COHOMOGENEITY TWO RIEMANNIAN MANIFOLDS OF NON-POSITIVE CURVATURE

REZA MIRZAIE
Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

Abstract

We consider a Riemannian manifold $M(\operatorname{dim} M \geq 3)$, which is flat or has negative sectional curvature. We suppose that there is a closed and connected subgroup G of $\operatorname{Iso}(M)$ such that $\operatorname{dim}(M / G)=2$. Then we study some topological properties of M and the orbits of the action of G on M.

1. Introduction

Let M^{n} be a connected and complete Riemannian manifold of dimension n, and G be a closed and connected subgroup of the Lie group of all isometries of M. If $x \in M$ then we denote by $G(x)=\{g x ; g \in G\}$ the orbit containing x.
If $\max \{\operatorname{dim} G(x) ; x \in M\}=n-k$, then M is called a $\boldsymbol{C}_{\boldsymbol{k}}$ - \boldsymbol{G}-manifold (G manifold of cohomogeneity k) and we will denote it by $\operatorname{Coh}(G, M)=k$. If M is a C_{k} - G-manifold then the orbit space $M / G=\{G(x) ; x \in M\}$ is a topological space of dimension k. When k is small, we expect close relations between topological properties of M and the orbits of the action of G on M. If M is a $C_{0}-G$-manifold then the action of G on M is transitive, so M is a homogeneous G-manifold and it is diffeomorphic to G / G_{x} (where $x \in M$ and $G_{x}=\{g \in$ $G ; g x=x\}$). Thus, topological properties of homogeneous G-manifolds are closely related to Lie group theory. If M is a homogeneous G-manifold of nonpositive curvature, it is diffeomorphic to $\mathbb{R}^{n_{1}} \times \mathbb{T}^{n_{2}}, n_{1}+n_{2}=n$ ([20]). The study of $C_{1}-G$-manifolds goes back to 1957 and a paper due to Mostert [14]. Mostert characterized the orbit space of $C_{1}-G$-manifolds, when G is compact. Later, other mathematicians generalized the Mostert's theorem to G-manifolds with noncompact G. There are many interesting results on topological properties of the orbits of $C_{1}-G$-manifolds under conditions on the sectional curvature of M. If M is a $C_{1}-G$-manifold of negative curvature then it is proved (see [17]) that either M is simply connected or the fundamental group of M is isomorphic to \mathbb{Z}^{p} for some
positive integer p. In the later case, if $p>1$ then each orbit is diffeomorphic to $\mathbb{R}^{n-1-p} \times \mathbb{T}^{p}, n=\operatorname{dim} M$, and M is diffeomorphic to $\mathbb{R}^{n-p} \times \mathbb{T}^{p}$. If $p=1$, then there is an orbit diffeomorphic to \mathbb{S}^{1} and the other orbits are covered by $\mathbb{S}^{n-2} \times \mathbb{R}$. Topological properties of flat $C_{1}-G$-manifolds have been studied in [13].
In the present article, I summarize some of my results [9-13] about $C_{2}-G$-manifolds which are flat or have negative curvatures.

2. Flat $C_{2}-G$-manifolds

In the following, M^{n} is a Riemannian manifold of dimension n, G is a closed and connected subgroup of $\operatorname{Iso}(M), \pi: M \rightarrow M / G$ denotes the projection on to the orbit space. If $G, H \subset \operatorname{Iso}(M)$ and for each $x \in M, G(x)=H(x)$, then we say that G and H are orbit equivalent on M and we denote it by $G \simeq H$.

Fact 2.1 (See [2,18]). Let M be a Riemannian manifold and \hat{M} be the Riemannian universal covering of M by the covering map $k: \hat{M} \rightarrow M$, and let G be a closed and connected subgroup of $\operatorname{Iso}(M)$. Then there is a connected covering \hat{G} for G such that \hat{G} acts isometrically on \hat{M} and the following assertions are true

1) $\operatorname{Coh}(G, M)=\operatorname{Coh}(\hat{G}, \hat{M})$
2) If $D=\hat{G}(x)$ is a \hat{G}-orbit in \hat{M} then $k(D)$ is a G-orbit in M, and each G-orbit in M is equal to $k(D)$ for some \hat{G}-orbit D in \hat{M}
3) If Δ is the deck transformation group of the covering $k: \hat{M} \rightarrow M$, then for each $\delta \in \Delta$ and each $g \in \hat{G}, \delta o g=g o \delta$. Thus δ maps \hat{G}-orbits in \hat{M} on to \hat{G}-orbits.

If M is a C_{k} - G-manifold, then there are two types of points in M called principal and singular points (for definition and details about singular and principal points, we refer to [2, 8]). If x is a principal (singular) point then $\pi(x)$ is an interior (boundary) point of M / G, the orbit $G(x)$ is called a principal (singular) orbit and $\operatorname{dim} G(x)=n-m(\operatorname{dim} G(x) \leq n-m)$. The union of all principal orbits is an open and dense subset of M.

Theorem 1 ([13]). a) If G is a closed and connected subgroup of $\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ such that \mathbb{R}^{n} is a C_{1}-G-manifold, then either each principal orbit is isometric to \mathbb{R}^{n-1} and there is not singular orbit, or each principal orbit is diffeomorphic to $\mathbb{S}^{n-m-1} \times \mathbb{R}^{m}$, for some $m \geq 0$ and there is a unique singular orbit isometric to \mathbb{R}^{m}.
b) If G is a closed and connected subgroup of $\operatorname{Iso}(M)$ and M is a flat $C_{1}-G$ manifold then there is a non-negative integer l such that $\pi_{1}(M)=\mathbb{Z}^{l}$.

Theorem 2 ([20]). If M is a homogeneous Riemannian manifold of non-positive curvature, then it is diffeomorphic to $\mathbb{T}^{m} \times \mathbb{R}^{r}$ for some non-negative integers m, t, where \mathbb{T}^{m} denotes the m-torus.

Let G be a connected subgroup of $\operatorname{Iso}\left(\mathbb{R}^{n}\right)$ and d, e be positive integers such that $d+e=n$. If G is not compact and it is a subgroup of $\mathrm{SO}(d) \times \mathbb{R}^{e}$, then we say that G is d-helicoidical on \mathbb{R}^{n}. Let

$$
\begin{aligned}
& K=\left\{A \in \mathrm{SO}(d) ;(A, b) \in G, \text { for some } b \in \mathbb{R}^{e}\right\} \\
& T=\left\{b \in \mathbb{R}^{e} ;(A, b) \in G, \text { for some } A \in \mathrm{SO}(d)\right\}
\end{aligned}
$$

If $x=\left(x_{1}, x_{2}\right) \in\left(\mathbb{R}^{d}-\{o\}\right) \times \mathbb{R}^{e}, \mathbb{T}\left(x_{2}\right)=\mathbb{R}^{e}$ and $K\left(x_{1}\right)=\mathbb{S}^{d-1}\left(\left|x_{1}\right|\right)$, then $G(x)$ is called a d-helix in \mathbb{R}^{n}.
Let G be a closed and connected subgroup of $\operatorname{Iso}\left(\mathbb{R}^{n}\right)$. We say that G has compact (or helicoidical) factor, if there is an integer $0<m<n$ and $G_{1} \subset \operatorname{Iso}\left(\mathbb{R}^{n-m}\right)$, $G_{2} \subset \operatorname{Iso}\left(\mathbb{R}^{m}\right)$, such that

1) G_{2} is compact (or helicoidical on \mathbb{R}^{m})
2) $G \simeq G_{2} \times G_{1}$
3) For some(so each) $x \in \mathbb{R}^{n-m}, G_{1}(x)=\mathbb{R}^{n-m}$.

Theorem 3. Let $M^{n}, n \geq 3$, be a complete connected non-simply connected and flat Riemannian manifold, which is a C_{2}-G-manifold under the action of a closed and connected Lie group G of isometries. Then one of the following is true
a) $\pi_{1}(M)=Z$ and each principal orbit is isometric to $\mathbb{S}^{n-2}(c)$, for some $c>0$ (c depends on orbits).
b) There is a positive integer l, such that $\pi_{1}(M)=\mathbb{Z}^{l}$ and one of the following is true:
b1) There is a positive integer $m, 2<m<n$, such that each principal orbit is covered by $N^{m-2}(c) \times \mathbb{R}^{n-m}$, where $N^{m-2}(c)$ is a homogeneous hypersurface of $\mathbb{S}^{m-1}(c)(c>0$ depends on orbits). There is a unique orbit diffeomorphic to $\mathbb{T}^{l} \times \mathbb{R}^{n-m-l}$.
b2) Each principal orbit is covered by $\mathbb{S}^{r} \times \mathbb{R}^{n-r-2}$, for some positive integer r.
b3) Each principal orbit is covered by $H \times \mathbb{R}^{n-m}$, such that H is a helix in \mathbb{R}^{m}. There is an orbit diffeomorphic to $\mathbb{T}^{l} \times \mathbb{R}^{t}$, for some nonnegative integer t.
c) Each orbit is diffeomorphic to $\mathbb{R}^{t} \times \mathbb{T}^{l}$, for some nonnegative integer $t(t=$ $n-l-2$, if the orbit is principal).

Sketch of the proof: $\hat{M}=\mathbb{R}^{n}$ is the universal covering of M. Consider \hat{G} as in Fact 2.1, and let $k: \mathbb{R}^{n} \rightarrow M$ be the covering map, and Δ be the deck transformation group of the covering $k: \mathbb{R}^{n} \rightarrow M$ (i.e, $\pi_{1}(M)$ is isomorphic to Δ). We can show that one of the following is true

1) \hat{G} is compact or it has compact factor on \mathbb{R}^{n}
2) \hat{G} is helicoidical or it has helicoidical factor on \mathbb{R}^{n}
3) All \hat{G}-orbits are euclidean.

We consider 1), 2) and 3) separately.

1) If \hat{G} is compact, we get part a) of the theorem (see [10]). If \hat{G} is not compact but has compact factor, there are subgroups \hat{G}_{1} of $\operatorname{Iso}\left(\mathbb{R}^{n-m}\right)$ and \hat{G}_{2} of $\operatorname{Iso}\left(\mathbb{R}^{m}\right)$, for some positive integer $m<n$, such that \hat{G}_{2} is compact, \hat{G}_{1} acts transitively on \mathbb{R}^{n-m} and $\hat{G} \simeq \hat{G}_{2} \times \hat{G}_{1}$. Since \hat{G}_{2} is compact it has a fixed point in \mathbb{R}^{m}, which without lose of generality we assume that the origin of \mathbb{R}^{m} is a fixed point of \hat{G}_{2} (i.e, $\hat{G}_{2} \subset \operatorname{SO}(m)$). So, \mathbb{R}^{m} is a $C_{2}-\hat{G}_{2}$-manifold. If $m=2$ then \hat{G}_{2} is trivial and all \hat{G} orbits are euclidean (isometric to \mathbb{R}^{n-2}) which we will consider in the case 3). If $m>2$, put $F=\left\{x \in \mathbb{R}^{m} ; \hat{G}_{2}(x)=x\right\} . F$ is a totally geodesic submanifold of \mathbb{R}^{n}, so it is isomorphic to \mathbb{R}^{k}, for some $k<m$. Since $\operatorname{dim} F<2$ (see [11], Lemma 2.6), then $F=\{o\}$ or F is isometric to \mathbb{R}. Suppose $F=\{o\}$ and put $W=\{o\} \times \mathbb{R}^{n-m} \subset \mathbb{R}^{m} \times \mathbb{R}^{n-m}, \quad D=k(W)$. Since W is a \hat{G}-orbit, D must be a G-orbit. Therefore, D is a flat homogeneous Riemannian manifold which is diffeomorphic to $\mathbb{R}^{n-m-l} \times \mathbb{T}^{l}$ for some integer l, so $\pi_{1}(D)=\mathbb{Z}^{l} . W$ is the unique \hat{G}-orbit with dimension $n-m$. Then $\Delta(W)=W$ and $\Delta=\pi_{1}(D)=\mathbb{Z}^{l}$. Therefore, $\pi_{1}(M)=\mathbb{Z}^{l}$. If $o \neq x_{2} \in \mathbb{R}^{m}$ then $\hat{G}_{2}\left(x_{2}\right) \subset \mathbb{S}^{m-1}\left(\left|x_{2}\right|\right)$ and $\mathbb{S}^{m-1}\left(\left|x_{2}\right|\right)$ is a $C_{1}-\hat{G}_{2}$-manifold. Thus $\hat{G}_{2}\left(x_{2}\right)$ is a homogeneous hypersurface of $\mathbb{S}^{m-1}\left(\left|x_{2}\right|\right)$, which we denote it by $N^{m-2}\left(\left|x_{2}\right|\right)$. Therefore, each principal orbit in M is covered by $N^{m-2}(c) \times \mathbb{R}^{n-m}$ for some $c>0$ related to orbits. These yield to part b1) of the theorem. Now, suppose that F is isometric to \mathbb{R} and put $A=$ $F \times \mathbb{R}^{n-m} \subset \mathbb{R}^{m} \times \mathbb{R}^{n-m}$ and $B=k(A)$. Since A is a $C_{1}-\hat{G}$-manifold, B is a $C_{1}-$ G-manifold. Since B is flat, by Theorem 1 , there is a non-negative integer l such that $\pi_{1}(B)=\mathbb{Z}^{l}$. Consider a point $x=\left(x_{2}, x_{1}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n-m}$. If $x_{2} \in F$ then $\hat{G}(x)=\left\{x_{2}\right\} \times \mathbb{R}^{n-m} \cong \mathbb{R}^{n-m}$. If $x_{2} \in \mathbb{R}^{m}-F$, then $\hat{G}(x)=\hat{G}_{2}\left(x_{2}\right) \times \mathbb{R}^{n-m}$, with $\operatorname{dim} \hat{G}_{2}\left(x_{2}\right) \geq 1$, so by dimensional reasons for each $x_{2} \in F$, there is $x_{2}^{\prime} \in F$ such that $\delta\left(\left\{x_{2}\right\} \times \mathbb{R}^{n-m}\right)=\left\{x_{2}^{\prime}\right\} \times \mathbb{R}^{n-m}$. Thus $\Delta(A)=A$ and $\pi_{1}(M)=\Delta=$ $\pi_{1}(B)=\mathbb{Z}^{l}$. Let $x=\left(x_{2}, x_{1}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n-m}$ be a principal orbit. Each $g \in \hat{G}_{2}$ is a rotation around the line F, so $\hat{G}_{2}\left(x_{2}\right)$ is a sphere included in a hyperplane of \mathbb{R}^{m} which is perpendicular to F. Thus, $\hat{G}\left(x_{2}\right)$ is isometric to $\mathbb{S}^{m-2}(c)$ for some positive number c, and $\hat{G}(x)$ must be isometric to $\mathbb{S}^{m-2}(c) \times \mathbb{R}^{n-m}$. If we put $m-2=r$, then we get part b2) of the theorem.
2) Let $m(\leq n)$ be a positive integer and $\hat{G} \simeq \hat{G}_{2} \times \hat{G}_{1}$ such that \hat{G}_{2} be helicoidical on \mathbb{R}^{m} and \hat{G}_{1} be transitive on \mathbb{R}^{n-m}. If $m=2$, then G_{2} is trivial and \hat{G} orbits are euclidean, which is the case 3). If $m>2$, then \hat{G}_{2} is orbit equivalent (on \mathbb{R}^{m}) to a subgroup of $\mathrm{SO}(d) \times \mathbb{R}^{m-d}$ for some positive integer d. Put

$$
\begin{aligned}
K & =\left\{A \in \mathrm{SO}(d) ;(A, b) \in \hat{G}_{2} \text { for some } b \in \mathbb{R}^{m-d}\right\} \\
T & =\left\{b \in \mathbb{R}^{m-d} ;(A, b) \in \hat{G}_{2} \text { for some } A \in \mathrm{SO}(d)\right\}
\end{aligned}
$$

Then, either all \hat{G}_{2} orbits (so \hat{G} orbits) are euclidean (which is the case 3)), or one of the following is true (see [8])
I) $d>1$, each principal \hat{G}_{2}-orbit in R^{m} is diffeomorphic to $\mathbb{S}^{d-1} \times \mathbb{R}^{m-d-1}$ and the other \hat{G}_{2}-orbits of \mathbb{R}^{m} are isometric to \mathbb{R}^{m-d-1}. The union of all orbits which are isometric to \mathbb{R}^{m-d-1} is a submanifold W of \mathbb{R}^{m}, such that W is isometric to $\mathbb{R}^{m-d}, \hat{G}_{2}(W)=W$ and $\operatorname{Coh}\left(\hat{G}_{2}, W\right)=1$.
II) $d>2$ and each principal \hat{G}_{2}-orbit of \mathbb{R}^{m} is isometric to $N^{d-2}(c) \times \mathbb{R}^{m-d}$. Where $N^{d-2}(c)$ is a homogeneous hypersurface of $\mathbb{S}^{d-1}(c)(c>0)$. There is a unique \hat{G}_{2}-orbit V in \mathbb{R}^{m}, which is isometric to \mathbb{R}^{m-d}.
III) $d>1$ and each principal \hat{G}_{2}-orbit in \mathbb{R}^{m} is isometric to a d-helix in \mathbb{R}^{m}. There is a unique \hat{G}_{2}-orbit V isometric to \mathbb{R}^{m-d}.
We consider I), II), III) separately.
I) Put $D=W \times \mathbb{R}^{n-m}$ and $B=k(D)$. Since $\operatorname{Coh}\left(\hat{G}_{2}, W\right)=1$, then $\operatorname{Coh}(\hat{G}, W \times$ $\left.\mathbb{R}^{n-m}\right)=1$. Thus B is a flat cohomogeneity one G-manifold, so by Theorem 1, there is a non-negative integer l such that $\pi_{1}(D)=\mathbb{Z}^{l}$. Now let $\left(x_{2}, x_{1}\right) \in \mathbb{R}^{m} \times$ \mathbb{R}^{n-m}. If $x_{2} \in W$, then $\hat{G}(x)=\hat{G}_{2}\left(x_{2}\right) \times \hat{G}_{1}\left(x_{1}\right)$ is isometric to $\mathbb{R}^{m-d-1} \times$ $\mathbb{R}^{n-m}=\mathbb{R}^{n-d-1}$, and if $x_{2} \in \mathbb{R}^{m}-W$, then $\hat{G}(x)=\hat{G}_{2}\left(x_{2}\right) \times \hat{G}_{1}\left(x_{1}\right)$ is diffeomorphic to $\mathbb{S}^{d-1} \times \mathbb{R}^{m-d-1} \times \mathbb{R}^{n-m}=\mathbb{S}^{d-1} \times \mathbb{R}^{n-d-1}$. Since each $\delta \in \Delta$ maps \hat{G}-orbits of $\mathbb{R}^{m} \times \mathbb{R}^{n-m}$ on to \hat{G}-orbits, and the \hat{G}-orbits in $D=W \times \mathbb{R}^{n-m}$ are not isometric to \hat{G}-orbits in $\left(\mathbb{R}^{m}-W\right) \times \mathbb{R}^{n-m}$, then $\Delta(D)=D$. Thus

$$
\pi_{1}(M)=\Delta=\pi_{1}(B)=\mathbb{Z}^{l}
$$

Since principal \hat{G}-orbits of \mathbb{R}^{n} are diffeomorphic to $\mathbb{S}^{d-1} \times \mathbb{R}^{n-d-1}$ then we get part b2) of the theorem.
II) Let $P=V \times \mathbb{R}^{n-m}$ and $C=k(P)$. P is the unique \hat{G}-orbit of \mathbb{R}^{n} which is isometric to $\mathbb{R}^{m-d} \times \mathbb{R}^{n-m} \simeq \mathbb{R}^{n-d}$. Thus C is a flat G-orbit in M, and it must be diffeomorphic to $\mathbb{T}^{l} \times \mathbb{R}^{n-d-l}$, for some non-negative integer l. Since each $\delta \in \Delta$ maps \hat{G}-orbits on to \hat{G}-orbits, we get from uniqueness of P that $\Delta(P)=P$. Thus

$$
\pi_{1}(M)=\Delta=\pi_{1}(C)=\mathbb{Z}^{l}
$$

Therefore, we get part b1) of the theorem.
III) From uniqueness of V we can prove in the same way as II) that $\pi_{1}(M)=\mathbb{Z}^{l}$, for some positive integer l, and there is a unique G-orbit in M diffeomorphic to $\mathbb{T}^{l} \times \mathbb{R}^{r}$ for some integer r. Thus we get part b3) of the theorem.
3) Consider a G-orbit B in M. There is a \hat{G}-orbit D in \mathbb{R}^{n} such that $B=k(D)$. Since D is flat then B is flat and homogeneous, and it must be diffeomorphic to $\mathbb{R}^{t} \times \mathbb{T}^{l}$ for some integers t, l. This is part c) of the theorem.

3. $C_{2}-G$-manifolds of Negative Curvature

If M is a Riemannian manifold and $\delta \in I s o(M)$, the squared displacement function $d_{\delta}^{2}: M \rightarrow M$ is defined by

$$
d_{\delta}^{2}(x)=d(x, \delta x)
$$

Fact 3.1 (see [5]). If M is a simply connected Riemannian manifold of negative curvature and $\delta \in \operatorname{Iso}(M)$, then one of the followings is true

1) d_{δ}^{2} has no minimum point.
2) Minimum point set of d_{δ}^{2} is equal to the fixed point set of δ.
3) minimum point set of d_{δ}^{2} is the image of a geodesic γ translated by δ (i.e., there is a positive number t_{0} such that for all $\left.t, \delta(\gamma(t))=\gamma\left(t+t_{0}\right)\right)$.
The isometries 1), 2), and 3) are called parabolic, elliptic and axial, respectively. We recall (see [5]) that infinity $M(\infty)$ of a simply connected Riemannian manifold M of nonpositive curvature is the classes of asymptotic geodesics. For each geodesic γ we denote by $[\gamma]$ the asymptotic class of geodesics containing γ. If $x \in M$, then there is a unique (up to parametrization) geodesic γ_{x} in the class [γ] containing x, and there is a unique hypersurface S_{x} containing x and perpendicular to all elements of $[\gamma] . S_{x}$ is called a horosphere.
Fact 3.2 (see [3,5]).
a) Let M be a simply connected Riemannian manifold of negative curvature.
4) If g is an axial isometry of M, then the geodesic γ with the property $g(\gamma)=$ γ is unique.
5) If g is a parabolic isometry of M, then there is a unique class of asymptotic geodesics $[\gamma]$ such that $g[\gamma]=[\gamma]$.
b) Let G be a connected and solvable Lie subgroup of isometries of a simply connected and negatively curved Riemannian manifold M. Then one of the followings is true
6) $\operatorname{Fix}(G, M) \neq \emptyset$.
7) There is a unique G-invariant geodesic.
8) There is a unique class of asymptotic geodesics $[\gamma]$ such that $G[\gamma]=[\gamma]$.

Corollary 1 ([12, 18]). If M is a simply connected Riemannian manifold of negative curvature and G is a closed and connected subgroup of $\operatorname{Iso}(M)$ such that $\operatorname{Fix}(G, M)=\emptyset$, then there is at most one totally geodesic G-orbit in M.

Corollary 2. If M is a negatively curved, non-simply connected, Riemannian manifold and \widetilde{M} is the universal covering of M, then for each deck transformation δ there is a geodesic γ in \widetilde{M} such that $\delta \gamma=\gamma$.

Proof: Let $x_{0} \in M$ and $[\alpha] \in \pi_{1}\left(M, x_{0}\right)$. Suppose that $[\alpha]$ is the corresponding element of δ in the canonical isomorphism between Δ and $\pi_{1}\left(M, x_{0}\right)$ (see [15] p. 186). Let $\beta:[0,1] \rightarrow M$ be a geodesic segment such that $\beta(0)=\beta(1)=x_{0}$ and $[\beta]=[\alpha]$. Let $\kappa(\widetilde{x})=x_{0}$ and $\widetilde{\beta}$ be the unique lift of β to \widetilde{M} such that $\widetilde{\beta}(0)=\widetilde{x}$. It follows from the elementary properties of covering spaces that $\delta(\widetilde{x})=\widetilde{\beta}(1)$. Now, if γ is the extension of geodesic segment $\widetilde{\beta}$ to a geodesic in \widetilde{M} then $\delta(\gamma)=\gamma$.

Lemma 1 ([11]). Let M be a Riemannian manifold of negative curvature, $n=$ $\operatorname{dim} M \geq 3$, and \widetilde{M} be its universal covering. If there is a geodesic γ on \widetilde{M} and an element δ in the center of the deck transformation group Δ, such that $\delta \gamma=\gamma$, then M is diffeomorphic to one of the following spaces

$$
\mathbb{S}^{1} \times \mathbb{R}^{n-1}, \quad B^{2} \times \mathbb{R}^{n-2}
$$

where B^{2} is the mobius band.
Theorem 4 ([11]). Let M^{n+2} be a complete negatively curved and non-simply connected Riemannian manifold which is of cohomogeneity two under the action of a closed and connected Lie subgroup of isometries. If $\operatorname{Fix}(G, M) \neq \emptyset$, then
a) M is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}^{n+1}$ or $B^{2} \times \mathbb{R}^{n}\left(B^{2}\right.$ is the mobius band $)$
b) $\operatorname{Fix}(G, M)$ is diffeomorphic to \mathbb{S}^{1}
c) Each principal orbit is diffeomorphic to \mathbb{S}^{n}.

Remark 1. By Theorem 3.7 a) in [17], if M is a non-simply connected and complete Riemannian manifold of negative curvature, which is of cohomogeneity one under the action of a connected and closed subgroup of isometries, and if there is not any singular orbit, then there are positive integers p, s such that M is diffeomorphic to $\mathbb{R}^{p} \times \mathbb{R}^{s+1}$ and each orbit is diffeomorphic to $\mathbb{R}^{p} \times \mathbb{R}^{s}, p+s=$ $\operatorname{dim} M-1$.

Theorem 5 ([12]). Let $M^{n}, n \geq 3$, be a complete negatively curved Riemannian manifold and G be a closed, connected and non-semisimple subgroup of isometries of M^{n}. If M is a cohomogeneity two G-manifold such that the singular orbits (if there are any) are fixed points of G. Then one of the following is true

1) M is simply connected (diffeomorphic to \mathbb{R}^{n}).
2) M is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}^{n-1}$ or $B^{2} \times \mathbb{R}^{n-2}\left(B^{2}\right.$ is the mobious band $)$. Each principal orbit is diffeomorphic to \mathbb{S}^{n-2}. Union of singular orbits $\operatorname{Fix}(G, M)$ is diffeomorphic to \mathbb{S}^{1}.
3) M is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}^{2}$ or $B^{2} \times \mathbb{R}$. All orbits are diffeomorphic to \mathbb{S}^{1}.
4) $\pi_{1}(M)=\mathbb{Z}^{p}$ for some positive integer p, and all orbits are diffeomorphic to $\mathbb{R}^{n-2-p} \times \mathbb{T}^{p}$.

Sketch of the proof: Following Fact 2.1, let \widetilde{M} be the universal Riemannian covering manifold of M with the deck transformation group Δ and let \widetilde{G} be the corresponding connected covering of G which acts isometrically and by cohomogeneity two on \widetilde{M}. If $\operatorname{Fix}(\widetilde{G}, \widetilde{M}) \neq \emptyset$ then $\operatorname{Fix}(G, M) \neq \emptyset$, so by Theorem 4, we get the parts 1) or 2) of the theorem. Now, suppose that $\operatorname{Fix}(\widetilde{G}, \widetilde{M})=\emptyset$. By assumptions of the theorem, if there is a singualr orbit, it must be a fixed point. So all \widetilde{G}-orbits in \widetilde{M} must be $(n-2)$-dimensional. Since G is non-semisimple, \widetilde{G} is non-semisimple. Let H be a solvable normal subgroup of \widetilde{G} and put $N=\operatorname{Fix}(H, \widetilde{M})$. We consider the following two cases separately

$$
\text { a) } N=\emptyset, \quad \text { b) } N \neq \emptyset .
$$

a) By Fact 3.2 b), one of the following is true:
a-i) There is a unique geodesic γ such that $H(\gamma)=\gamma$.
a-ii) There is a unique class of asymptotic geodesics $[\gamma]$ such that $H[\gamma]=[\gamma]$.
a-i) From normality of H in \widetilde{G} and uniqueness of γ, we get that $\widetilde{G}(\gamma)=\gamma$. Since $\operatorname{Fix}(\widetilde{G}, \widetilde{M})=\emptyset$ then γ is a \widetilde{G}-orbit in \widetilde{M}. But all orbits are $(n-2)$-dimensional and the orbit γ is of dimension one. Thus all orbits are of dimension one and $n-2=1$. Each $\delta \in \Delta$ maps \widetilde{G}-orbits onto \widetilde{G}-orbits. So $\delta(\gamma)$ is a \widetilde{G}-orbit. Since by Corollary $1, \gamma$ is the unique geodesic orbit, then $\delta(\gamma)=\gamma$. Thus $\Delta \gamma=\gamma$ and $\pi_{1}(M)=\mathbb{Z}$ (see [4], Theorem 3.4, §261). Now, by Lemma $1, M$ is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}^{2}$ or $B^{2} \times \mathbb{R}$. Since all G-orbits of M are regular (and diffeomorphic to each other) and the G-orbit $\frac{\gamma}{\Delta}$ is diffeomorphic to $\gamma / \mathbb{Z}=\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}$, all G-orbits are diffeomorphic to \mathbb{S}^{1}. This is part 3) of the theorem.
a-ii) By Corollary 2, each $\delta \in \Delta$ is axial. Consider a $\delta \in \Delta$ and Let λ be the unique geodesic in \widetilde{M} such that $\delta(\lambda)=\lambda$. Since the elements of Δ and \widetilde{G} are commutative, for each $g \in \widetilde{G}$ we have

$$
\delta(g \lambda)=g(\delta \lambda)=g \lambda
$$

Since λ with the property $\delta(\lambda)=\lambda$ is unique, we get that $g \lambda=\lambda$. So λ is a \widetilde{G}-orbit, and we get the part 3) of the theorem in a similar way in a-i).
b) N is a nontrivial totally geodesic submanifold of \widetilde{M}. If $g \in \widetilde{G}, h \in H$ and $x \in N$, then

$$
g^{-1} h g(x)=x \Rightarrow h g(x)=g(x) \Rightarrow g(x) \in N
$$

Thus $\widetilde{G}(N)=N$. All orbits are of dimension $n-2$. So if $x \in N$, then

$$
n-2=\operatorname{dim} \widetilde{G}(x) \leq \operatorname{dim} N<\operatorname{dim} \widetilde{M}=n \Rightarrow \operatorname{dim} N=n-2 \text { or } n-1
$$

Now, consider two cases $\operatorname{dim} N=n$ and $\operatorname{dim} N=n+1$ separately.
b-j) $\operatorname{dim} N=n-2$.
In this case, N is a \widetilde{G}-orbit. If $n-2=1$, in a similar way in (a-i) we get part (3) of the theorem. Suppose $n-2 \geq 2$ and put $N_{1}=\kappa(N)$. By Corollary $1, N$ is the unique totally geodesic \widetilde{G}-orbit in \widetilde{M}. Thus, for each $\delta \in \Delta, \delta(N)=N$, so $N_{1}=N / \Delta$. But N_{1} is a totally geodesic G-orbit in M, so it must be simply connected (since by Kobayashi's theorem in [6] homogeneous manifolds of negative curvature are simply connected). Therefore, Δ is trivial and M is simply connected. This is the part 1) of the theorem.
$\mathrm{b}-\mathrm{jj}) \operatorname{dim} N=n-1$ Since all orbits are of dimension $n-2, N$ is a negatively curved cohomogeneity one \widetilde{G}-manifold. Consider following two cases:
b-jj-1) There is a $\delta \in \Delta$ and $x \in \widetilde{M}$ such that $\delta \widetilde{G}(x) \neq \widetilde{G}(x)$.
b-jj-2) For each $\delta \in \Delta$ and $x \in \widetilde{M}, \delta \widetilde{G}(x)=\widetilde{G}(x)$.
b-jj-1) From the fact that δ maps orbits on to orbits, we get that $\delta \widetilde{G}(x)=\widetilde{G}(y)$, $y \in \widetilde{M}$ (i.e., $\widetilde{G}(x) \cap \widetilde{G}(y)=\emptyset$). By Proposition 4.2 in [1], the minimum point set of the following function is at most the image of a geodesic

$$
f_{\delta}: \widetilde{M} \rightarrow \mathbb{R}, \quad f_{\delta}(x)=d^{2}(x, \delta(x))
$$

So we can find a geodesic γ such that the image of γ is not the minimum point set of f_{δ} and $\gamma(0) \in G(x), \gamma(1) \in G(y)$. Put $g(t)=f_{\delta}(\gamma(t))$. Since the elements of Δ and \widetilde{G} are commutative, f_{δ} is constant along orbits (because $f_{\delta}(g x)=$ $\left.d^{2}(g x, \delta g x)=d^{2}(g x, g \delta x)=d^{2}(x, \delta x)=f_{\delta}(x)\right)$. Since $\delta(\gamma(0)) \in G(\gamma(1))$, then $f_{\delta}(\delta \gamma(0))=f_{\delta}(\gamma(1))$. Thus

$$
\begin{aligned}
g(0) & =f_{\delta}(\gamma(0))=d^{2}(\gamma(0), \delta(\gamma(0)))=d^{2}\left(\delta(\gamma(0)), \delta^{2}(\gamma(0))\right) \\
& =f_{\delta}(\delta \gamma(0))=f_{\delta}(\gamma(1))=g(1)
\end{aligned}
$$

Since g is strictly convex (see [1]), it has a unique minimum point $t_{0} \in(0,1)$. Therefore, $\widetilde{G}\left(\gamma\left(t_{0}\right)\right)$ is the minimum point set of f_{δ}, which must be a geodesic. Then $\widetilde{G}\left(\gamma\left(t_{0}\right)\right)$ is a (geodesic) one dimensional \widetilde{G}-orbit. Then in a similar way in a-i) we get part 3) of the theorem.
b-jj-2) Put $N_{1}=\kappa(N)$. Since for each $\delta \in \Delta, \delta(N)=N$ then $\pi_{1}(M)=\pi_{1}\left(N_{1}\right)$. N_{1} is a cohomogeneity one G-manifold of negative curvature, without singular
orbits. So, by Remark 1, each G-orbit in N_{1} is diffeomorphic to $\mathbb{T}^{p} \times \mathbb{R}^{s}, p+s=$ $\operatorname{dim} N-1=n-2$, and N_{1} is diffeomorphic to $\mathbb{T}^{p} \times \mathbb{R}^{s+1}$. These yield to part 4) of the theorem.

4. $C_{\mathbf{2}}$ - G-manifolds of Constant Negative Curvature

Theorem 6. Let $M^{n}(c), n \geq 3$, be a complete Riemannian manifold of constant sectional curvature $c<0$ and let G be a connected and closed Lie subgroup of isometries which acts by cohomogeneity two on M. Then one of the following is true
a) M is simply connected, i.e, $M=H^{n}(c)$
b) Each orbit is diffeomorphic to $\mathbb{R}^{m} \times \mathbb{T}^{n-2-m}$, for some nonnegative integer m, and M is a union of totally geodesic cohomogeneiy one Riemannian G-submanifolds
c) $\pi_{1}(M)=\mathbb{Z}$ and either there is an orbit diffeomorphic to \mathbb{S}^{1} or $\operatorname{Fix}(G, M)=$ \mathbb{S}^{1}
d) $\pi_{1}(M)=\mathbb{Z}^{k}$ for some positive integer k, and M is a union of the following two types of orbits
d1) The orbits which are diffeomophic to $\mathbb{R}^{m-k} \times \mathbb{T}^{k}$ for some positive integer m. Union of this type of orbits is a totally geodesic submanifold of M
d2) The orbits covered by $\mathbb{S}^{n-2-m} \times \mathbb{R}^{m}$.
Sketch of the proof: $H^{n}(c)$ is the universal Riemannian covering manifold of M. Let Δ be the deck transformation group and \widetilde{G} be the corresponding connected covering of G, which acts isometrically and by cohomogeneity two on $H^{n}(c)$ (as mentioned in Fact 2.1). By the main theorem of [18], we have three cases below
i) \widetilde{G} has a fixed point.
ii) \widetilde{G} has a unique nontrivial totally geodesic orbit.
iii) All orbits are included in horospheres centered at the same point at the infinity.

We study each case separately.
i) Let $F=\left\{x \in H^{n}(c) ; \widetilde{G}(x)=x\right\}$. If $\operatorname{dim} F \geq 2$, then the cohomogeneity of the action of \widetilde{G} on $H^{n}(c)$ is ≥ 3 (see [11]), which is a contradiction. If $\operatorname{dim}(F)=1$, then F is the image of a geodesic λ. Since each δ in Δ commutes with elements of \widetilde{G} we get $\Delta(\lambda)=\lambda$. So $\pi_{1}(M)=\mathbb{Z}$. The set $B=F / \Delta$ (which is diffeomorphic to \mathbb{S}^{1}) is equal to $\operatorname{Fix}(G, M)$. This is part c) of the theorem. If $\operatorname{dim}(F)=0$, then F is a one point set, so M is simply connected and we get part a) of the theorem.
ii) We get from uniqueness of P that $\Delta(P)=P$. If $\operatorname{dim} P=1$, then P is a geodesic and we get part c) of the theorem in the same way as i). If $\operatorname{dim} P>1$, then $k(P)$ is homogeneous and of negative curvature. Then it is simply connected and the covering map $k: P \rightarrow k(P)$ must be trivial. Therefore, the covering map $H^{n}(c) \rightarrow M$ is trivial and M is simply connected (part a) of the theorem).
iii) Let Q_{t} be a one-parameter family of horospheres, such that $\widetilde{G}\left(Q_{t}\right)=Q(t)$ (see [18]). Since the action of \widetilde{G} on $H^{n}(c)$ is of cohomogeneity two, we can show that for each t the action of \widetilde{G} on Q_{t} is of cohomogeneity one. So one of the following cases is true ([13])

1) Each orbit in $Q_{t}, t \in \mathbb{R}$, is isometric to \mathbb{R}^{n-2}
2) There is $m<n-2$ such that one orbit of $Q_{t}, t \in \mathbb{R}$, is isometric to \mathbb{R}^{m}, and the other orbits are diffeomorphic to $\mathbb{S}^{n-2-m} \times \mathbb{R}^{m}$.
3) Consider an orbit D in M. We have $D=k(V)$, where V is a \widetilde{G}-orbit in $H^{n}(c)$. Since V is isometric to \mathbb{R}^{n-2} and D is flat (and homogeneous). So it is diffeomorphic to $\mathbb{R}^{m} \times \mathbb{T}^{n-2-m}$. We can show that for each t, there is a \widetilde{G} orbit V_{t} in Q_{t}, such that $T=\bigcup_{t} V_{t}$ is a totally geodesic cohomogeneity one \widetilde{G} submanifold of $H^{n}(c)$. Therefore, $k(T)$ is a totally geodesic cohomogeneity one G-submanifold of M. Since $H^{n}(c)$ is a union of such submanifols T, we get part b) of the theorem.
4) Let V_{t} be the orbit in Q_{t} which is isometric to R^{m}. Then the set $\widetilde{N}=\bigcup_{t} V_{t}$ is a totally geodesic \widetilde{G}-submanifold of $H^{n}(c)$. So $N=k(\widetilde{N})$ is a totally geodesic G-submanifold of M. Since $\operatorname{dim} \widetilde{N}=\operatorname{dim} V_{t}+1$, then \widetilde{N} is a cohomogeneity one \widetilde{G}-submanifold. $H^{n}(c)=\widetilde{N} \bigcup\left(H^{n}(c)-\widetilde{N}\right)$ is a union of two types of orbits. Orbits in \widetilde{N} which are isometric to \mathbb{R}^{n-2}, and the orbits in $\left(H^{n}(c)-\widetilde{N}\right)$ which are diffeomorphic to $\mathbb{R}^{m} \times \mathbb{S}^{n-2-m}$. Since each δ in Δ maps orbits to orbits, by dimensional reasons we have

$$
\Delta(\widetilde{N})=\widetilde{N}, \quad \Delta\left(H^{n}(c)-\widetilde{N}\right)=H^{n}(c)-\widetilde{N}
$$

Therefore, we can show that one of the parts (a) or (c) of the theorem is true, or we have

$$
M=\frac{H^{n}(c)}{\Delta}=\frac{\tilde{N}}{\Delta} \bigcup \frac{H^{n}(c)-\tilde{N}}{\Delta} .
$$

The orbits of $\tilde{N} / \Delta(=N)$ are diffeomorphic to $\mathbb{R}^{r} \times \mathbb{T}^{k}$ and the orbits in $\frac{H^{n}(c)-\widetilde{N}}{\Delta}$ are covered by $\mathbb{R}^{m} \times \mathbb{S}^{n-2-m}$. Thus we get part d) of the theorem.

References

[1] Bishop R. and O'Neill B., Manifolds of Negative Curvature, Trans. Amer. Math. Soc. 145 (1969) 1-49.
[2] Bredon. G., Introdution to Compact Transformation Groups, Acad. Press, New York 1972.
[3] Byers W., Isometry Group of Riemannian Manifolds of Negative Curvature, Proc. Amer. Math. Soc. 45 (1976) 281-285.
[4] do Carmo M., Riemannian Geometry, Birkhhauser, Boston 1992.
[5] Eberlin P. and O'Neil B., Visibility Manifolds, Pacific J. Math. 46(1973) 45-109.
[6] Kobayashi S., Homogeneous Riemannian Manifolds of Negative Curvature, Tohoku Math. J. 14 (1962) 413-415.
[7] Michor P., Isometric Actions of Lie Groups and Invariants, Lectures at the University of Vienna, 1996/1997 http://www.mat.univie.ac.at/ ~michor/tgbook.ps
[8] Mirzaie R., On Orbits of Isometric Actions on Flat Riemannian Manifolds, to appear in Kyushu Math. J.
[9] Mirzaie R., On Riemannian Manifolds of Constant Negative Curvature, J. Korean Math. Soc. 48 (2011) 23-31.
[10] Mirzaie R., Cohomogeneity Two Actions on Flat Riemannian Manifolds, Acta Mathematica Sinica 23 (2007) 1587-1592.
[11] Mirzaie R., On Negatively Curved Riemannian Manifolds of Low Cohomogeneity, Hokkaido Math. J. 38 (2009) 797-803.
[12] Mirzaie R., On Homogeneous Submanifolds of Negatively Curved Riemannian Manifolds, submitted.
[13] Mirzaie R. and Kashani S., On Cohomogeneity One Flat Riemannian Manifolds, Glasgow Math. J. 44 (2002) 185-190.
[14] Mostert P., On a Compact Lie Group Action on Manifolds, Ann. Math. 65 (1957) 447-455.
[15] O'Neil B., Semi-Riemannian Geomerty with Applications to Relativity, Academic Press, New York 1983.
[16] Palais R. and Terng Ch., A Genereal Theory of Canonical Forms, Am. Math. Soc. 300 (1987) 771-789.
[17] Podesta F. and Spiro A., Some Topological Properties of Cohomogeneity One Manifolds with Negative Curvature, Ann. Global. Anal. Geom. 14 (1966) 69-79.
[18] di Scala A. and Olmos C., The Geometry of Homogeneous Submanifolds of Hyperbolic Space, Math. Z. 237 (2001) 199-209.
[19] Searle C., Cohomogeneity and Positive Curvature in Low Dimensions, Math. Z. 214 (1993) 491-498.
[20] Wolf J., Spaces of Constant Curvature, University of California, Berkely 1977.

