 0. And of course, for any fixed
constants the expression (42), (43) is simultaneously space and material isotropic.
All such metrics are Riemannian, i.e., curved, for any choice of constants excepting
m2 = 0, I1 = 0, I2 = 0, I4 = 0, A = 0, B = 0. In this particular situation the
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metric becomes (11) with the special substitution JAB = IηAB corresponding to
the spherical symmetry of inertia.
Let us summarize (42), (43) in the following way in the formula for the general
doubly-isotropic metric tensor Γ on the configuration space Q

Γ =
1

2
(m1gij +m2Cij) dx

i ⊗ dxj

+
(
I1gijG

−1AB + I2Cijη
AB + I3gijη

AB + I4CijG
−1AB

+ Aφ−1A
jφ

−1B
i +Bφ−1A

jφ
−1B

i

)
dφi

A ⊗ dφj
B.

Let us now discuss some analytic questions. There are two metric-like tensors in
any of linear spaces U , V , and equivalently in any of affine spaces N , M . They are
G[φ], η ∈ U∗⊗U∗ and C[φ], g ∈ V ∗⊗V ∗. Raising their first indices respectively
with the help of η, g, one obtains the following tensors, once contravariant, once
covariant

Ĝ[φ]AB = ηAC G[φ]CB, Ĉ[φ]ij = gik C[φ]kj .

They are respectively members of U⊗U∗, V ⊗V ∗. We can consider the following
eigenequations

ĜRa = λaRa = exp (2qa)Ra, ĈLa = λ−1
a La = exp (−2qa)La.

Obviously, λa are real numbers, whereas Ra, La are basis vectors in U , V . The
quantities λa are deformation invariants, and qa are exponential deformation in-
variants. The bases of V , U given by L = (. . . , La, . . .), R = (. . . , Ra, . . .) may
be identified as usual with linear isomorphisms

L : Rn → V, R : Rn → U.

And conversely, the dual bases (. . . , La, . . .), (. . . , Ra, . . .) are identical with the
inverse isomorphisms

L−1 : V → Rn, R−1 : U → Rn.

The diagonal matrix Diag (. . . , exp(qa), . . .) may be obviously identified with the
linear mapping

D : Rn → Rn.

So, we can write the so-called two-polar decomposition as follows

φ = LDR−1. (44)

Here L, R are orthogonal, whereas D is real-diagonal. This means that φ ∈
LI(U, V ) is represented as a pair of rigid bodies (in the material sense Rn) and with
the n-tuple of one-dimensional oscillatory coordinates qa which are interpreted as
logarithmic deformation invariants.
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To separate the dilatational part of motion one introduces its logarithmic part

q =
1

n

(
q1 + . . .+ qn

)
.

Roughly speaking, q is the “centre of mass” of logarithmic deformation invariants
q1, . . . , qn. The canonical momentum conjugate to q will be denoted by p, and of
course

p = p1 + . . .+ pn

where pi are canonical momenta conjugate to qi. The co-moving angular velocities
of our fictitious rigid bodies are denoted respectively by

χ̂a
b = La

i
dLi

b

dt
, ϑ̂a

b = Ra
K
dRK

b

dt

where the small first Latin letter refer to the space Rn. And [La
i], [Ra

K ] are
respectively components of the inverse matrices of

[
Li

a

]
,
[
RK

b

]
. Their conjugate

affine spins have respectively the matrices [ρ̂ab], [τ̂ab], where again the indices refer
to the arithmetic space Rn. It is convenient to introduce the partially diagonalizing
quantities

Ma
b = −ρ̂ab − τ̂ab, Na

b = ρ̂ab − τ̂ab.

The term “partially diagonalizing” is justified by the fact that the second-order
Casimir invariant

C(2) = Tr
(
Σ2

)
= Tr

(
Σ̂2

)
has the following nice form

C(2) =
∑
a

p2a +
1

16

∑
a,b

(Ma
b)

2

sh2 q
a−qb

2

− 1

16

∑
a,b

(Na
b)

2

ch2 q
a−qb

2

·

This means that for the special affine-affine model, when I = 0 and B = 0, the
kinetic energy has the following nice-looking lattice structure

Tlatt =
1

2α

∑
a

p2a +
1

32α

∑
a,b

(Ma
b)

2

sh2 q
a−qb

2

− 1

32α

∑
a,b

(Na
b)

2

ch2 q
a−qb

2

· (45)

The one-dimensional lattice structure is easily seen here. It is similar to the hyper-
bolic Sutherland lattice. The difference is that it is not positively-definite. Namely,
in a consequence of the non-compactness of GL(n,R), the Killing form contains
the negative contribution, describing something like the apparently strange “cen-
trifugal attraction”. There is a competition with the positive centrifugal repulsion.
In a consequence of this the purely geodetic affine-affine models may predict not
necessarily centrifugal repulsion but also the attraction which may prevail and lead
to the purely geodetic elastic vibrations, ever without any attractive potential. We
mean of course the elastic vibrations of distances between deformation invariants
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qi. When we admit in addition the I- and B-terms in the kinetic energy, then this
hyperbolic Sutherland structure may be written down as follows

T aff−aff
int =

1

4An

∑
a,b

(pa − pb)
2 +

1

32A

∑
a,b

(Ma
b)

2

sh2 q
a−qb

2

− 1

32A

∑
a,b

(Na
b)

2

ch2 q
a−qb

2

+
1

2n(A+ nB)
p2

(46)
T aff−metr
int = T aff

int [A → I +A] +
I

2(I2 −A2)
∥V ∥2

T metr−aff
int = T aff

int [A → I +A] +
I

2(I2 −A2)
∥S∥2

where T aff−aff
int [A 7→ I +A] denotes the expression T aff−aff

int in which the constant
A is replaced by I+A. Obviously, these formulas are very special, concerning the
model one-side affinely invariant and the other side–metrically invariant. However,
the natural question appears as to the hypothetic models combining the affine-affine
term with both terms proportional to ∥V ∥2, ∥S∥2. Of course, one can introduce
them without any problems on the Hamiltonian level. It is interesting what would
be corresponding Lagrangians. We do not go into this problem here. It seems that
the corresponding expressions should be searched in the form (42), (43).
For the comparison let us remind the usual trigonometric Sutherland lattice

Tint =
1

2A

∑
a

p2a −
B

2A(A+ nB)
p2

+
1

32A

∑
a,b

(Ma
b)

2

sin2 qa−qb

2

+
1

32A

∑
a,b

(Na
b)

2

cos2 qa−qb

2

·

When we put B = 0, this formula becomes quite analogous to (45) with the impor-
tant difference however that the hyperbolic functions are replaced by the trigono-
metric once and the sign at the cos−2 part is positive. But, let us notice, in the case
(47) it has nothing to do with the repulsive/attractive action of the coincidence qa

and qb. Simply, in the usual trigonometric Sutherland lattice case, we still use the
two-binary decomposition (44), however with the substitution

Daa = exp (iqa) .

But then, in the resulting circular topology of deformation invariants, there is no
essential difference between their attraction and repulsion.
It is important to stress that in the models of kinetic energy (46)–(47) one can
expect the stationary-oscillating motion in the purely geodetic framework, without
any use of potential energy or other non–potential forces. Of course, they are
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admissible, with the special stress on rotationally doubly (i.e., left- and right-)
invariant models, nevertheless they are able to describe elastic vibrations only due
to inertial forces. It is not the case with the Calogaro-Moser lattices when the
kinetic energy in the doubly isotropic-invariant models is given by

Tint =
1

2I

∑
a

P 2
a +

1

8I

∑
a,b

(Ma
b)

2

(Qa −Qb)2
+

1

8I

∑
a,b

(Na
b)

2

(Qa +Qb)2
· (47)

This is the special case of (11), or rather of its internal part, with JAB = IηAB .
Pa’s are canonical momenta conjugate to Qa so that

Pa = e−qapa, pa = eq
a
Pa

(so summation over a). It is clear from (11) that without any additionally intro-
duced potential V , the geodetic Lagrangian

L = Tint

is unable to describe elastic vibrations. The general solution of equations of motion
would be

φi
A(t) = φi

A(0) + ξiA(0)t

so either escaping to infinity or coming through the zero–volume configuration.
Therefore, the d’Alembert’s expression (47) for the kinetic energy must be always
completed by some potential energy. The affinely–invariant models of T may be,
but need not be combined with any potential energy to describe elastic vibrations.
let us illustrate this fact on the simplest plane model when n = 2. This is the
special, but very instructive case of the “Flatland” [1]. The corresponding reduced
Hamiltonian is given by

Heff
M,N =

1

2m

(
p21 + p22

)
+ U centr

M,N + V
(
q1, q2

)
where U centr

M,N is given by

U centr
M,N =

M2

16m sh2 q
1−q2

2

− N2

16m ch2 q
1−q2

2

(48)

and V
(
q1, q2

)
is an additional potential energy depending only on deformation

invariants. Therefore
V
(
q1, q2

)
= V

(
q2, q1

)
because in general any doubly-isotropic potential energy, i.e., one depending only
on deformation invariants. V

(
q1, . . . , qn

)
must be invariant under any permutation

of its arguments qi.
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Let us now again introduce the variables

x = q2 − q1, q =
1

2

(
q1 + q2

)
px =

1

2
(p2 − p1) , p = p1 + p2

M = M1
2, N = N1

2.

Then we obtain

T aff−aff
int = T aff−aff

int [x] +U centr
M,N (x) =

p2x
A

+
M2

16Ash2 x2
− N2

16Ach2 x2
+

p2

4(A+ 2B)

where, as usual, U centr
M,N is given by (48).

In the case of potential energy separated into the x- and q-parts

V
(
q1, q2

)
= V (x) +W (q)

we obtain finally

H =
p2x
A

+ U centr
M,N (x) + V (x) +

p2

4(A+ 2B)
+W (q)

where U centr
M,N is given by (48), (49).

W is chosen so as to stabilize the dilatational motion, e.g., the harmonic oscillator
or the potential well about q = 0. The internal potential V (x) may, but as said
above, need not be used. Depending on the mutual relationship between M , N the
corresponding x-term of H may predict both the bounded (in general anharmonic)
vibrations or the decaying behavior.
In the general dimension n > 2 neither ρ̂ab or τ̂ab, and therefore, neither Ma

b, Na
b

are constants of motion. Therefore, there is no reduced autonomous dynamics for
the qa-degrees of freedom, i.e., no autonomous, although Ma

b, Na
b-dependent

reduced dynamics. Instead, in any doubly- (left- and right-) invariant dynami-
cal models the dynamical quantities (qa, pb,M

a
b, N

a
b) span what Caratheodory

called [12] the “Funktionengruppe”, i.e., their Poisson brackets are their own func-
tions. So, if for brevity we denote them or any of their functions by ξµ, then for
the doubly invariant models the Poisson brackets of ξµ have the form

{ξµ, ξν} = Cµν(ξ).

Therefore, in principle the system of equations
dξµ

dt
= {ξµ,H(ξ)}

is autonomously solvable. Then, performing the inverse Legendre transformation
we can obtain (in principle) the time dependence of the rigid bodies angular ve-
locities, χ̂a

b(t), ϑ̂a
b(t). Further, the time evolution of L, R may be found from



The Two Apparently Different but Hiddenly Related Euler Achievements . . . 67

the solution of the obvious time-dependent equations equivalent to the definition
of quantities χ̂, ϑ̂

dL

dt
= Lχ̂,

dR

dt
= Rϑ̂.

So, in principle, the total system of equations of motion may be solved for the
internal variables φ(t).
In dimension n = 2, when |N | > |M |, then for |M | > 2 the singularity q1−q2 = 0
is strongly repulsive, but at large distances

∣∣q1 − q2
∣∣ the second, attractive term of

(48) prevails. Therefore, (48) has the characteristic shape of typical intermolecular
forces. If |N | < |M | the geometric potential (48) is purely repulsive. Therefore,
the characteristic threshold typical for intermolecular forces occurs when |N | =
|M |, the stable equilibrium when |N | > |M |, and the purely repulsive behavior
for |N | < |M |. As mentioned, when n > 2, then ρ̂, τ̂ , and also M , N fail to be
constants of motion in geodetic models. They depend on time, however the above
general properties are still satisfied.
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Excitations of Internal Affine Modes and Their Influence on Raman Spectra, Acta
Phys. Pol. B 41 (2010) 165–218.

[69] Sławianowski J., Kovalchuk V., Sławianowska A., Gołubowska B., Martens A.,
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