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Abstract. The constant mean curvature surfaces in three-dimensional space-
forms are examples of isothermic constrained Willmore surfaces, character-
ized as the constrained Willmore surfaces in three-space admitting a con-
served quantity. Both constrained Willmore spectral deformation and con-
strained Willmore Bäcklund transformation preserve the existence of a con-
served quantity. The class of constant mean curvature surfaces in three-
dimensional space-forms lies, in this way, at the intersection of several inte-
grable geometries, with classical transformations of its own, as well as con-
strained Willmore transformations and transformations as a class of isother-
mic surfaces. Constrained Willmore transformation is expected to be unify-
ing to this rich transformation theory.

1. Introduction

Minimal surfaces appear as the area-minimizing surfaces amongst all those span-
ning a given boundary. The Euler-Lagrange equation of the underlying variational
problem turns out to be the zero mean curvature equation. A physical model of a
minimal surface can be obtained by dipping a wire frame into a soap solution. The
resulting soap film is minimal, in the sense that it always tries to organize itself so
that its surface area is as small as possible whilst spanning the wire contour. This
minimal surface area is reached for the flat position, which is also the position in
which the membrane is the most relaxed, i.e., where the elastic energy is minimal
- these surfaces are elastic energy extremals and, in this way, examples of Will-
more surfaces. In fact, a classical result by Thomsen [23] characterizes isothermic
Willmore surfaces in three-space as minimal surfaces in some three-dimensional
space-form.
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Unlike flat soap films, soap bubbles do not extremize the elastic energy - they exist
under a certain surface tension, in an equilibrium where slightly greater pressure
inside the bubble is balanced by the area-minimizing forces of the bubble itself.
With their spherical shape, soap bubbles are examples of area-minimizing sur-
faces under the constraint of volume enclosed - these are surfaces of (non-zero)
constant mean curvature and, therefore, examples of constrained Willmore sur-
faces (which are not Willmore surfaces), elastic energy extremals with respect to
infinitesimally conformal variations (rather than with respect to all variations). In-
deed, as established by Richter [18], constant mean curvature (CMC) surfaces in
three-dimensional space-forms are, in particular, isothermic constrained Willmore
surfaces.

In [16], a spectral deformation and a Bäcklund transformation of constrained Will-
more surfaces are defined and a permutability between the two is established. It is
shown that all these transformations corresponding to the zero multiplier preserve
the class of Willmore surfaces. The class of CMC surfaces in three-dimensional
space-forms is characterized as the class of constrained Willmore surfaces in three-
space admitting a conserved quantity. It is shown that, for special choices of param-
eters, both spectral deformation and Bäcklund transformation preserve the class of
constrained Willmore surfaces admitting a conserved quantity, and, in particular,
the class of CMC surfaces in three-dimensional space-forms.

The class of constant mean curvature surfaces in three-space lies, in this way, at
the intersection of several integrable geometries, with constrained Willmore spec-
tral deformation and Bäcklund transformations, an isothermic spectral deformation
(classically defined by Bianchi [2] and, independently, Calapso [10]), as well as a
classical spectral deformation of its own (the Bonnet transformation [4]), and, in
the Euclidean case, isothermic Darboux transformations (classically discovered by
Darboux [12]) or, equivalently [15], Bianchi-Bäcklund transformation [1]. The
isothermic spectral deformation is known to preserve the constancy of the mean
curvature of a surface in some space-form, cf. [9]. In [16], it is shown that the
classical CMC spectral deformation can be obtained as composition of isother-
mic and constrained Willmore spectral deformation. These spectral deformations
of CMC surfaces in three-dimensional space-forms are, in this way, all closely
related and, therefore, closely related to constrained Willmore Bäcklund transfor-
mation. In [14] it is shown that, for special choices of parameters, the Darboux
transformation of isothermic surfaces in Euclidean three-space preserves the con-
stancy of the mean curvature in R3, as well as the mean curvature itself. Isothermic
Darboux transformation of a CMC surface in Euclidean three-space is expected to
be obtained as a particular case of constrained Willmore Bäcklund transformation.
Constrained Willmore transformation is in this way expected to be unifying to this
rich transformation theory.
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Our theory is local and, throughout this text, with no need for further reference,
restriction to a suitable non-empty open set shall be underlying.

2. Constrained Willmore Surfaces

In modern literature on the elasticity of membranes, a weighted sum of the total
mean curvature, the total squared mean curvature and the total Gaussian curvature
is considered the elastic energy of a membrane. By neglecting the total mean
curvature (by physical considerations) and having in consideration that the total
Gaussian curvature of compact orientable Riemannian surfaces without boundary
is a topological invariant, Willmore [25] defined the Willmore (elastic) energy of a
compact oriented Riemannian surface, without boundary, isometrically immersed
in R3, to be

W =

∫
H2dA

i.e., the total squared mean curvature. The Willmore functional “extends” (for
more details, see [16]) to isometric immersions of compact oriented Riemannian
surfaces in Riemannian manifolds by means of half of the total squared norm of
Π0, the trace-free part of the second fundamental form, which, in fact, amongst
surfaces in R3, differs from W by the total Gaussian curvature, but still shares then
the critical points with W . And so does

W =

∫
M

|Π0|2dA

which is what we consider as the Willmore energy functional.
By definition the Willmore surfaces are the extremals of the Willmore energy. The
class of constrained Willmore (CW) surfaces appears as the generalization of the
class of Willmore surfaces that arises when we consider extremals of the Willmore
functional with respect to infinitesimally conformal variations - those satisfying

d

dt |t=0
(X1,0, X1,0)t = 0

fixing X1,0 a (1, 0)-vector field - rather than with respect to all variations (Note that
conformal variations are characterized by (X1,0, X1,0)t = 0, fixing X1,0 a (1, 0)-
vector field). Under a conformal change of the metric, the squared norm of the
trace-free part of the second fundamental form and the area element change in an
inverse way, leaving the Willmore energy unchanged. In particular, this establishes
the class of (constrained) Willmore surfaces as a Möbius invariant class.
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Our study is one of (constrained) Willmore surfaces in n-dimensional space-forms1

with n ≥ 3, which, in view of the conformal invariance mentioned above, we
approach as immersions

Λ : (M, CΛ) → Sn ∼= P(L)

of an oriented compact2 surface M into the conformal n-sphere, which we model
on the projective space of the light-cone L ⊂ Rn+1,1, following Darboux [11], (for
a modern account, see [5]) providing M with the conformal structure CΛ induced
from the one on P(L) (and with the canonical complex structure).
A fundamental construction in conformal geometry of surfaces is the mean cur-
vature sphere congruence, the bundle of two-spheres tangent to the surface and
sharing with it the mean curvature vector at each point (although the mean curva-
ture vector is not conformally invariant, under a conformal change of the metric it
changes in the same way for the surface and the osculating two-sphere). Let

S : M → Gr(3,1)(Rn+1,1)

be the mean curvature sphere congruence of Λ (the k-spheres of Sn ∼= P(L) are
exactly the manifolds P(L∩V ) with V a (k+1, 1)-plane of Rn+1,1 (see [5]).). We
have a decomposition Rn+1,1 = S ⊕ S⊥ and then a decomposition of the trivial
flat connection d on Rn+1,1 as

d = D ⊕N

for D = ∇S + ∇S⊥
, with ∇S and ∇S⊥

the connections induced on S and S⊥,
respectively, by d. Set

Λ1,0 := Λ⊕ dσ(T 1,0M), Λ0,1 := Λ⊕ dσ(T 0,1M)

two subbundles of SC, defined independently of the choice of σ ∈ Γ(Λ) never-
zero, and then Λ(1) := Λ1,0 + Λ0,1.
In generalization of what is presented in [7] for the particular case of n = 4, we
have (see [16])

W(Λ) =
1

2

∫
M
(dS ∧ ∗dS)

a manifestly conformally invariant formulation of the Willmore energy. This for-
mulation makes it clear that

W(Λ) = E(S)

1Throughout this text, we will, alternatively, use n-space to refer to n-dimensional space-form (Eu-
clidean, spherical or hyperbolic).
2A natural extension to surfaces that are not necessarily compact will take place at some point below.
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the Willmore energy of Λ coincides with the Dirichlet energy of S (with respect to
any of the metrics in the conformal class on M ). N. Ejiri [13] and independently,
M. Rigoli [19] proved, furthermore, that

Λ Willmore ⇔ S harmonic

so that Λ is a Willmore surface if and only if S : (M, CΛ) → Gr(3,1)(Rn+1,1) is
a harmonic map. According to Uhlenbeck [24], it follows that Λ is a Willmore
surface if and only if dλ := D + λ−1N 1,0 + λN 0,1 is a flat connection, for all λ
in S1. More generally (for more details, see [16]) we have

Theorem 1 ([6]). Λ is a constrained Willmore surface if and only if there exists a
real one-form q ∈ Ω1(Λ ∧ Λ(1)) such that the connection

dλq := D + λ−1N 1,0 + λN 0,1 + (λ−2 − 1)q1,0 + (λ2 − 1)q0,1 (1)

is flat, for all λ ∈ S1. In that case, q is said to be a multiplier to Λ and Λ is said to
be a q-CW surface.

In Theorem 1 and throughout this text, we consider the identification

∧2Rn+1,1 ∼= o(Rn+1,1)

of the exterior power ∧2Rn+1,1 with the orthogonal algebra o(Rn+1,1) via

ω 7→ v1 ∧ v2(ω) := (v1, ω)v2 − (v2, ω)v1

for v1, v2, ω ∈ Rn+1,1.
The characterization of constrained Willmore surfaces in space-forms presented
in Theorem 1 provides a natural extension of the concept to surfaces that are not
necessarily compact.
Willmore surfaces are the 0-CW surfaces. The zero multiplier is not necessarily
the only multiplier to a CW surface with no constraint on the conformal struc-
ture, though. In fact, the uniqueness of multiplier characterizes non-isothermic
constrained Willmore surfaces

Proposition 1 ([16]). A constrained Willmore surface has a unique multiplier if
and only if it is not an isothermic surface.

A classical result by Thomsen [23] characterizes isothermic Willmore surfaces
in three-space as minimal surfaces in some three-dimensional space-form. Con-
stant mean curvature surfaces in three-dimensional space-forms are examples of
isothermic constrained Willmore surfaces, as proven by Richter [18]. However,
isothermic constrained Willmore surfaces in three-space are not necessarily CMC
surfaces in some space-form, as established by an example due to Burstall [3], of
a constrained Willmore cylinder that does not have constant mean curvature in any
space-form.
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For later reference, it is convenient to denote, alternatively, dλq by dλ,qS and to
use d̂λ,qV for the analogue defined for a general non-degenerate subbundle V of
(Rn+1,1)C = Cn+2, provided with the complex bilinear extension of the metric
on Rn+1,1, a general one-form q with values in ∧2Cn+2 and d̂ a general flat met-
ric connection on Cn+2. The characterization of q-constrained harmonicity of the
bundle S consisting of the flatness of dλ,qS , for all λ in S1, extends naturally to a
notion respecting a general non-degenerate subbundle V of Cn+2 and a general
q ∈ Ω1(∧2Cn+2), by means of the flatness of the connection dλ,qV , for all λ ∈ S1.
For more details, see [16].

3. Transformations of Constrained Willmore Surfaces

Constrained Willmore surfaces in space-forms form a Möbius invariant class of
surfaces with strong links to the theory of integrable systems, admitting, amongst
others, a spectral deformation, defined by the action of a loop of flat metric connec-
tions, and Bäcklund transformations, defined by applying a dressing action [16].
All these transformations are closely related and all those corresponding to the zero
multiplier preserve the class of Willmore surfaces.

3.1. Spectral Deformation

For each λ in S1, the flatness of the metric connection dλq establishes the existence
of an isometry

ϕλ
q : (Rn+1,1, dλq ) → (Rn+1,1, d)

of bundles, defined on a simply connected component of M , preserving connec-
tions, unique up to a Möbius transformation. We use an interpretation of loop
group theory by Burstall and Calderbank and define a spectral deformation of Λ
which is supposed to be a q−CW surface into new constrained Willmore surfaces
by setting, for each λ in S1

Λλ
q := ϕλ

qΛ.

This comes as an immediate consequence of the fact that (dλq )
µ
qλ = dλµq , for

qλ = λ−2q1,0 + λ2q0,1 and for all λ, µ ∈ S1, which readily establishes Λλ
q as

a Adϕλ
q
(qλ)-CW surface. In particular, spectral deformation corresponding to the

zero multiplier preserves the class of Willmore surfaces. For each λ, we refer to
Λλ
q as the transformation of Λ defined (in the ambit of Möbius geometry) by the

flat metric connection dλq .
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3.2. Bäcklund Transformation

We use a version of the dressing action theory of Terng-Uhlenbeck [22] to define a
transformation of Λ into new constrained Willmore surfaces. We start by defining
a transformation on the level of constrained harmonic bundles. For that, we give
conditions on a dressing r(λ) ∈ Γ(O(Cn+2)) such that the gauging

d̂λ,q̃S := r(λ) ◦ dλ,qS ◦ r(λ)−1

of dλq by r(λ), for each λ, establishes the constrained harmonicity of some bundle
Ŝ from the constrained harmonicity of S, as follows. Define q̃ ∈ Ω1(∧2Cn+2) by
setting

q̃1,0 := Adr(0)q
1,0, q̃ 0,1 := Adr(∞)q

0,1.

Set, furthermore
q̂ = Adr(1)−1 q̃

and
Ŝ = r(1)−1S.

Lemma 1 ([16]). Let ρ ∈ Γ(Cn+2) be reflection across S, ρ = πS − πS⊥ , for
πS and πS⊥ the orthogonal projections of Cn+2 onto SC and (S⊥)C, respectively.
Suppose r(λ) ∈ Γ(O(Cn+2)) is such that

i) λ 7→ r(λ) is holomorphic and invertible at λ = 0 and λ = ∞
ii) ρr(λ)ρ−1 = r(−λ), for all λ

iii) λ 7→ d̂λ,q̃S admits a holomorphic extension to λ ∈ C\{0} through metric
connections on Cn+2.

Then, for d̂ := d̂1,q̃S , the notation d̂λ,q̃S is not merely formal, that is, the connection
denoted by d̂λ,q̃S is of the form (1).

Suppose that 1 is in the domain of r. In that case, and under the hypotheses of
Lemma 1, it follows immediately, in view of the specific form of d̂λ,q̃S , that

r(1)−1 ◦ d̂λ,q̃S ◦ r(1) = dλ,q̂
Ŝ

which establishes the q̂-constrained harmonicity of Ŝ from the q-constrained har-
monicity of S.
Now set

Λ̂1,0 := r(1)−1r(∞)Λ1,0, Λ̂0,1 := r(1)−1r(0)Λ0,1

and
Λ̂ := Λ̂1,0 ∩ Λ̂0,1.

The isotropy of both Λ1,0 and Λ0,1 establishes that for both Λ̂1,0 and Λ̂0,1 and
therefore, the nullity of the bundle Λ̂. On the other hand, an extra condition on r,
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namely, det r(0)|S = det r(∞)|S , establishes Λ̂ as a line bundle. Actually, con-
dition ii) in Lemma 1 establishes, in particular, that r(0)|S , r(∞)|S ∈ Γ(O(S)).
One verifies, furthermore, that, if Λ̂ ⊂ (Rn+1,1)C is a real bundle, then Ŝ is the
mean curvature sphere congruence of the surface Λ̂ and, ultimately, that if q̂ is real,
then Λ̂ is a q̂-CW surface.
Following the philosophy of Terng-Uhlenbeck [22], we then construct r = r(λ)

satisfying the conditions above, as well as establishing the reality of Λ̂ and q̂ from
the reality of Λ and q, respectively. We consider a two-step process of transforma-
tions of the type

r
(−)
α,L(λ) := (−)

α− λ

α+ λ
πL + π(L⊕ρL)⊥ + (−)

α+ λ

α− λ
πρL

(respectively), parametrized by α ∈ C\S1 non-zero and L = Lα
q ⊂ Cn+2 a dα,qS -

parallel null line bundle such that ρL ∩ L⊥ = \{0}. Namely, we consider

r = rα,Lαr−
β,Lβ

for β = α−1, Lβ = L and Lα = r−
β,Lβ (α)L, with α and L as above. We refer

to Λ̂ as the Bäcklund transform of Λ of parameters α,Lα
q . Note that Bäcklund

transformation corresponding to the zero multiplier preserves the class of Willmore
surfaces.

3.3. Spectral Deformation vs Bäcklund Transformation

Spectral deformation and Bäcklund transformation of constrained Willmore sur-
faces permute, as follows

Theorem 2 ([16]). Let α, Lα
q be Bäcklund transformation parameters to Λ corre-

sponding to the multiplier q, let λ be in S1 and ϕλ
q : (Rn+1,1, dλ,qS ) → (Rn+1,1,d)

and ϕ̂λ
q̂ : (Rn+1,1,dλ,q̂

Ŝ
) → (Rn+1,1, d) be isometries preserving connections.

Then the Bäcklund transform of parameters α
λ , ϕλ

qL
α
q of the spectral deformation

ϕλ
qΛ of Λ, of parameter λ, corresponding to the multiplier q, coincides with the

spectral deformation of parameter λ corresponding to the multiplier q̂ of the Bäck-
lund transform of parameters α,Lα

q of Λ, i.e., the diagram in Fig.1 commutes.

4. Conserved Quantities under CW Transformation

Suppose Λ is a q-CW surface. Let p(λ) = λ−1v+v0+λv̄ be a Laurent polynomial
with v0 ∈ Γ(SC) real, v ∈ Γ((SC)⊥) and v∞ := p(1) ̸= 0. We say that p(λ) is a
q-conserved quantity of Λ if dλq p(λ) = 0, for all λ ∈ C\{0} and then following
the idea by Burstall and Calderbank we have
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Figure 1. A permutability of spectral deformation and Bäcklund trans-
formation of constrained Willmore surfaces.

Lemma 2 ([16]). p(λ) is a q-conserved quantity of Λ if and only if

dv∞ = 0, D0,1v = 0, N 1,0v + q1,0v0 = 0.

The characterization above, of a q-conserved quantity p(λ) of Λ, shows, in partic-
ular, that p(λ) determines q (for details, see [16]). There is then no ambiguity on
referring to p(λ) simply as a conserved quantity of Λ.

For special choices of parameters, both spectral deformation and Bäcklund trans-
formation of constrained Willmore surfaces preserve the existence of a conserved
quantity, as follows

Theorem 3 ([16]). Let µ be in S1 and ϕµ
q : (Rn+1,1, dµ,qS ) → (Rn+1,1, d) be an

isometry preserving connections. Suppose that either v0 is non-zero or µv + µv
is non-zero. In that case, if p(λ) is a q-conserved quantity of Λ, then ϕµ

q p(µλ) is
a Adϕµ

q
(qµ)-conserved quantity of the spectral deformation ϕµ

qΛ generated by the
parameter µ of Λ.

We have also

Theorem 4 ([16]). Suppose p(λ) is a q-conserved quantity of Λ. Let α,Lα
q be

Bäcklund transformation parameters to Λ corresponding to the multiplier q and
let r be the corresponding dressing. If p(α) ⊥ Lα

q , then

p̂(λ) := r(1)−1 r(λ) p(λ)

is a q̂-conserved quantity of the Bäcklund transform Λ̂ of Λ of parameters α,Lα
q .
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5. Example: Constant Mean Curvature Surfaces in
Three-dimensional Space-forms

The class of constant mean curvature surfaces in three-dimensional space-forms is
characterized as the class of constrained Willmore surfaces in three-space admit-
ting a conserved quantity. It follows that, for special choices of parameters, both
spectral deformation and Bäcklund transformation of constrained Willmore sur-
faces preserve the class of CMC surfaces in three-dimensional space-forms. The
class of CMC surfaces in three-dimensional space-forms lies, in this way, at the
intersection of several integrable geometries, with classical transformations of its
own, as well as constrained Willmore transformations and transformations as a
class of isothermic surfaces. Constrained Willmore transformation is expected to
be unifying to this rich transformation theory.
In contrast to constrained Willmore surfaces, constant mean curvature surfaces are
not conformally-invariant objects, which requires carrying a distinguished space-
form. Following [5] we start by realizing all space-forms as submanifolds of the
light-cone, given v∞ ∈ Rn+1,1 non-zero

Sv∞ := {v ∈ L ; (v, v∞) = −1}

inherits from Rn+1,1 a positive definite metric of (constant) sectional curvature
−(v∞, v∞). For each v∞, the canonical projection π : L → P(L) defines a
diffeomorphism

πSv∞ : Sv∞ → P(L)\P(L ∩ ⟨v∞⟩⊥).

Let us consider the particular case n = 3. Let T and ⊥ denote the orthogonal
projections of R4,1 onto S and S⊥, respectively. Suppose the surface Λ is not
contained in any two-sphere. This condition ensures (see [16]) that, given v∞ ∈
R4,1 non-zero, Λ is (locally) a surface in P(L)\P(L ∩ ⟨v∞⟩⊥) ∼= Sv∞

Λ ∼= (πSv∞ )−1 ◦ Λ : M → Sv∞

with mean curvature given, up to sign, by

H∞ = (v⊥∞, v⊥∞)
1
2 .

In particular, Λ is a minimal surface in the space-form Sv∞ (i.e., H∞ = 0) if and
only if v∞ ∈ Γ(S).

5.1. CMC Surfaces and Conserved Quantities

According to Lemma 2, the existence of a conserved quantity p(λ) of Λ establishes,
in particular, the constancy of v∞ := p(1). Furthermore we have
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Theorem 5 ([16]). If Λ is a CW surface and p(λ) is a conserved quantity of Λ,
then Λ has constant mean curvature in the space-form Sv∞ , for v∞ = p(1). Re-
ciprocally, if H∞ is constant, for some non-zero v∞ ∈ R4,1, then

p∞(λ) := λ−1 1

2
v⊥∞ + vT∞ + λ

1

2
v⊥∞

is a conserved quantity of the CW surface Λ. Constant mean curvature surfaces
in three-dimensional space-forms are the constrained Willmore surfaces in three-
space admitting a conserved quantity.

Next we establish a conserved quantity with respect to a general multiplier to a
surface with constant mean curvature in some three-space. The conclusion that
these surfaces allow CW spectral deformation and CW Bäcklund transformation
into new ones will then follow from Theorems 3 and 4.
As suggested by Proposition 1, the characterization of the set of multipliers to a
constrained Willmore surface is closely related to the isothermic condition. Isother-
mic surfaces are classically defined by the existence of conformal curvature line
cooordinates, i.e., conformal coordinates with respect to which the second funda-
mental form is diagonal. This is a conformally-invariant condition, although the
second fundamental form is not conformally-invariant, and it can be reformulated
in a manifestly invariant way, as follows (This formulation is also discussed in [6]
and [21].)

Theorem 6 ([8]). Λ is isothermic if and only if there is a non-zero real closed form
η ∈ Ω1(Λ ∧ Λ1). In that case, we say that (Λ, η) is isothermic.

In the conditions of Theorem 6, the form η is unique up to non-zero constant real
scale, cf. [21].
Following Proposition 1, we have, furthermore

Proposition 2 ([16]). Suppose (Λ, η) is an isothermic q-CW surface. Then the set
of multipliers to Λ is the one-dimensional affine space q + ⟨∗η⟩R.

Fix v∞ ∈ R4,1 non-zero. Suppose Λ has constant mean curvature in Sv∞ . Define
N ∈ Γ(S⊥) unit by setting v⊥∞ = H∞N (in the particular case Λ is minimal in
Sv∞ , N is defined only up to sign). Write σ∞ for (πSv∞ )−1 ◦ Λ. Set η∞ :=
1
2 σ∞ ∧ dN , a form derived by F. Burstall and D. Calderbank which establishes
Λ as an isothermic surface and for which scaling by the mean curvature in Sv∞

setting
q∞ := H∞η∞

provides a multiplier to Λ (see [16])

Proposition 3. (Λ, η∞) is an isothermic q∞-CW surface.
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Proposition 3 makes it clear, in particular, that minimal surfaces in three-dimensional
space-forms are examples of Willmore surfaces.
For each t ∈ R, set

qt∞ := q∞ + t ∗ η∞.

Proposition 4 ([17]). For each t ∈ R

pt∞(λ) := λ−1 1

2
(H∞ − it)N + vT∞ + λ

1

2
(H∞ + it)N

is a qt∞-conserved quantity of Λ.

5.2. CMC Surfaces at the Intersection of Integrable Geometries

The results in Section 5.1 combine to establish the following

Theorem 7 ([17]). The class of CMC surfaces in three-dimensional space-forms
is preserved by both CW spectral deformation and CW Bäcklund transformation,
for special choices of parameters, with preservation of both the space-form and
the mean curvature in the latter case.

Fix v∞ ∈ R4,1 non-zero and suppose Λ has constant mean curvature in Sv∞ . The
fact that a Bäcklund transform of Λ still is a surface of constant mean curvature
H∞ in Sv∞ , as stated above, is not immediate from Theorem 4. In contrast, it is
immediate from Theorem 3 that, given λ in S1 and ϕλ

t,∞ : (R4,1, dλqt∞
) → (R4,1,d)

an isometry preserving connections, the spectral deformation ϕλ
t,∞Λ of Λ, of pa-

rameter λ, corresponding to the multiplier qt∞ has constant mean curvature

Hλ
t,∞ =| Re (λH∞ +

it

2
(λ− λ−1)) |

in the space-form Svλt,∞
for

vλt,∞ := ϕλ
t,∞(vT∞ + ((Reλ)H∞ +

it

2
(λ− λ−1))N).

Zero curvature representation provides a context in which Bonnet transformation
[4] of CMC surfaces in R3 can be generalized to CMC surfaces in general three-
space, as follows (the classical CMC spectral deformation). For each λ ∈ S1,
set

dλ∞ := D + λN 1,0 + λ−1N 0,1 + 2(λ− 1)q1,0∞ + 2(λ−1 − 1)q0,1∞ .

Theorem 8 ([16]). The connection dλ∞ is flat, for all λ ∈ S1. Besides, if for each
λ ∈ S1, ϕλ

∞ : (R4,1, dλ∞) → (R4,1, d) is an isometry preserving connections, then

i) vλ∞ := ϕλ
∞v∞ is a non-zero constant section of R4,1

ii) the transformation Λλ
∞ := ϕλ

∞Λ of Λ, defined by the flat metric connection
dλ∞, has constant mean curvature H∞ in the space-form Svλ∞
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iii) the family ϕλ
∞σ∞, with λ ∈ S1, is a family of isometrical deformations of

σ∞ in a fixed space-form, preserving the mean curvature.

In [8], the spectral deformation of isothermic surfaces in R3 (or, equivalently,
in general three-space) classically discovered by Bianchi [2] and, independently,
Calapso [10] is generalized to n-space, for general n, by means of zero curva-
ture representation, as follows (the isothermic spectral deformation). Let η be a
non-zero real one-form with values in Λ ∧ Λ(1). For each t ∈ R, set

dηt := d + tη.

Theorem 9 ([8]). (Λ, η) is isothermic if and only if dηt is a flat connection, for
each t ∈ R. In that case, the transformation Λη

t of Λ defined by the flat metric
connection dηt is still isothermic, for each t ∈ R.

The isothermic spectral deformation is known [9] to preserve the constancy of
the mean curvature in some three-dimensional space-form, defining then a trans-
formation of CMC surfaces into new ones. In fact [16], given t ∈ R and ϕ∞

t :
(R4,1, dη∞t ) → (R4,1, d) an isometry preserving connections, the deformation
ϕ∞
t Λ of Λ has constant mean curvature H∞

t in the space-form Sv∞t , for

v∞t := ϕ∞
t (v∞ +

t

2
N)

with

(H∞
t )2 = (H∞ +

t

2
)2.

Proposition 5 ([17]). The classical CMC spectral deformation of parameter other
than −1 can be obtained as constrained Willmore spectral deformation

dλ∞ = dλ
−1

q
tλ∞

for λ ̸= −1 in S1 and

tλ := iH∞
1− λ

1 + λ
∈ R.

Furthermore: for all λ ∈ S1

dλ
−1

∞ = dλq∞ + 2H∞(1− Reλ) ηλ∞

for ηλ∞ = λ−1η1,0∞ + λη0,1∞ . Hence the classical CMC spectral deformation can
be obtained as composition of isothermic and constrained Willmore spectral defor-
mation and, in the particular case of a minimal surface, the classical CMC spectral
deformation coincides, up to reparametrization, with constrained Willmore spec-
tral deformation corresponding to the zero multiplier.
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These spectral deformations of CMC surfaces in three-dimensional space-forms
are, in this way, all closely related and, therefore, closely related to constrained
Willmore Bäcklund transformation, cf. Theorem 2.
CMC surfaces in Euclidean three-space enjoy, furthermore, Darboux transforma-
tion as isothermic surfaces or, equivalently [15], Bianchi-Bäcklund transformation,
as discussed in [20] (cf. [1]). In fact, in [14], it is shown that, for special choices of
parameters, the transformation of isothermic surfaces in R3 classically discovered
by Darboux [12] preserves the constancy of the mean curvature in R3, as well as
the mean curvature itself. This is also the case for constrained Willmore Bäcklund
transformation, cf. Theorem 7. In [14], a description of Darboux transforma-
tion of constant mean curvature surfaces in Euclidean three-space is presented in
the quaternionic setting. It is based on the solution of a Riccati equation and it
displays a striking similarity with the Darboux transformation of constrained Will-
more surfaces in four-space defined in [16]. Non-trivial Darboux transformation of
constrained Willmore surfaces can be obtained as a particular case of constrained
Willmore Bäcklund transformation, as established in [16]. We believe that isother-
mic Darboux transformation of a CMC surface in Euclidean three-space can be
obtained as a particular case of constrained Willmore Bäcklund transformation.
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