Thirteenth International Conference on Geometry, Integrability and Quantization June 3–8, 2011, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2012, pp 233–244

COHOMOGENEITY TWO RIEMANNIAN MANIFOLDS OF NON-POSITIVE CURVATURE

REZA MIRZAIE

Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

Abstract. We consider a Riemannian manifold M (dim $M \ge 3$), which is flat or has negative sectional curvature. We suppose that there is a closed and connected subgroup G of Iso(M) such that dim(M/G) = 2. Then we study some topological properties of M and the orbits of the action of G on M.

1. Introduction

Let M^n be a connected and complete Riemannian manifold of dimension n, and G be a closed and connected subgroup of the Lie group of all isometries of M. If $x \in M$ then we denote by $G(x) = \{gx ; g \in G\}$ the orbit containing x.

If $\max\{\dim G(x) ; x \in M\} = n - k$, then M is called a C_k -G-manifold (Gmanifold of cohomogeneity k) and we will denote it by Coh(G, M) = k. If M is a C_k -G-manifold then the orbit space $M/G = \{G(x) : x \in M\}$ is a topological space of dimension k. When k is small, we expect close relations between topological properties of M and the orbits of the action of G on M. If M is a C_0 -G-manifold then the action of G on M is transitive, so M is a homogeneous G-manifold and it is diffeomorphic to G/G_x (where $x \in M$ and $G_x = \{g \in$ G; gx = x). Thus, topological properties of homogeneous G-manifolds are closely related to Lie group theory. If M is a homogeneous G-manifold of nonpositive curvature, it is diffeomorphic to $\mathbb{R}^{n_1} \times \mathbb{T}^{n_2}$, $n_1 + n_2 = n$ ([20]). The study of C_1 -G-manifolds goes back to 1957 and a paper due to Mostert [14]. Mostert characterized the orbit space of C_1 - G-manifolds, when G is compact. Later, other mathematicians generalized the Mostert's theorem to G-manifolds with noncompact G. There are many interesting results on topological properties of the orbits of C_1 -G-manifolds under conditions on the sectional curvature of M. If M is a C_1 -G-manifold of negative curvature then it is proved (see [17]) that either M is simply connected or the fundamental group of M is isomorphic to \mathbb{Z}^p for some positive integer p. In the later case, if p > 1 then each orbit is diffeomorphic to $\mathbb{R}^{n-1-p} \times \mathbb{T}^p$, $n = \dim M$, and M is diffeomorphic to $\mathbb{R}^{n-p} \times \mathbb{T}^p$. If p = 1, then there is an orbit diffeomorphic to \mathbb{S}^1 and the other orbits are covered by $\mathbb{S}^{n-2} \times \mathbb{R}$. Topological properties of flat C_1 -G-manifolds have been studied in [13].

In the present article, I summarize some of my results [9-13] about C_2 -G-manifolds which are flat or have negative curvatures.

2. Flat C_2 -G-manifolds

In the following, M^n is a Riemannian manifold of dimension n, G is a closed and connected subgroup of Iso(M), $\pi: M \to M/G$ denotes the projection on to the orbit space. If $G, H \subset \text{Iso}(M)$ and for each $x \in M$, G(x) = H(x), then we say that G and H are orbit equivalent on M and we denote it by $G \simeq H$.

Fact 2.1 (See [2,18]). Let M be a Riemannian manifold and \hat{M} be the Riemannian universal covering of M by the covering map $k \colon \hat{M} \to M$, and let G be a closed and connected subgroup of Iso(M). Then there is a connected covering \hat{G} for G such that \hat{G} acts isometrically on \hat{M} and the following assertions are true

- 1) $\operatorname{Coh}(G, M) = \operatorname{Coh}(\hat{G}, \hat{M})$
- 2) If $D = \hat{G}(x)$ is a \hat{G} -orbit in \hat{M} then k(D) is a G-orbit in M, and each G-orbit in M is equal to k(D) for some \hat{G} -orbit D in \hat{M}
- If Δ is the deck transformation group of the covering k: M → M, then for each δ ∈ Δ and each g ∈ Ĝ, δog = goδ. Thus δ maps Ĝ-orbits in M̂ on to Ĝ-orbits.

If M is a C_k -G-manifold, then there are two types of points in M called principal and singular points (for definition and details about singular and principal points, we refer to [2, 8]). If x is a principal (singular) point then $\pi(x)$ is an interior (boundary) point of M/G, the orbit G(x) is called a principal (singular) orbit and dim G(x) = n - m (dim $G(x) \le n - m$). The union of all principal orbits is an open and dense subset of M.

- **Theorem 1** ([13]). a) If G is a closed and connected subgroup of $Iso(\mathbb{R}^n)$ such that \mathbb{R}^n is a C_1 -G-manifold, then either each principal orbit is isometric to \mathbb{R}^{n-1} and there is not singular orbit, or each principal orbit is diffeomorphic to $\mathbb{S}^{n-m-1} \times \mathbb{R}^m$, for some $m \ge 0$ and there is a unique singular orbit isometric to \mathbb{R}^m .
 - b) If G is a closed and connected subgroup of Iso(M) and M is a flat C_1 -G-manifold then there is a non-negative integer l such that $\pi_1(M) = \mathbb{Z}^l$.

Theorem 2 ([20]). If M is a homogeneous Riemannian manifold of non-positive curvature, then it is diffeomorphic to $\mathbb{T}^m \times \mathbb{R}^r$ for some non-negative integers m, t, where \mathbb{T}^m denotes the m-torus.

Let G be a connected subgroup of $\text{Iso}(\mathbb{R}^n)$ and d, e be positive integers such that d + e = n. If G is not compact and it is a subgroup of $\text{SO}(d) \times \mathbb{R}^e$, then we say that G is *d*-helicoidical on \mathbb{R}^n . Let

$$K = \{A \in SO(d) ; (A, b) \in G, \text{for some } b \in \mathbb{R}^e\}$$

$$T = \{b \in \mathbb{R}^e ; (A, b) \in G, \text{ for some } A \in SO(d)\}\$$

If $x = (x_1, x_2) \in (\mathbb{R}^d - \{o\}) \times \mathbb{R}^e$, $\mathbb{T}(x_2) = \mathbb{R}^e$ and $K(x_1) = \mathbb{S}^{d-1}(|x_1|)$, then G(x) is called a **d-helix** in \mathbb{R}^n .

Let G be a closed and connected subgroup of $\operatorname{Iso}(\mathbb{R}^n)$. We say that G has compact (or helicoidical) factor, if there is an integer 0 < m < n and $G_1 \subset \operatorname{Iso}(\mathbb{R}^{n-m})$, $G_2 \subset \operatorname{Iso}(\mathbb{R}^m)$, such that

1) G_2 is compact (or helicoidical on \mathbb{R}^m)

2)
$$G \simeq G_2 \times G_1$$

3) For some(so each) $x \in \mathbb{R}^{n-m}$, $G_1(x) = \mathbb{R}^{n-m}$.

Theorem 3. Let M^n , $n \ge 3$, be a complete connected non-simply connected and flat Riemannian manifold, which is a C_2 -G-manifold under the action of a closed and connected Lie group G of isometries. Then one of the following is true

- a) $\pi_1(M) = Z$ and each principal orbit is isometric to $\mathbb{S}^{n-2}(c)$, for some c > 0 (c depends on orbits).
- b) There is a positive integer l, such that $\pi_1(M) = \mathbb{Z}^l$ and one of the following is true:
 - b1) There is a positive integer m, 2 < m < n, such that each principal orbit is covered by $N^{m-2}(c) \times \mathbb{R}^{n-m}$, where $N^{m-2}(c)$ is a homogeneous hypersurface of $\mathbb{S}^{m-1}(c)$ (c > 0 depends on orbits). There is a unique orbit diffeomorphic to $\mathbb{T}^l \times \mathbb{R}^{n-m-l}$.
 - b2) Each principal orbit is covered by $\mathbb{S}^r \times \mathbb{R}^{n-r-2}$, for some positive integer r.
 - b3) Each principal orbit is covered by $H \times \mathbb{R}^{n-m}$, such that H is a helix in \mathbb{R}^m . There is an orbit diffeomorphic to $\mathbb{T}^l \times \mathbb{R}^t$, for some non-negative integer t.
- c) Each orbit is diffeomorphic to $\mathbb{R}^t \times \mathbb{T}^l$, for some nonnegative integer t (t = n l 2, if the orbit is principal).

Sketch of the proof: $\hat{M} = \mathbb{R}^n$ is the universal covering of M. Consider \hat{G} as in Fact 2.1, and let $k: \mathbb{R}^n \to M$ be the covering map, and Δ be the deck transformation group of the covering $k: \mathbb{R}^n \to M$ (i.e, $\pi_1(M)$ is isomorphic to Δ). We can show that one of the following is true

- 1) \hat{G} is compact or it has compact factor on \mathbb{R}^n
- 2) \hat{G} is helicoidical or it has helicoidical factor on \mathbb{R}^n
- 3) All \hat{G} -orbits are euclidean.

We consider 1), 2) and 3) separately.

1) If \hat{G} is compact, we get part a) of the theorem (see [10]). If \hat{G} is not compact but has compact factor, there are subgroups \hat{G}_1 of $\operatorname{Iso}(\mathbb{R}^{n-m})$ and \hat{G}_2 of $\operatorname{Iso}(\mathbb{R}^m)$, for some positive integer m < n, such that \hat{G}_2 is compact, \hat{G}_1 acts transitively on \mathbb{R}^{n-m} and $\hat{G} \simeq \hat{G}_2 \times \hat{G}_1$. Since \hat{G}_2 is compact it has a fixed point in \mathbb{R}^m , which without lose of generality we assume that the origin of \mathbb{R}^m is a fixed point of \hat{G}_2 (i.e, $\hat{G}_2 \subset SO(m)$). So, \mathbb{R}^m is a C_2 - \hat{G}_2 -manifold. If m = 2 then \hat{G}_2 is trivial and all \hat{G} orbits are euclidean (isometric to \mathbb{R}^{n-2}) which we will consider in the case 3). If m > 2, put $F = \{x \in \mathbb{R}^m ; \hat{G}_2(x) = x\}$. F is a totally geodesic submanifold of \mathbb{R}^n , so it is isomorphic to \mathbb{R}^k , for some k < m. Since dimF < 2 (see [11], Lemma 2.6), then $F = \{o\}$ or F is isometric to \mathbb{R} . Suppose $F = \{o\}$ and put $W = \{o\} \times \mathbb{R}^{n-m} \subset \mathbb{R}^m \times \mathbb{R}^{n-m}, \quad D = k(W).$ Since W is a \hat{G} -orbit, D must be a G-orbit. Therefore, D is a flat homogeneous Riemannian manifold which is diffeomorphic to $\mathbb{R}^{n-m-l} \times \mathbb{T}^l$ for some integer l, so $\pi_1(D) = \mathbb{Z}^l$. W is the unique \hat{G} -orbit with dimension n-m. Then $\Delta(W) = W$ and $\Delta = \pi_1(D) = \mathbb{Z}^l$. Therefore, $\pi_1(M) = \mathbb{Z}^l$. If $o \neq x_2 \in \mathbb{R}^m$ then $\hat{G}_2(x_2) \subset \mathbb{S}^{m-1}(|x_2|)$ and $\mathbb{S}^{m-1}(|x_2|)$ is a C_1 - \hat{G}_2 -manifold. Thus $\hat{G}_2(x_2)$ is a homogeneous hypersurface of $\mathbb{S}^{m-1}(|x_2|)$, which we denote it by $N^{m-2}(|x_2|)$. Therefore, each principal orbit in M is covered by $N^{m-2}(c) \times \mathbb{R}^{n-m}$ for some c > 0 related to orbits. These yield to part b1) of the theorem. Now, suppose that F is isometric to \mathbb{R} and put A = $F \times \mathbb{R}^{n-m} \subset \mathbb{R}^m \times \mathbb{R}^{n-m}$ and B = k(A). Since A is a C_1 - \hat{G} -manifold, B is a C_1 -G-manifold. Since B is flat, by Theorem 1, there is a non-negative integer l such that $\pi_1(B) = \mathbb{Z}^l$. Consider a point $x = (x_2, x_1) \in \mathbb{R}^m \times \mathbb{R}^{n-m}$. If $x_2 \in F$ then $\hat{G}(x) = \{x_2\} \times \mathbb{R}^{n-m} \cong \mathbb{R}^{n-m}$. If $x_2 \in \mathbb{R}^m - F$, then $\hat{G}(x) = \hat{G}_2(x_2) \times \mathbb{R}^{n-m}$, with dim $\hat{G}_2(x_2) \ge 1$, so by dimensional reasons for each $x_2 \in F$, there is $x'_2 \in F$ such that $\delta(\{x_2\} \times \mathbb{R}^{n-m}) = \{x'_2\} \times \mathbb{R}^{n-m}$. Thus $\Delta(A) = A$ and $\pi_1(M) = \Delta = A$ $\pi_1(B) = \mathbb{Z}^l$. Let $x = (x_2, x_1) \in \mathbb{R}^m \times \mathbb{R}^{n-m}$ be a principal orbit. Each $q \in \hat{G}_2$ is a rotation around the line F, so $\hat{G}_2(x_2)$ is a sphere included in a hyperplane of \mathbb{R}^m which is perpendicular to F. Thus, $\hat{G}(x_2)$ is isometric to $\mathbb{S}^{m-2}(c)$ for some positive number c, and $\hat{G}(x)$ must be isometric to $\mathbb{S}^{m-2}(c) \times \mathbb{R}^{n-m}$. If we put m-2=r, then we get part b2) of the theorem.

2) Let $m(\leq n)$ be a positive integer and $\hat{G} \simeq \hat{G}_2 \times \hat{G}_1$ such that \hat{G}_2 be helicoidical on \mathbb{R}^m and \hat{G}_1 be transitive on \mathbb{R}^{n-m} . If m = 2, then G_2 is trivial and \hat{G} orbits are euclidean, which is the case 3). If m > 2, then \hat{G}_2 is orbit equivalent (on \mathbb{R}^m) to a subgroup of $SO(d) \times \mathbb{R}^{m-d}$ for some positive integer d. Put

$$K = \{A \in \mathrm{SO}(d) ; (A, b) \in \hat{G}_2 \text{ for some } b \in \mathbb{R}^{m-d} \}$$
$$T = \{b \in \mathbb{R}^{m-d} ; (A, b) \in \hat{G}_2 \text{ for some } A \in \mathrm{SO}(d) \}.$$

Then, either all \hat{G}_2 orbits (so \hat{G} orbits) are euclidean (which is the case 3)), or one of the following is true (see [8])

- I) d > 1, each principal \hat{G}_2 -orbit in \mathbb{R}^m is diffeomorphic to $\mathbb{S}^{d-1} \times \mathbb{R}^{m-d-1}$ and the other \hat{G}_2 -orbits of \mathbb{R}^m are isometric to \mathbb{R}^{m-d-1} . The union of all orbits which are isometric to \mathbb{R}^{m-d-1} is a submanifold W of \mathbb{R}^m , such that W is isometric to \mathbb{R}^{m-d} , $\hat{G}_2(W) = W$ and $\operatorname{Coh}(\hat{G}_2, W) = 1$.
- II) d > 2 and each principal \hat{G}_2 -orbit of \mathbb{R}^m is isometric to $N^{d-2}(c) \times \mathbb{R}^{m-d}$. Where $N^{d-2}(c)$ is a homogeneous hypersurface of $\mathbb{S}^{d-1}(c)$ (c > 0). There is a unique \hat{G}_2 -orbit V in \mathbb{R}^m , which is isometric to \mathbb{R}^{m-d} .
- III) d > 1 and each principal \hat{G}_2 -orbit in \mathbb{R}^m is isometric to a *d*-helix in \mathbb{R}^m . There is a unique \hat{G}_2 -orbit V isometric to \mathbb{R}^{m-d} .

We consider I), II), III) separately.

I) Put $D = W \times \mathbb{R}^{n-m}$ and B = k(D). Since $\operatorname{Coh}(\hat{G}_2, W) = 1$, then $\operatorname{Coh}(\hat{G}, W \times \mathbb{R}^{n-m}) = 1$. Thus B is a flat cohomogeneity one G-manifold, so by Theorem 1, there is a non-negative integer l such that $\pi_1(D) = \mathbb{Z}^l$. Now let $(x_2, x_1) \in \mathbb{R}^m \times \mathbb{R}^{n-m}$. If $x_2 \in W$, then $\hat{G}(x) = \hat{G}_2(x_2) \times \hat{G}_1(x_1)$ is isometric to $\mathbb{R}^{m-d-1} \times \mathbb{R}^{n-m} = \mathbb{R}^{n-d-1}$, and if $x_2 \in \mathbb{R}^m - W$, then $\hat{G}(x) = \hat{G}_2(x_2) \times \hat{G}_1(x_1)$ is diffeomorphic to $\mathbb{S}^{d-1} \times \mathbb{R}^{m-d-1} \times \mathbb{R}^{n-m} = \mathbb{S}^{d-1} \times \mathbb{R}^{n-d-1}$. Since each $\delta \in \Delta$ maps \hat{G} -orbits of $\mathbb{R}^m \times \mathbb{R}^{n-m}$ on to \hat{G} -orbits , and the \hat{G} -orbits in $D = W \times \mathbb{R}^{n-m}$ are not isometric to \hat{G} -orbits in $(\mathbb{R}^m - W) \times \mathbb{R}^{n-m}$, then $\Delta(D) = D$. Thus

$$\pi_1(M) = \Delta = \pi_1(B) = \mathbb{Z}^l.$$

Since principal \hat{G} -orbits of \mathbb{R}^n are diffeomorphic to $\mathbb{S}^{d-1} \times \mathbb{R}^{n-d-1}$ then we get part b2) of the theorem.

II) Let $P = V \times \mathbb{R}^{n-m}$ and C = k(P). *P* is the unique \hat{G} -orbit of \mathbb{R}^n which is isometric to $\mathbb{R}^{m-d} \times \mathbb{R}^{n-m} \simeq \mathbb{R}^{n-d}$. Thus *C* is a flat *G*-orbit in *M*, and it must be diffeomorphic to $\mathbb{T}^l \times \mathbb{R}^{n-d-l}$, for some non-negative integer *l*. Since each $\delta \in \Delta$ maps \hat{G} -orbits on to \hat{G} -orbits, we get from uniqueness of *P* that $\Delta(P) = P$. Thus

$$\pi_1(M) = \Delta = \pi_1(C) = \mathbb{Z}^l.$$

Therefore, we get part b1) of the theorem.

III) From uniqueness of V we can prove in the same way as II) that $\pi_1(M) = \mathbb{Z}^l$, for some positive integer l, and there is a unique G-orbit in M diffeomorphic to $\mathbb{T}^l \times \mathbb{R}^r$ for some integer r. Thus we get part b3) of the theorem.

3) Consider a *G*-orbit *B* in *M*. There is a \hat{G} -orbit *D* in \mathbb{R}^n such that B = k(D). Since *D* is flat then *B* is flat and homogeneous, and it must be diffeomorphic to $\mathbb{R}^t \times \mathbb{T}^l$ for some integers t, l. This is part c) of the theorem.

3. C₂-G-manifolds of Negative Curvature

If M is a Riemannian manifold and $\delta \in Iso(M)$, the squared displacement function $d_{\delta}^2: M \to M$ is defined by

$$d_{\delta}^2(x) = d(x, \delta x).$$

Fact 3.1 (see [5]). If M is a simply connected Riemannian manifold of negative curvature and $\delta \in \text{Iso}(M)$, then one of the followings is true

- 1) d_{δ}^2 has no minimum point.
- 2) Minimum point set of d_{δ}^2 is equal to the fixed point set of δ .
- 3) minimum point set of d_{δ}^2 is the image of a geodesic γ translated by δ (i.e., there is a positive number t_0 such that for all t, $\delta(\gamma(t)) = \gamma(t + t_0)$).

The isometries 1), 2), and 3) are called **parabolic**, **elliptic** and **axial**, respectively. We recall (see [5]) that infinity $M(\infty)$ of a simply connected Riemannian manifold M of nonpositive curvature is the classes of asymptotic geodesics. For each geodesic γ we denote by $[\gamma]$ the asymptotic class of geodesics containing γ . If $x \in M$, then there is a unique (up to parametrization) geodesic γ_x in the class $[\gamma]$ containing x, and there is a unique hypersurface S_x containing x and perpendicular to all elements of $[\gamma]$. S_x is called a horosphere.

Fact 3.2 (see [3,5]).

a) Let M be a simply connected Riemannian manifold of negative curvature.

- 1) If g is an axial isometry of M, then the geodesic γ with the property $g(\gamma) = \gamma$ is unique.
- If g is a parabolic isometry of M, then there is a unique class of asymptotic geodesics [γ] such that g[γ] = [γ].

b) Let G be a connected and solvable Lie subgroup of isometries of a simply connected and negatively curved Riemannian manifold M. Then one of the followings is true

- 1) $\operatorname{Fix}(G, M) \neq \emptyset$.
- 2) There is a unique G-invariant geodesic.
- 3) There is a unique class of asymptotic geodesics $[\gamma]$ such that $G[\gamma] = [\gamma]$.

Corollary 1 ([12, 18]). If M is a simply connected Riemannian manifold of negative curvature and G is a closed and connected subgroup of Iso(M) such that $Fix(G, M) = \emptyset$, then there is at most one totally geodesic G-orbit in M.

Corollary 2. If M is a negatively curved, non-simply connected, Riemannian manifold and \widetilde{M} is the universal covering of M, then for each deck transformation δ there is a geodesic γ in \widetilde{M} such that $\delta \gamma = \gamma$.

Proof: Let $x_0 \in M$ and $[\alpha] \in \pi_1(M, x_0)$. Suppose that $[\alpha]$ is the corresponding element of δ in the canonical isomorphism between Δ and $\pi_1(M, x_0)$ (see [15] p. 186). Let β : $[0, 1] \to M$ be a geodesic segment such that $\beta(0) = \beta(1) = x_0$ and $[\beta] = [\alpha]$. Let $\kappa(\tilde{x}) = x_0$ and $\tilde{\beta}$ be the unique lift of β to \tilde{M} such that $\tilde{\beta}(0) = \tilde{x}$. It follows from the elementary properties of covering spaces that $\delta(\tilde{x}) = \tilde{\beta}(1)$. Now, if γ is the extension of geodesic segment $\tilde{\beta}$ to a geodesic in \tilde{M} then $\delta(\gamma) = \gamma$.

Lemma 1 ([11]). Let M be a Riemannian manifold of negative curvature, $n = \dim M \ge 3$, and \widetilde{M} be its universal covering. If there is a geodesic γ on \widetilde{M} and an element δ in the center of the deck transformation group Δ , such that $\delta \gamma = \gamma$, then M is diffeomorphic to one of the following spaces

$$\mathbb{S}^1 \times \mathbb{R}^{n-1}, \qquad B^2 \times \mathbb{R}^{n-2}$$

where B^2 is the mobius band.

Theorem 4 ([11]). Let M^{n+2} be a complete negatively curved and non-simply connected Riemannian manifold which is of cohomogeneity two under the action of a closed and connected Lie subgroup of isometries. If $Fix(G, M) \neq \emptyset$, then

- a) *M* is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^{n+1}$ or $B^2 \times \mathbb{R}^n(B^2)$ is the mobius band)
- b) Fix(G, M) is diffeomorphic to \mathbb{S}^1
- c) Each principal orbit is diffeomorphic to \mathbb{S}^n .

Remark 1. By Theorem 3.7 a) in [17], if M is a non-simply connected and complete Riemannian manifold of negative curvature, which is of cohomogeneity one under the action of a connected and closed subgroup of isometries, and if there is not any singular orbit, then there are positive integers p, s such that M is diffeomorphic to $\mathbb{R}^p \times \mathbb{R}^{s+1}$ and each orbit is diffeomorphic to $\mathbb{R}^p \times \mathbb{R}^s$, $p + s = \dim M - 1$.

Theorem 5 ([12]). Let M^n , $n \ge 3$, be a complete negatively curved Riemannian manifold and G be a closed, connected and non-semisimple subgroup of isometries of M^n . If M is a cohomogeneity two G-manifold such that the singular orbits (if there are any) are fixed points of G. Then one of the following is true

1) *M* is simply connected (diffeomorphic to \mathbb{R}^n).

- 2) *M* is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^{n-1}$ or $B^2 \times \mathbb{R}^{n-2}(B^2)$ is the mobious band). Each principal orbit is diffeomorphic to \mathbb{S}^{n-2} . Union of singular orbits $\operatorname{Fix}(G, M)$ is diffeomorphic to \mathbb{S}^1 .
- M is diffeomorphic to S¹ × ℝ² or B² × ℝ. All orbits are diffeomorphic to S¹.
- π₁(M) = Z^p for some positive integer p, and all orbits are diffeomorphic to R^{n-2-p} × T^p.

Sketch of the proof: Following Fact 2.1, let \widetilde{M} be the universal Riemannian covering manifold of M with the deck transformation group Δ and let \widetilde{G} be the corresponding connected covering of G which acts isometrically and by cohomogeneity two on \widetilde{M} . If $\operatorname{Fix}(\widetilde{G}, \widetilde{M}) \neq \emptyset$ then $\operatorname{Fix}(G, M) \neq \emptyset$, so by Theorem 4, we get the parts 1) or 2) of the theorem. Now, suppose that $\operatorname{Fix}(\widetilde{G}, \widetilde{M}) = \emptyset$. By assumptions of the theorem, if there is a singual orbit, it must be a fixed point. So all \widetilde{G} -orbits in \widetilde{M} must be (n-2)-dimensional. Since G is non-semisimple, \widetilde{G} is non-semisimple. Let H be a solvable normal subgroup of \widetilde{G} and put $N = \operatorname{Fix}(H, \widetilde{M})$. We consider the following two cases separately

a)
$$N = \emptyset$$
, **b**) $N \neq \emptyset$.

a) By Fact 3.2 b), one of the following is true:

- a-i) There is a unique geodesic γ such that $H(\gamma) = \gamma$.
- a-ii) There is a unique class of asymptotic geodesics $[\gamma]$ such that $H[\gamma] = [\gamma]$.

a-i) From normality of H in \widetilde{G} and uniqueness of γ , we get that $\widetilde{G}(\gamma) = \gamma$. Since $\operatorname{Fix}(\widetilde{G}, \widetilde{M}) = \emptyset$ then γ is a \widetilde{G} -orbit in \widetilde{M} . But all orbits are (n-2)-dimensional and the orbit γ is of dimension one. Thus all orbits are of dimension one and n-2=1. Each $\delta \in \Delta$ maps \widetilde{G} -orbits onto \widetilde{G} -orbits. So $\delta(\gamma)$ is a \widetilde{G} -orbit. Since by Corollary 1, γ is the unique geodesic orbit, then $\delta(\gamma) = \gamma$. Thus $\Delta \gamma = \gamma$ and $\pi_1(M) = \mathbb{Z}$ (see [4], Theorem 3.4, §261). Now, by Lemma 1, M is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^2$ or $B^2 \times \mathbb{R}$. Since all G-orbits of M are regular (and diffeomorphic to each other) and the G-orbit $\frac{\gamma}{\Delta}$ is diffeomorphic to $\gamma/\mathbb{Z} = \mathbb{R}/\mathbb{Z} = \mathbb{S}^1$, all G-orbits are diffeomorphic to \mathbb{S}^1 . This is part 3) of the theorem.

a-ii) By Corollary 2, each $\delta \in \Delta$ is axial. Consider a $\delta \in \Delta$ and Let λ be the unique geodesic in \widetilde{M} such that $\delta(\lambda) = \lambda$. Since the elements of Δ and \widetilde{G} are commutative, for each $g \in \widetilde{G}$ we have

$$\delta(g\lambda) = g(\delta\lambda) = g\lambda.$$

Since λ with the property $\delta(\lambda) = \lambda$ is unique, we get that $g\lambda = \lambda$. So λ is a \widetilde{G} -orbit, and we get the part 3) of the theorem in a similar way in a-i).

b) N is a nontrivial totally geodesic submanifold of \widetilde{M} . If $g \in \widetilde{G}$, $h \in H$ and $x \in N$, then

$$g^{-1}hg(x) = x \Rightarrow hg(x) = g(x) \Rightarrow g(x) \in N.$$

Thus $\widetilde{G}(N) = N$. All orbits are of dimension n - 2. So if $x \in N$, then

$$n-2 = \dim \widetilde{G}(x) \le \dim N < \dim \widetilde{M} = n \Rightarrow \dim N = n-2 \text{ or } n-1.$$

Now, consider two cases $\dim N = n$ and $\dim N = n + 1$ separately.

$$\mathbf{b-j}) \dim N = n-2.$$

In this case, N is a \tilde{G} -orbit. If n-2 = 1, in a similar way in (a-i) we get part (3) of the theorem. Suppose $n-2 \ge 2$ and put $N_1 = \kappa(N)$. By Corollary 1, N is the unique totally geodesic \tilde{G} -orbit in \tilde{M} . Thus, for each $\delta \in \Delta$, $\delta(N) = N$, so $N_1 = N/\Delta$. But N_1 is a totally geodesic G-orbit in M, so it must be simply connected (since by Kobayashi's theorem in [6] homogeneous manifolds of negative curvature are simply connected). Therefore, Δ is trivial and M is simply connected. This is the part 1) of the theorem.

b-jj) dimN = n - 1 Since all orbits are of dimension n - 2, N is a negatively curved cohomogeneity one \tilde{G} -manifold. Consider following two cases:

b-jj-1) There is a $\delta \in \Delta$ and $x \in \widetilde{M}$ such that $\delta \widetilde{G}(x) \neq \widetilde{G}(x)$.

b-jj-2) For each $\delta \in \Delta$ and $x \in \widetilde{M}$, $\delta \widetilde{G}(x) = \widetilde{G}(x)$.

b-jj-1) From the fact that δ maps orbits on to orbits, we get that $\delta \widetilde{G}(x) = \widetilde{G}(y)$, $y \in \widetilde{M}$ (i.e., $\widetilde{G}(x) \cap \widetilde{G}(y) = \emptyset$). By Proposition 4.2 in [1], the minimum point set of the following function is at most the image of a geodesic

$$f_{\delta} \colon \widetilde{M} \to \mathbb{R}, \qquad f_{\delta}(x) = d^2(x, \delta(x)).$$

So we can find a geodesic γ such that the image of γ is not the minimum point set of f_{δ} and $\gamma(0) \in G(x)$, $\gamma(1) \in G(y)$. Put $g(t) = f_{\delta}(\gamma(t))$. Since the elements of Δ and \tilde{G} are commutative, f_{δ} is constant along orbits (because $f_{\delta}(gx) =$ $d^2(gx, \delta gx) = d^2(gx, g\delta x) = d^2(x, \delta x) = f_{\delta}(x)$). Since $\delta(\gamma(0)) \in G(\gamma(1))$, then $f_{\delta}(\delta\gamma(0)) = f_{\delta}(\gamma(1))$. Thus

$$g(0) = f_{\delta}(\gamma(0)) = d^{2}(\gamma(0), \delta(\gamma(0))) = d^{2}(\delta(\gamma(0)), \delta^{2}(\gamma(0)))$$
$$= f_{\delta}(\delta\gamma(0)) = f_{\delta}(\gamma(1)) = g(1).$$

Since g is strictly convex (see [1]), it has a unique minimum point $t_0 \in (0, 1)$. Therefore, $\tilde{G}(\gamma(t_0))$ is the minimum point set of f_{δ} , which must be a geodesic. Then $\tilde{G}(\gamma(t_0))$ is a (geodesic) one dimensional \tilde{G} -orbit. Then in a similar way in a-i) we get part 3) of the theorem.

b-jj-2) Put $N_1 = \kappa(N)$. Since for each $\delta \in \Delta$, $\delta(N) = N$ then $\pi_1(M) = \pi_1(N_1)$. N_1 is a cohomogeneity one G-manifold of negative curvature, without singular

orbits. So, by Remark 1, each G-orbit in N_1 is diffeomorphic to $\mathbb{T}^p \times \mathbb{R}^s$, $p + s = \dim N - 1 = n - 2$, and N_1 is diffeomorphic to $\mathbb{T}^p \times \mathbb{R}^{s+1}$. These yield to part 4) of the theorem.

4. C₂-G-manifolds of Constant Negative Curvature

Theorem 6. Let $M^n(c)$, $n \ge 3$, be a complete Riemannian manifold of constant sectional curvature c < 0 and let G be a connected and closed Lie subgroup of isometries which acts by cohomogeneity two on M. Then one of the following is true

- a) *M* is simply connected, i.e, $M = H^n(c)$
- b) Each orbit is diffeomorphic to $\mathbb{R}^m \times \mathbb{T}^{n-2-m}$, for some nonnegative integer m, and M is a union of totally geodesic cohomogeneiy one Riemannian G-submanifolds
- c) $\pi_1(M) = \mathbb{Z}$ and either there is an orbit diffeomorphic to \mathbb{S}^1 or $Fix(G, M) = \mathbb{S}^1$
- d) $\pi_1(M) = \mathbb{Z}^k$ for some positive integer k, and M is a union of the following two types of orbits
 - d1) The orbits which are diffeomophic to $\mathbb{R}^{m-k} \times \mathbb{T}^k$ for some positive integer m. Union of this type of orbits is a totally geodesic submanifold of M
 - d2) The orbits covered by $\mathbb{S}^{n-2-m} \times \mathbb{R}^m$.

Sketch of the proof: $H^n(c)$ is the universal Riemannian covering manifold of M. Let Δ be the deck transformation group and \tilde{G} be the corresponding connected covering of G, which acts isometrically and by cohomogeneity two on $H^n(c)$ (as mentioned in Fact 2.1). By the main theorem of [18], we have three cases below

- i) \widetilde{G} has a fixed point.
- ii) \widetilde{G} has a unique nontrivial totally geodesic orbit.
- iii) All orbits are included in horospheres centered at the same point at the infinity.

We study each case separately.

i) Let $F = \{x \in H^n(c) ; \tilde{G}(x) = x\}$. If dim $F \ge 2$, then the cohomogeneity of the action of \tilde{G} on $H^n(c)$ is ≥ 3 (see [11]), which is a contradiction. If dim(F) = 1, then F is the image of a geodesic λ . Since each δ in Δ commutes with elements of \tilde{G} we get $\Delta(\lambda) = \lambda$. So $\pi_1(M) = \mathbb{Z}$. The set $B = F/\Delta$ (which is diffeomorphic to \mathbb{S}^1) is equal to $\operatorname{Fix}(G, M)$. This is part c) of the theorem. If dim(F) = 0, then F is a one point set, so M is simply connected and we get part a) of the theorem. ii) We get from uniqueness of P that $\Delta(P) = P$. If $\dim P = 1$, then P is a geodesic and we get part c) of the theorem in the same way as i). If $\dim P > 1$, then k(P) is homogeneous and of negative curvature. Then it is simply connected and the covering map $k: P \to k(P)$ must be trivial. Therefore, the covering map $H^n(c) \to M$ is trivial and M is simply connected (part a) of the theorem).

iii) Let Q_t be a one-parameter family of horospheres, such that $\tilde{G}(Q_t) = Q(t)$ (see [18]). Since the action of \tilde{G} on $H^n(c)$ is of cohomogeneity two, we can show that for each t the action of \tilde{G} on Q_t is of cohomogeneity one. So one of the following cases is true ([13])

- 1) Each orbit in Q_t , $t \in \mathbb{R}$, is isometric to \mathbb{R}^{n-2}
- 2) There is m < n-2 such that one orbit of Q_t , $t \in \mathbb{R}$, is isometric to \mathbb{R}^m , and the other orbits are diffeomorphic to $\mathbb{S}^{n-2-m} \times \mathbb{R}^m$.

1) Consider an orbit D in M. We have D = k(V), where V is a \tilde{G} -orbit in $H^n(c)$. Since V is isometric to \mathbb{R}^{n-2} and D is flat (and homogeneous). So it is diffeomorphic to $\mathbb{R}^m \times \mathbb{T}^{n-2-m}$. We can show that for each t, there is a \tilde{G} -orbit V_t in Q_t , such that $T = \bigcup_t V_t$ is a totally geodesic cohomogeneity one \tilde{G} -submanifold of $H^n(c)$. Therefore, k(T) is a totally geodesic cohomogeneity one G-submanifold of M. Since $H^n(c)$ is a union of such submanifols T, we get part b) of the theorem.

2) Let V_t be the orbit in Q_t which is isometric to \mathbb{R}^m . Then the set $\widetilde{N} = \bigcup_t V_t$ is a totally geodesic \widetilde{G} -submanifold of $H^n(c)$. So $N = k(\widetilde{N})$ is a totally geodesic G-submanifold of M. Since dim $\widetilde{N} = \dim V_t + 1$, then \widetilde{N} is a cohomogeneity one \widetilde{G} -submanifold. $H^n(c) = \widetilde{N} \bigcup (H^n(c) - \widetilde{N})$ is a union of two types of orbits. Orbits in \widetilde{N} which are isometric to \mathbb{R}^{n-2} , and the orbits in $(H^n(c) - \widetilde{N})$ which are diffeomorphic to $\mathbb{R}^m \times \mathbb{S}^{n-2-m}$. Since each δ in Δ maps orbits to orbits, by dimensional reasons we have

$$\Delta(\widetilde{N}) = \widetilde{N}, \qquad \Delta(H^n(c) - \widetilde{N}) = H^n(c) - \widetilde{N}.$$

Therefore, we can show that one of the parts (a) or (c) of the theorem is true, or we have

$$M = \frac{H^n(c)}{\Delta} = \frac{\widetilde{N}}{\Delta} \bigcup \frac{H^n(c) - \widetilde{N}}{\Delta}.$$

The orbits of $\widetilde{N}/\Delta(=N)$ are diffeomorphic to $\mathbb{R}^r \times \mathbb{T}^k$ and the orbits in $\frac{H^n(c)-N}{\Delta}$ are covered by $\mathbb{R}^m \times \mathbb{S}^{n-2-m}$. Thus we get part d) of the theorem.

References

- Bishop R. and O'Neill B., *Manifolds of Negative Curvature*, Trans. Amer. Math. Soc. 145 (1969) 1–49.
- [2] Bredon. G., Introduction to Compact Transformation Groups, Acad. Press, New York 1972.
- [3] Byers W., Isometry Group of Riemannian Manifolds of Negative Curvature, Proc. Amer. Math. Soc. 45 (1976) 281–285.
- [4] do Carmo M., Riemannian Geometry, Birkhhauser, Boston 1992.
- [5] Eberlin P. and O'Neil B., Visibility Manifolds, Pacific J. Math. 46(1973) 45–109.
- [6] Kobayashi S., *Homogeneous Riemannian Manifolds of Negative Curvature*, Tohoku Math. J. 14 (1962) 413–415.
- [7] Michor P., Isometric Actions of Lie Groups and Invariants, Lectures at the University of Vienna, 1996/1997 http://www.mat.univie.ac.at/ ~michor/tgbook.ps
- [8] Mirzaie R., *On Orbits of Isometric Actions on Flat Riemannian Manifolds*, to appear in Kyushu Math. J.
- [9] Mirzaie R., On Riemannian Manifolds of Constant Negative Curvature, J. Korean Math. Soc. 48 (2011) 23–31.
- [10] Mirzaie R., Cohomogeneity Two Actions on Flat Riemannian Manifolds, Acta Mathematica Sinica 23 (2007) 1587–1592.
- [11] Mirzaie R., On Negatively Curved Riemannian Manifolds of Low Cohomogeneity, Hokkaido Math. J. 38 (2009) 797–803.
- [12] Mirzaie R., On Homogeneous Submanifolds of Negatively Curved Riemannian Manifolds, submitted.
- [13] Mirzaie R. and Kashani S., On Cohomogeneity One Flat Riemannian Manifolds, Glasgow Math. J. 44 (2002) 185–190.
- [14] Mostert P., On a Compact Lie Group Action on Manifolds, Ann. Math. 65 (1957) 447–455.
- [15] O'Neil B., Semi-Riemannian Geomerty with Applications to Relativity, Academic Press, New York 1983.
- [16] Palais R. and Terng Ch., A Genereal Theory of Canonical Forms, Am. Math. Soc. 300 (1987) 771–789.
- [17] Podesta F. and Spiro A., Some Topological Properties of Cohomogeneity One Manifolds with Negative Curvature, Ann. Global. Anal. Geom. 14 (1966) 69–79.
- [18] di Scala A. and Olmos C., The Geometry of Homogeneous Submanifolds of Hyperbolic Space, Math. Z. 237 (2001) 199–209.
- [19] Searle C., Cohomogeneity and Positive Curvature in Low Dimensions, Math. Z. 214 (1993) 491–498.
- [20] Wolf J., Spaces of Constant Curvature, University of California, Berkely 1977.