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Abstract. A Lorentzian surface in a four-dimensional manifold of neutral
signature is called super-extremal if its reflector lift is horizontal. We give
an elementary proof of a rigidity theorem for super-extremal surfaces in the
space of constant curvature and neutral signature. As corollary, a characteri-
zation of the immersion of the Veronese type is given.

1. Introduction

The twistor lifts play an important role for oriented surfaces in oriented four-
dimensional Riemannian manifolds and have been studied by many researchers
(see [1, 3–5, 7–10] for example). In geometry of pseudo-Riemannian manifold of
neutral signature, the reflector bundle is the corresponding object to the twistor
space. For Lorentzian surfaces in four-dimensional manifolds of neutral signature,
the reflector lifts are defined in [12], which are corresponding to the twistor lifts in
Riemannian case. In this paper, we study Lorentzian surfaces in four-dimensional
manifolds of neutral signature with horizontal reflector lifts, which are correspond-
ing to superminimal surfaces in Riemannian geometry. In pseudo-Riemannian ge-
ometry, because of the failure of definiteness for metrics, different situations often
occur from Riemannian cases. For example, in Riemannian case, a connected min-
imal surface of constant Gaussian curvature in the Euclidean space must be flat and
an open part of a two-plane (see [2]). But one can find many non-totally geodesic
extremal flat surfaces in the pseudo-Euclidean space of neutral signature (see Sec-
tion 4), where extremal means vanishing of the mean curvature vector field. We
say that a Lorentzian surface is super-extremal if its reflector lift is horizontal.
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Note that the notions of the reflector lift and super-extremal surface can be defined
for higher even-dimentional cases. In [11], a rigidity theorem for super-extremal
surfaces is obtained.
The purpose of this paper is to give several examples of surfaces such that their
reflector lifts are horizontal or para-holomorphic and an elementary proof of a
rigidity theorem in a low dimensional case, that is, in the case of super-extremal
surfaces in the four-dimensional space forms Q4

2(c) of constant curvature c and
neutral signature.

2. Preliminaries

Throughout this paper, all manifolds and maps are assumed to be smooth. Let E
be a vector bundle over a manifold M and Ex the fiber of E over x ∈ M . We write
TP for the tangent bundle of a manifold P . For vector bundles E, E′ over M , we
denote the homomorphism bundle whose fiber is the space of linear mappings Ex

to E′
x by Hom(E,E′), and set End(E):= Hom(E,E). The space of all sections

of a vector bundle E is denoted by Γ(E). Let φ: N → M be a smooth map and E
a vector bundle over M . The pull back bundle of E by φ is denoted by φ#E.
In this section, we recall some definitions and equations for pseudo-Riemannian
manifolds and submanifolds. Let M̃ be a pseudo-Riemannian manifold with a
fixed pseudo-Riemannian metric g̃. A tangent vector X of M̃ is called spacelike
if g̃(X,X) > 0 or X = 0, null if g̃(X,X) = 0 and X ̸= 0, and timelike if
g̃(X,X) < 0. The set of all null vectors at x ∈ M̃ is called the nullcone at x ∈ M̃ ,
which is denoted by Λg̃(x). If dim M̃ − ν = ν, then we say that M̃ is of neutral
signature, where ν is the index of g̃. We call a psudo-Riemannian manifold M̃
Lorentzian if ν = 1.
Let (M, g) be a pseudo-Riemannian submanifold in (M̃, g̃). We denote the Levi-
Civita connection of g̃ (respectively g) by ∇̃ (respectively ∇). Let ∇⊥ be the
normal connection of the normal bundle T⊥M . Let α and A be the second funda-
mental form and the shape operator of M . The mean curvature vector field of M
is denoted by H . We define ∇′α by the equality

(∇′
Xα)(Y, Z) = ∇⊥

Xα(Y, Z)− α(∇XY, Z)− α(Y,∇XZ)

for all X , Y , Z ∈ Γ(TM). Let R̃, R and R⊥ be the curvatures forms of ∇̃, ∇ and
∇⊥, respectively. Then the following equations hold

g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g⊥(α(X,Z), α(Y,W ))
(1)

−g⊥(α(X,W ), α(Y, Z))
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g̃(R̃(X,Y )Z, ξ) = g⊥((∇′
Xα)(Y,Z), ξ)− g⊥((∇′

Y α)(X,Z), ξ) (2)

g̃(R̃(X,Y )ξ, ζ) = g⊥(R⊥(X,Y )ξ, ζ) + g(AξX,AζY )− g(AξY,AζX) (3)

for all X , Y ∈TM and ξ, ζ ∈ T⊥M , where g⊥ is the metric of the normal bundle
T⊥M . We say that M is totally geodesic (respectively totally umbilic) if α = 0
(respectively α(X,Y ) = g(X,Y )H for all X , Y ∈ TM ). If H = 0, then M
is called an extremal submanifold ([17]). Note that, in [12], a submanifold with
H = 0 is called string. Let Rn

ν be the pseudo-Euclidean space of the dimension n
and the index ν with the flat standard metric. Let (x1, . . . , xn+1) be the standard
coordinate on Rn+1. The pseudosphere Sn

ν (r) of the index ν and the radius r > 0
is defined by

Sn
ν (r) = {p ∈ Rn+1

ν ; −
ν∑

i=1

(xi(p))2 +
n+1∑

j=ν+1

(xj(p))2 = r2}.

Similarly, the pseudohyperbolic space Hn
ν (r) of the index ν and the radius r > 0

is defined by

Hn
ν (r) = {p ∈ Rn+1

ν+1 ; −
ν+1∑
i=1

(xi(p))2 +

n+1∑
j=ν+2

(xj(p))2 = −r2}.

The all spaces Rn
ν , Snν (r) and Hn

ν (r) are of constant curvature 0, 1/r2, −1/r2. We
denote the space form by Qn

ν (c) which is one of Rn
ν , Snν (r) or Hn

ν (r), where n is
the dimension, ν is the index and c is constant curvature of Qn

ν (c).

3. Reflector Bundles and Reflector Lifts

Let (M̃, g̃) be an oriented four-dimensional manifold of neutral signature. The
Hodge star operator is denoted by ∗. Since ∗2 = id on the space of two-forms
Λ2(M̃), we have

Λ2(M̃) = Λ2
+(M̃)⊕ Λ2

−(M̃)

where Λ2
±(M̃) = {ω ∈ Λ2(M̃) ; ∗ ω = ±ω}. Let (e1, . . . , e4) of M̃ be an

orthonormal frame which is compatible with the orientation and g̃(ei, ei) = εi,
ε1 = ε2 = −1, ε3 = ε4 = 1. We denote its dual frame by (ω1, . . . , ω4). Set
s1:= ω1 ∧ ω2 − ω3 ∧ ω4, s2:= ω1 ∧ ω3 − ω2 ∧ ω4, s3:= ω1 ∧ ω4 + ω2 ∧ ω3.
Then s1, s2, s3 is an orthonormal frame of Λ2

−(M̃). Let Ji ∈ Γ(End(TM̃)) be
the endomorphism corresponding to si (i = 1, 2, 3). Then we have J1(e1) =
−e2, J1(e3) = −e4 and so on. It is easy to see that (J1)2 = −I , (J2)2 = I ,
(J3)

2 = I and J3 = J2J1 = −J1J2. Let Q be the vector subbundle of End(TM̃)
which is locally spanned by J1, J2, J3. We have g̃(J1, J1) = 1, g̃(J2, J2) = −1,
g̃(J3, J3) = −1, that is, the fiber metric of Q has the index two. It it easy to see
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that Q is a parallel subbundle in End(TM̃) with respect to the connection which
is induced by the Levi-Civita connection ∇̃ of M̃ . We use the same letter ∇̃ for
the connection of End(TM̃) induced by ∇̃.

Lemma 1. Set J = aJ1(x) + bJ2(x) + cJ3(x) at each x ∈ M̃ (a, b, c ∈ R). The
following statements are mutually equivalent: 1) J2 = I , 2) −a2 + b2 + c2 = 1,
3) g̃x(J, J) = −1.

We define the reflector bundle Z by

Z =
∪
x∈M

{J ∈ Qx ; g̃x(J, J) = −1}.

The bundle projection p : Z → M̃ and the Levi-Civita connection ∇̃ on M̃ induce
the decomposition TZ = T hZ ⊕ T vZ into the horizontal subbundle T hZ and the
vertical subbundle T vZ. On the reflector bundle Z, the almost para-complex (or
bilagrangian) structure JZ is defined by JZ(X) = (J(p∗(X)))hJ for all horizontal
vector X at J ∈ Z and JZ(V ) = Jv(V ) for all vertical vector V , where Y h is the
horizontal lift of Y ∈ TM and Jv is the canonical para-complex structure on each
fiber ≃ H2

1 (1).

Let f : (M, g) → (M̃, g̃) be an isometric immersion from an oriented two di-
mensional Lorentzian manifold (M, g) into an oriented four-dimensional manifold
(M̃, g̃) of neutral signature. Using an orthonormal frame e1, e2, e3, e4 adapted to
the orientation of M̃ such that e1, e3 defines the orientation of M and e2, e4 are
normal to M , we define J: TM → TM by J(e1) = −e3 and J(e3) = −e1, and
J⊥: T⊥M → T⊥M by J⊥(e2) = e4 and J⊥(e4) = e2. Such frame e1, e2, e3, e4
is said to be adapted. We define J̃ ∈ Γ(f#Q) by

J̃(X):= J(X) and J̃(ζ):= J⊥(ζ)

for X ∈ TM and ζ ∈ T⊥M . Then J̃ ∈ Γ(f#Q) is called the reflector lift of M
(see [12]). Hereafter, we often omit the symbol “f” for the induced objects of the
immersion f if there is no confusion for the simplicity. For reflector bundles and
reflector lift, see [12].

Lemma 2. The para-complex structures J and J⊥ are parallel with respect to ∇
and ∇⊥ respectively.

Here we define surfaces corresponding to superminimal and twistor holomorphic
surfaces in Riemannian geometry. A surface M in M̃ is called super-extremal if
its reflector lift is horizontal, that is, ∇̃J̃ = 0, where ∇̃ is the induced connection on
f#Q from the Levi-Civita connection of M̃ . By the similar way to the Riemannian
case and using Lemma 2, we have
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Lemma 3. A surface M is super-extremal if and only if the second fundamental
form α satisfies α(X, JY )− J⊥α(X,Y ) = 0 for all X , Y ∈ TM .

A surface M in M̃ is called isotropic with negative spin if its reflector lift is para-
holomorphic (or bilagrangian), that is, J̃∗ ◦J = JZ ◦ J̃∗ (precisely, (f# ◦ J̃)∗ ◦J =

JZ ◦ (f# ◦ J̃)∗), see [12]. A surface is called isotropic with positive spin if the
reflector lift is para-holomorphic with respect to the opposite orientation. We also
obtain

Lemma 4. A surface M is isotropic with negative spin if and only if the second
fundamental form α satisfies

J⊥α(JX, JY )− α(JX, Y )− α(X,JY ) + J⊥α(X,Y ) = 0, X, Y ∈ TM.

After proving fundamental lemmas for super-extremal and isotropic surfaces with
negative spin, we give examples of such surfaces in the next section. We define β
and γ by

β(X,Y ) = α(X,JY )− J⊥α(X,Y )

and

γ(X,Y ) = J⊥α(JX, JY )− α(JX, Y )− α(X, JY ) + J⊥α(X,Y )

for X,Y ∈ TM . Let K be the Gaussian curvature of M . We define the normal
curvature function K⊥ by K⊥ = g⊥(R⊥(e1, e3)e4, e2) and a function ρ by

ρ = g⊥(α(e1, e3) + J⊥α(e1, e1), α(e1, e3) + J⊥α(e3, e3))

where (e1, . . . , e4) is an adapted frame. Note that ρ = 0 if M is super-extremal.
We summarize the fundamental formulae which we use in this paper. These are
obtained by the straightforward calculations. By the definition of ρ and (3), we
have

ρ = − detAe2 + detAe4 +K⊥ − g̃(R̃(e1, e3)e4, e2).

By (1), it is easy to see

K = −detAe2 + detAe4 − g̃(R̃(e1, e3)e3, e1).

Combined with these equations, we have

ρ−K = K⊥ − g̃(R̃(e1, e3)e4, e2) + g̃(R̃(e1, e3)e3, e1). (4)



A Lorentzian Surface in a Four-dimensional Manifold of Neutral Signature and. . . 181

4. Examples and a Rigidity Theorem for Super-Extremal Surfaces

Let (M, g) be an oriented Lorentzian surface in an oriented four-dimensional pseu-
do-Riemannian manifold (M̃, g̃) of neutral signature, which is isometrically im-
mersed by f . Let J ∈ Γ(End(TM)) (respectively J⊥ ∈ Γ(End(T⊥M))) be the
para-complex structure on M (respectively T⊥M ). We set T⊤

ε := Ker(J − εI)
and T⊥

ε := Ker(J⊥ − εI) (ε = ±1). Let p⊤ε (respectively p⊥ε ) be the projec-
tion from TM (respectively T⊥M ) onto T⊤

ε (respectively T⊥
ε ) (ε = ±1). The

projections p⊤ε (respectively p⊥ε ) are given by p⊤ε = (1/2)(I + εJ) (respectively
p⊥ε = (1/2)(I + εJ⊥)) (ε = ±1). It is easy to prove the following lemma.

Lemma 5. We have

1) T⊤
ε and T⊥

ε are the parallel subbundles of TM and T⊥M respectively
(ε = ±1).

2) TM = T⊤
1 ⊕ T⊤

−1 and T⊥M = T⊥
1 ⊕ T⊥

−1

3) Λg ∪ {0} = T⊤
1 ∪ T⊤

−1 and Λg⊥ ∪ {0} = T⊥
1 ∪ T⊥

−1.

By Lemma 5, we obtain

Lemma 6. For X ∈ T⊤
1 and Y ∈ T⊤

−1, we have

α(X,Y ) = g(X,Y )H. (1)

By the straightforward calculations, we have the following lemmas.

Lemma 7. If X ∈ T⊤
1 and Y ∈ T⊤

−1, then we have

β(X,X) = α(X,X)− J⊥α(X,X) (2)

β(Y, Y ) = −α(Y, Y )− J⊥α(Y, Y ) (3)

β(X,Y ) = −g(X,Y )(H + J⊥H) (4)

β(Y,X) = g(X,Y )(H − J⊥H). (5)

Lemma 8. If X ∈ T⊤
1 and Y ∈ T⊤

−1, then we have

γ(X,X) = 2(J⊥α(X,X)− α(X,X))

γ(Y, Y ) = 2(J⊥α(Y, Y ) + α(Y, Y ))

γ(X,Y ) = 0.

The following fact is proved in [12] using a local frame.

Lemma 9. A surface M is super-extremal if and only if M is extremal and isotro-
pic with negative spin.



182 Kazuyuki Hasegawa

Proof: Assume that M is super-extremal. Then we have α(X,X) ∈ T⊥
1 for all

X ∈ T⊤
1 and α(Y, Y ) ∈ T⊥

−1 for all Y ∈ T⊤
−1 by Lemma 3, (2) and (3). Then M

is isotropic with negative spin. Moreover, it follows that H ∈ T⊥
1 ∩ T⊥

−1 from (4)
and (5). Hence, by Lemma 5, we have H=0. Next, we assume that M is extremal
and isotropic with negative spin. By Lemmas 7 and 8, we see β = 0, that is, M is
super-extremal. �

By Lemma 8, we have

Proposition 1. A surface M is isotropic with negative spin if and only if it holds
that α(X,X) ∈ T⊥

1 for all X ∈ T⊤
1 and α(Y, Y ) ∈ T⊥

−1 for all Y ∈ T⊤
−1.

Hence, to check if the surface is isotropic with a negative spin, it is sufficient
to consider the second fundamental form with respect to null directions. Using
Proposition 1, we see that the following immersions is isotropic with negative spin.

Example 1. Let U be an open set of R2
1. We consider the immersion f: U → R4

2

by

f(x, y) = (a(x) + c(y)b(x), b(x)− c(y)a(x), a(x)− c(y)b(x), b(x) + c(y)a(x))

where a, b, c are functions defined on open intervals with c′(a′b− ab′) ̸= 0. Since

f∗(∂x) = (a′ + cb′, b′ − ca′, a′ − cb′, b′ + ca′)

f∗(∂y) = (c′b,−c′a,−c′b, c′a)

and we have also g̃(f∗(∂x), f∗(∂x))=0, g̃(f∗(∂y), f∗(∂y))=0, g̃(f∗(∂x), f∗(∂y))
= −2c′(a′b− ab′). Moreover, we obtain

∇̃∂x∂x = (a′′, b′′, a′′, b′′) + c(b′′,−a′′,−b′′, a′′)

∇̃∂x∂y = c′(b′,−a′,−b′, a′)

∇̃∂y∂y = c′′(b,−a,−b, a).

Besides, it holds that

g̃(α(∂x, ∂x)α(∂x, ∂x)) = 0, α(∂x, ∂y) = c′(b′,−a′,−b′, a′), α(∂y, ∂y) = 0.

Therefore, by Proposition 1, we see that f is an isotropic immersion with negative
spin. By Lemma 6, we have

H = − 1

2(a′b− ab′)
(b′,−a′,−b′, a′).

Hence the mean curvature vector field is null.

We see that f is totally umbilic if and only if, for any null geodesic c on M , the
curve f ◦ c is geodesic. In fact, if α(X,X) = 0 for all X ∈ T⊤

1 and α(Y, Y ) = 0
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for all Y ∈ T⊤
−1, then it holds that α(Z,W ) = g(Z,W )H for all Z, W ∈ TM by

Lemma 6. Consider

U4
2 (x0):= {x ∈ R4

2 ; g̃(x, x) = 0, g̃(x, x0) = −1}
for a null vector x0 ∈ R4

2. Then U4
2 (x0) is a flat totally umbilic surface in R4

2 with
parallel null mean curvature vector field (see [13]). In Example 1, when a(x)=
1, b(x)= x, c(y)= y, the immersion is totally umbilic. In fact, this immersion
is locally congruent to U4

2 (x0). In terms of null geodesics on M , we have the
following corollary.

Corollary 1. Let M be an oriented Lorentzian surface in an oriented four-dimen-
sional pseudo-Riemannian manifold M̃ of neutral signature. Then the following
statements are mutually equivalent:

1) M is isotropic with negative spin.
2) For any ε and any null geodesic c on M with c′ ∈ T⊤

ε , the curve f ◦ c
satisfies (f ◦ c)′′(t) ∈ (T⊥

ε )c(t) for all t ∈ Dom(c).

Next we give examples of super-extremal surfaces.

Example 2. If (M̃, g̃) is a four-dimensional para-Kähler manifold with the parallel
para-complex structure J ′ ∈ Γ(Q). If f∗ ◦J = J ′ ◦ f∗, then M is a super-extremal
surface. For example, f: U → R4

2 defined by

f(x, y) = (a(x) + c(y), b(x) + d(y), a(x)− c(y), b(x)− d(y))

is super-extremal, where U is an open set in R2
1 and a, b, c, d are functions defined

on open intervals such that a′c′ + b′d′ ̸= 0.

Example 3. We define an extremal immersion f: S21(1) → S42(1/
√
3) by

f(x, y, z) = (xy, zx, yz,

√
3

6
(2x2 + y2 + z2),

1

2
(y2 − z2))

which is corresponding to the Veronese immerison in Riemannian geometry (see
[14]) where more general situations are considered. See also [15]. Note that the
Veronese immerison in Riemannian geometry is a typical example of superminimal
immersions. Next using Corollary 1, we show that f is isotropic with negative spin.
It is sufficient to consider null geodesics passing through one point p = (0, 1, 0).
Null geodesics passing through p can be written by γ±(t) = (t, 1,±t) for t ∈ R.
Then we have

(f ◦ γ±)(t) = (t,±t2,±t,

√
3

6
(3t2 + 1),

1

2
(1− t2))

for t ∈ R. Therefore we have (f ◦ γ±)
′′(t) = (0,±2, 0,

√
3,−1), and hence,

(f ◦ γ±)
′′(t) are null vector and g̃((f ◦ γ−)

′′(0), (f ◦ γ+)
′′(0)) ̸= 0. Then f is

isotropic with negative spin and extremal, that is, f is super-extremal by Lemma 9.
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Composing homotheties and anti-isometries of S21(1) and S42(1/
√
3), we can obtain

super-extremal immersions of the Veronese type from Q2
1(c) to Q4

2(3c) (c ̸= 0).

The notions of the reflector lift and super-extremal surface can be defined for higher
even-dimentional cases. In [11], a rigidity theorem for super-extremal surfaces is
obtained in such cases. For the low dimensional case, we give more elementary
proof of the rigidity theorem. To do this, we prepare a lemma for connections
of a pseudo-Riemannian vector bundle. Let E be a pseudo-Riemannian vector
bundle with fiber metric gE over a pseudo-Riemannian manifold with the Levi-
Civita connection ∇, and ∇′ metric connections of E. Let α be an E-valued
symmetric tensor and its covariant derivative ∇′α induced by ∇′ and ∇. We define
d∇

′
α by

(d∇
′
α)(X,Y, Z) := (∇′

Xα)(Y, Z)− (∇′
Y α)(X,Z)

for X , Y , Z ∈ Γ(TM). We note that α is d∇
′
-closed, that is, d∇

′
α = 0 if and only

if the connection satisfies the equation of the Codazzi type. The following lemma
can be proved in a similar way as Theorem 1 in [16].

Lemma 10. Let E be a pseudo-Riemannian vector bundle with fiber metric gE

over a pseudo-Riemannian manifold with the Levi-Civita connection ∇, and ∇1,
∇2 metric connections of E. Let α be an E-valued symmetric tensor which satisfies
d∇

1
α = 0 and d∇

2
α = 0. If Ex = Span{α(X,Y ) ; X,Y ∈ TxM} for all x ∈ M ,

then ∇1 = ∇2.

Here we can prove the following theorem.

Theorem 2. Let f , f̄: M → Q4
2(c) be super-extremal immersions from a Loren-

tzian surface M such that both normal curvatures do not vanish at any point of M .
Then there exist an isometry Φ of Q4

2(c) such that f̄ = Φ ◦ f .

Proof: The corresponding objects associated with f̄ are denoted by the symbol
with “−", for example, T⊥M is the normal bundle of f̄ . By (4), we have K +
K⊥ = c, so c ̸= K. On the other hand, for nonzero vectors X ∈ T⊤

1 and Y ∈
T⊤
−1, we see that g⊥(α(X,X), α(Y, Y )) ̸= 0. The first normal spaces coincide

with the normal spaces, that is, T⊥M = Span{α(X,X), α(Y, Y )} and T⊥M =

Span{ᾱ(X,X), ᾱ(Y, Y )}. We define an isomorphism φ : T⊥M → T⊥M by
φ(α(X,X)) = ᾱ(X,X) and φ(α(Y, Y )) = ᾱ(Y, Y ). Then we have

g⊥(α(X,X), α(X,X)) = ḡ⊥(ᾱ(X,X), ᾱ(X,X))

and

g⊥(α(Y, Y ), α(Y, Y )) = ḡ⊥(ᾱ(Y, Y ), ᾱ(Y, Y )).
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We see that φ preserves the metrics of normal bundles. In fact, using by the Gauss
equation (1), we have

cg(X,Y )2 = Kg(X,Y )2 + g⊥(α(X,X), α(Y, Y ))

and hence, we have g⊥(α(X,X), α(Y, Y )) = ḡ⊥(ᾱ(X,X), ᾱ(Y, Y ))(̸= 0). The-
refore we see that φ is isometry. Since both f and f̄ are extremal, we have

φ(α(X,Y )) = φ(g(X,Y )H) = 0 = ᾱ(X,Y )

for all X ∈ T⊤
1 and Y ∈ T⊤

−1. Therefore φ preserves the second fundamental
forms. Consider a connection ∇̄⊥′ on the normal bundle T⊥M defined by ∇̄⊥′

X ξ:=

φ(∇⊥
Xφ−1ξ) for X ∈ Γ(TM) and ξ ∈ Γ(T⊥M). By the Codazzi equation (2)

for f , we see that the connection ∇̄⊥′ satisfies d∇̄
⊥′
α = 0. From Lemma 10, it

follows that ∇̄⊥ = ∇̄⊥′. Therefore φ also preserves the normal connections. By
the congruence theorem for pseudo-Riemannian submanifolds in the space forms
(see [6], for example), we see that there exists an isometry Φ of Q4

2(c) such that
f̄ = Φ ◦ f . �

By Theorem 2, we have

Corollary 2. Let f , f̄: M → Q4
2(c) be super-extremal immersions from a Loren-

tzian surface M of constant Gaussian curvature c′. If c ̸= c′, then there exist an
isometry Φ of Q4

2(c) such that f̄ = Φ ◦ f .

An isometric immersion f : (M, g) → (M̃, g̃) is called locally homogeneous if
for all point x and y of M , there exists a neighborhood U of x and an isometry
Φ: M̃ → M̃ such that Φ(f(x)) = f(y) and Φ(f(U)) ⊂ f(M). In particular,
when U = M , f is said to be homogenous. By Corollary 2, we have

Corollary 3. Let f: M → Q4
2(c) be a super-extremal immersion from a Lorentzian

surface M of constant Gaussian curvature c′. If c ̸= c′, f is locally homogeneous.
In particular, if M = Q2

1(c
′) and c ̸= c′, then f is homogeneous.

For locally homogeneous super-extremal surfaces, a quantization phenomenon of
the Gaussian curvature of M holds.

Lemma 11. Let f: M → Q4
2(c) be a locally homogeneous super-extremal immer-

sion from a Lorentzian surface M . We have K = c or K = c/3.

Proof: Take vectors X∈T⊤
1 , Y ∈T⊤

−1, ξ∈T⊥
1 and η∈T⊥

−1 such that g(X,Y ) = 1

and g⊥(ξ, η) = 1 at each point of M . We define

s:= g⊥(α(X,X), η)g⊥(α(Y, Y ), ξ).

Note that the function s is independent of the choice of such frames. Since f is
locally homogeneous, s is constant. If s = 0, then we see that α(X,X) = 0 or
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α(Y, Y ) = 0. From the Gauss equation (1), we have K = c. If s ̸= 0, then we
have 0 = △ log |s| = (2K−K⊥) by Proposition 3.4.1 in [12] (we use the opposite
sign convention to the definition of the normal curvature of [12]). By (4), we have
c = 3K. �

By Corollary 3 and Lemma 11, we characterize the immersion of the Veronese
type as follows.

Corollary 4. Let f: M → Q4
2(c) be a super-extremal immersion from a Lorentzian

surface M of constant Gaussian curvature c′. If c′ ̸= c, then c = 3c′ ̸= 0 and f
is congruent to a restriction to an open set of the immersion of the Veronese type
given in Example 3.

Remark 1. From Corollary 4, there are no super-extremal immersions of the Lo-
rentzian surfaces of constant Gaussian curvature c′ into Q4

2(c) if cc′ < 0.

Remark 2. In Riemannian case, superminimal surfaces in the spaces of constant
curvature with flat normal connection are totally geodesic (see Lemma 4.5 in [7],
for example). But the corresponding fact does not hold in general. In fact, there
exists a non-totally geodesic super-extremal surface in R4

2 with flat normal connec-
tion. For example, consider the case of d = 0 in Example 2. By the straightforward
calculation, we have

f∗(∂x) = (a′, b′, a′, b′), f∗(∂y) = (c′, 0,−c′, 0)

and the induced metric satisfies

g(∂x, ∂x) = 0, g(∂y, ∂y) = 0, g(∂x, ∂y) = −2a′c′.

Then the Gaussian curvature of the induced metric is flat, and hence K⊥= 0.
Moreover it holds that

α(∂x, ∂x) = (0, b′′ − a′′

a′
b′, 0, b′′ − a′′

a′
b′), α(∂x, ∂y) = 0 α(∂y, ∂y) = 0

and hence we can find many functions a, b, c such that M is not totally geodesic,
for example,

a(x) = x, b(x) = sinx, c(y) = −ey. (6)

In Riemannian case, a connected minimal surface of constant Gaussian curvature
in Rn(∼= Rn

0 ) must be flat and an open part of a two-plane on Rn (see [2]). The
example as above implies that the corresponding fact does not hold in general. In
fact, by Corollary 4, we can see that super-extremal Lorentzian surfaces of constant
Gaussian curvature in R4

2 must be flat but there are many non-totally geodesic
super-extremal flat surfaces. Moreover the immersion given by (6) shows that
there exists a non-homogeneous super-extremal flat surface in R4

2. So the condition
c ̸= c′ in Corollary 3 is needed in general.
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