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Abstract. We study derivative nonlinear Schrödinger equations related to
symmetric spaces of the type A.III. We discuss the spectral properties of the
corresponding Lax operator and develop the direct scattering problem con-
nected to it. By applying an appropriately chosen dressing factor we derive
soliton solutions to the nonlinear equation. We find the integrals of motion
by using the method of diagonalization of Lax pair.

1. Introduction

A classical example of a nonlinear evolution equation integrable by means of the
inverse scattering transform is provided by derivative nonlinear Schrödinger equa-
tion (DNSE)

iqt + qxx + i(|q|2q)x = 0 (1)
where function q : R2 → C is infinitely smooth. DNSE occurs in plasma physics
to describe the propagation of nonlinear Alfvén waves with circular polarization
[16,17]. Equation (1) is equivalent to compatibility condition [L,A] = 0 for L and
A chosen in the form [13]

L(λ) := i∂x + λQ(x, t)− λ2σ3

A(λ) := i∂t +
3∑

k=1

Ak(x, t)λ
k − 2λ4σ3

(2)

where λ ∈ C is a spectral parameter and

Q(x, t) =

(
0 q(x, t)

q∗(x, t) 0

)
, σ3 =

(
1 0
0 −1

)
.
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The former Lax operator depends quadratically on λ and this is why it is said that
DNSE is connected to a quadratic bundle.
Since the time the integrability of DNSE was discovered many attempts to gener-
alize it have been made. One possible direction is to consider a quadratic bundle
of a general form [7], namely

L(λ) := i∂x + U0(x, t) +
1

2
q1p1σ3 + λU1(x, t)− λ2σ3 (3)

where

U0,1(x, t) =

(
0 q0,1(x, t)

p0,1(x, t) 0

)
.

A certain reduction of the nonlinear evolution equation related to (3) is given by
the celebrated Gerdjikov-Ivanov equation

iqt + qxx + iq2q∗x +
1

2
|q|4q = 0.

Another trend of current interest [8, 9, 12] in theory of integrable systems was
pioneered by Fordy et al [1, 3, 4] who related Lax pairs to different Hermitian
symmetric spaces in a very natural geometric way. In [3] Fordy managed to derive
relatively simple multicomponent versions of DNSE like the following one

iqt + qxx +
2i

n+ 1

((
qTq∗)q)

x
= 0 (4)

where q : R2 → Cn is an infinitely smooth function. Our aim here is to study
certain basic properties of equation (4) and its Lax pair.
The report is organised as follows. The Second section is preliminary in its nature.
We discuss some basic properties of the scattering operator L and the linear prob-
lem Lψ = 0 related to the nonlinear evolution equation (4) to be used further in
text. Next two sections contain our main results. In Section 3 we apply dressing
method to quadratic bundles in order to generate special types of solutions. In par-
ticular, we demonstrate how one can obtain the multisoliton solutions of DNSE.
Section 4 is dedicated to the foundations of Hamiltonian formalism. We derive the
integrals of motion and introduce a Poisson bracket. For that purpose we make use
of a method proposed by Drinfel’d and Sokolov [2]. In Section 5 we summarize
our results and make some additional remarks.

2. Quadratic Bundles Related to Hermitian Symmetric Spaces

In this section we are going to expose very briefly the scattering theory for the Lax
operator L related to DNSE (4). For this to be done we are going to follow some
well-known ideas in soliton theory, see [10, 18] for detailed explanations.
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Equation (4) represents compatibility condition of the following Lax operators

L(λ) := i∂x + λQ(x, t)− λ2J (5)

A(λ) := i∂t +
4∑

k=1

λkAk(x, t) (6)

where λ ∈ C is spectral parameter. All coefficients above are assumed to be
Hermitian traceless (n + 1) × (n + 1) matrices. This requirement can also be
viewed [14, 15] as Z2 reduction condition

L†(λ∗) = L̃(λ), A†(λ∗) = Ã(λ) (7)

imposed on a generic L – A pair. Above we have introduced the auxiliary notation
L̃(λ)ψ := −i∂xψ + λψ(Q − λJ). Apart of (7) the Lax operators L and A is a
subject to the following Z2 reduction

CL(−λ)C = L(λ), CA(−λ)C = A(λ) (8)

where C = diag(1,−1 . . . ,−1). Due to the form of C the potential Q has the
block structure

Q(x, t) =

(
0 qT (x, t)

q∗(x, t) 0

)
(9)

while the constant matrix J is block diagonal.
The matrix C represents action of Cartan’s involutive automorphism to define sym-
metric space SU(n + 1)/S(U(1) × U(n)) which is a special case of A.III type
symmetric space according to Cartan’s classification, see [11] for more details.
Cartan’s involution induces a Z2 grading in the corresponding Lie algebra sl(n+1)
(as well as its real compact form su(n+ 1)) as follows

sl(n+ 1) = sl0(n+ 1) + sl1(n+ 1)

where
slσ(n+ 1) := {X ∈ sl(n+ 1); CXC−1 = (−1)σX}.

It is easy to see thatQ as well asA1 andA3 belong to sl1(n+1) while J ,A2 andA4

belong to sl0(n+1). The subspace sl0(n+1) consists of all block diagonal trace-
less matrices. For the sake of convenience we pick up J = diag(n,−1, . . . ,−1).
Thus sl0(n+ 1) coincides with the centralizer of J .
In order to get definite results one must impose certain additional boundary con-
ditions on q. We are going to restrict ourselves with the simplest case of zero
boundary conditions, i.e., we have

lim
x→±∞

q(x, t) = 0. (10)

For such boundary conditions the continuous part of the spectrum of L fills up
the real and the imaginary axis in the complex λ-plane. Indeed, the continuous
spectrum of L is a locus of points in C determined where the exponent exp(iλ2Jx)
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oscillates [5,10] or equivalently condition imλ2 = 0 holds true1. On the other hand
due to reductions (7) and (8) the discrete eigenvalues of L get correlated2, namely
they go in quadruples {±µk,±µ∗k}, k = 1, . . . , n.
In order for one to formulate direct scattering theory it is necessary to consider
auxilary linear problem

L(λ)ψ(x, t, λ) = 0. (11)

The function ψ is viewed as a fundamental set of solutions to (11) called funda-
mental solution for short, i.e., ψ takes values in the Lie group SU(n+ 1). Since L
and A commute, any fundamental solution ψ satisfies

A(λ)ψ(x, t, λ) = ψ(x, t, λ)f(λ) (12)

as well. The quantity

f(λ) = lim
x→±∞

4∑
k=1

λkAk(x, t) = −(n+ 1)λ4J (13)

is called dispersion law. The dispersion law labels the nonlinear evolution equation
within the integrable hierarchy3 and thus it is a fundamental feature of integrable
equations.
Next one introduces Jost solutions through the following equality

lim
x→±∞

ψ±(x, t, λ)e
iλ2Jx = 11.

The Jost solutions are defined only on continuous spectrum of L(λ), that is the real
and imaginery axes in the λ-plane.
Any two fundamental solutions are linearly related. The transition matrix

T (t, λ) = ψ+(x, t, λ)
−1ψ−(x, t, λ) (14)

between the Jost solutions is called scattering matrix. Its time evolution is driven
by the dispersion law as follows

i∂xT + [f(λ), T ] = 0 ⇒ T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t. (15)

Equation (15) represents a linearization of the nonlinear equation under considera-
tion. This crucial fact underlies the interpretation of the inverse scattering method
as a nonlinear Fourier transform [10, 18].

1Strictly speaking the spectrum of L is complementary to the domain of its resolvent. More detailed
analysis [5, 10] shows that this is equivalent to satisfaction of above mentioned condition.
2All eigenvalues of L must belong to a certain discrete orbit of the reduction group Z2 × Z2

[10, 14, 15].
3The integrable hierarchy consists of all equations to share the same Lax operator L. So they are
distinguished by the form of second operator A.
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Figure 1. Domains of analyticity.

Similarly to the scalar DNSE [6, 13] the Jost solutions to (11) can be used to con-
struct in a purely algorithmic way another pair of solutions χ+(x, λ) and χ−(x, λ)
that are analytic in domains Ω+ and Ω− (see Fig.1). The explicit formulae read

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ).

S+(λ) and T+(λ) are upper block triangular matrices, S−(λ) and T−(λ) are lower
block triangular matrices, while D±(λ) are block diagonal. All these appear in the
generalized Gauss decomposition

T (λ) = T∓(λ)D±(λ)(S±(λ))−1

of the scattering matrix T . It is seen that

χ+(x, λ) = χ−(x, λ)G(λ), λ ∈ R ∪ iR

for some sewing function G(λ) = (S−(λ))−1S+(λ). Thus the fundamental so-
lutions χ+(x, λ) and χ−(x, λ) solve a local Riemann-Hilbert problem defined on
the continuous spectrum of L. The reductions (7) and (8) impose certain symme-
try conditions on the Jost solutions, the scattering matrix and fundamental analytic
solutions. Here is a list of these[

ψ†
±(x, λ

∗)
]−1

=ψ±(x, λ)
[
T †(λ∗)

]−1
=T (λ)

Cψ±(x,−λ)C =ψ±(x, λ) CT (−λ)C =T (λ)[
χ+(x, λ∗)

]†
= [χ−(x, λ)]−1 Cχ+(x,−λ)C =χ−(x, λ).

(16)
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3. Dressing Method and Special Solutions

In this section we are going to present an algorithm to obtain particular solutions
to DNSE. This algorithm is based on Zakharov-Shabat dressing technique [18,19]
adapted for quadratic bundles. This very effective method allows one to derive in
an algebraic manner the soliton solutions to DNSE.

3.1. Dressing Method

We shall sketch here very briefly the concept of the dressing method (DM). DM is
an indirect method for integration, i.e., it uses a known (simple) solution to a given
equation to produce another (more complicated) one. For this to be done it takes
into account the existence of Lax representation.
Let ψ0 be a fundamental solution to

L0ψ0 = i∂xψ0 + λ(Q0 − λJ)ψ0 = 0 (17)

where

Q0(x) =

(
0 q0(x)

q∗
0(x) 0

)
for some vector qT

0 = (q10, . . . , q
n
0 ) assumed to be a known solution to the nonlinear

equation. Then we construct another function ψ1(x, λ) := g(x, λ)ψ0(x, λ) by
“dressing” the initial solution ψ0. Assuming that ψ1 satisfies the linear problem

L1ψ1 = i∂xψ1 + λ(Q1 − λJ)ψ1 = 0 (18)

defined for some potential

Q1(x) :=

(
0 q1(x)

q∗
1(x) 0

)
to be found. Comparing (17) and (18) we see that the dressing factor g satisfies

i∂xg + λQ1 g − λgQ0 − λ2[J, g] = 0. (19)

The Z2 reductions (16) imply that g fulfills a similar set of symmetry conditions,
namely [

g†(x, λ∗)
]−1

= g(x, λ), Cg(x,−λ)C = g(x, λ). (20)

The simplest nontrivial choice for g to meet these requirements reads

g(x, λ) = 11 +
λB(x)

µ(λ− µ)
+
λCB(x)C

µ(λ+ µ)
, ℜµ ̸= 0, ℑµ ̸= 0 (21)

From (19) it follows that Q1 and Q0 are interrelated through

Q1 = AQ0A
† + [J,B −CBC]A† (22)
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where

A = 11 +
1

µ
(B +CBC).

Thus we have expressed Q1 in terms of the seed solution Q0 and the residue B. In
order to find B one analyzes the identity gg−1 = 11. After calculating the residue
at λ = µ we obtain the algebraic relation

B

(
11 +

µB†

µ∗(µ− µ∗)
+

µCB†C

µ∗(µ+ µ∗)

)
= 0. (23)

Obviously B(x, t) must be a degenerate matrix4. Therefore there exist rectangular
(n+1)× k matrices X(x) and F (x) to fulfill B = XF T . Then (23) is reduced to
an algebraic equation for X that can be solved easily to give

X =
µ

µ∗

(
F TF ∗

µ− µ∗
− F TCF ∗

µ+ µ∗
C

)−1

F ∗. (24)

The factor F can be found from differential equation (19). Detailed analysis shows
that it is expressed through

F T (x) = F T
0 [ψ0(x, µ)]

−1 (25)

where ψ0 is any fundamental solution to (17) defined at a vicinity of µ and F0 is a
constant matrix.

What remains is to recover the time evolution. For this to be done one must con-
sider equation

i∂tg +

2N∑
k=1

λkA
(1)
k g − g

2N∑
k=1

λkA
(0)
k = 0 (26)

that follows from the second linear problem (12). Skipping all details we present
the final result: the matrix F0 evolves with time according to

i∂tF
T
0 − F T

0 f(µ) = 0.

Thus we are able to propose a simple rule to derive the time dependence of Q1,
namely

F T
0 → F T

0 e−if(µ)t. (27)

4If B is invertible then from (23) we see that it is proportional to 11, that is we have trivial dressing.
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3.2. Soliton Solutions

The simplest class of solutions are solitons. To derive one-soliton solution we set

Q0 = 0 ⇒ ψ0(x, t, λ) = e−iλ2Jx.

We shall resrict ourselves here with the case when rankB = 1. Then the reflec-
tionless potential acquires the form

qj−1
1 (x) = (Q1)1 j(x) = 2i(n+ 1)

n+1∑
l=2

ρ sin(2φ)e−iσl(x)eθl(x)

e−2iφ +
∑n+1

p=2 e
2θp(x)

(28)

×

(
δjl − 2i

eθj(x)+θl(x)ei(δj−δl−2φ)

e−2iφ +
∑n+1

p=2 e
2θp(x)

sin(2φ)

)
where we have used the notation

θp(x) = (n+ 1)ρ2 sin(2φ)x− ξ0,p, p =2, . . . , n+ 1

σp(x) = (n+ 1) cos(2φ)x+ δ1 − δp − φ, µ = ρ exp(iφ)

ξ0,p = ln |F0,1/F0,p|, δ1 = argF0,1, δp = argF0,p.

In order to obtain the one-soliton solution we need to recover the time dependence
in (28). For that purpose one should use (27) and take into account that for the
DNSE f(λ) = −(n+ 1)λ4J . As a result one gets the following correspondence

ξ0,p → ξ0,p − 2(n+ 1)ρ4 sin(4φ)t

δ1 → δ1 + 2nρ4 cos(4φ)t, δp → δp − 2ρ4 cos(4φ)t.
(29)

It is clear that one is able to apply the dressing procedure to the one-soliton solu-
tion and thus constructs a two-soliton solution and so on. This way one obtains a
sequence of exact solutions. There exists another approach in deriving the multi-
soliton solutions however. It consists in using a multiple pole dressing factor of the
form

g(x, t, λ) = 11 +
N∑
k=1

λ

µk

(
Bk(x, t)

λ− µk
+

CBk(x, t)C

λ+ µk

)
where all µk do not lie on the continuous spectrum of L. Then the multisoliton
solution is obtained through the following formula

Q1 =
m∑
k=1

[J,Bk −CBkC]A† (30)

where

A = 11 +

m∑
k=1

1

µk
(Bk +CBkC).



On Multicomponent DNSE Related to Symmetric Spaces 223

To find the residues Bk = XkF
T
k one follows basically the same steps as in the

two poles case. The matrices Fk are determined by the value of some bare solution
at the corresponding pole µk

F T
k (x, t) = F T

k,0[ψ0(x, t, µk)]
−1

while Xk can be found by solving the linear system

F ∗
k =

m∑
l=1

µ∗k
µl

(
Xl

F T
l F

∗
k

µl − µ∗k
−CXl

F l|CF ∗
k

µl + µ∗k

)
. (31)

Finally the time dependence is recovered through the rule

F T
k,0 → F T

k,0e
−if(µk)t (32)

to generalize (27) in a very natural way.

4. Integrals of Motion

In this section we develop some basics of the Hamiltonian formulation of DNSE
related to symmetric spaces. Firstly we are going to describe (local in x and t)
conserved densities by deriving a general recursive formula to generate them. In
order to do this we shall use the method of diagonalization of Lax pair proposed
by Drinfel’d and Sokolov [2].
Let us consider the following general flow Lax pair

L(λ) := i∂x + λQ(x, t)− λ2J (33)

A(λ) := i∂t +
2N∑
k=1

Ak(x, t)λ
k. (34)

After applying a gauge transform

P(x, t, λ) = 11 +
∞∑
k=1

pk(x, t)

λk
, pk ∈ sl1(n+ 1) (35)

one can put the L-A pair into diagonal form

L = P−1LP = i∂x − λ2J + λL−1 + L0 +
L1

λ
+ · · · (36)

A = P−1AP = i∂t +

2N∑
k=1

λkA−k +A0 +
A1

λ
+ · · · (37)

which makes obvious that is all coefficients above are elements of sl0(n+1). Since
the zero curvature representation is invariant under gauge transforms we have
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∂tLk − ∂xAk +
k∑
l

[Ll,Ak−l] = 0. (38)

From (38) it is seen that the matrix element (Lk)11 or equivalently the trace of the
n × n block of Lk represent local densities of integrals of motion. To find these
densities one substitutes (35) into (36) and then compares coefficitents before the
same powers of λ. As a result one obtains the following set of recurrence relations

λ : L−1 − p1J = Q− Jp1 (39)
λ0 : L0 + p1L−1 − p2J = Qp1 − Jp2 (40)

λ−k : Lk +

k+1∑
l=1

plLk−l = ipk,x +Qpk+1 − [J, pk+2], k = 1, 2, . . . (41)

After projecting the first two recurrence relations into a block diagonal and off-
block diagonal part we deduce that

p1 = ad−1
J Q =

1

n+ 1

(
0 qT

−q∗ 0

)
, L−1 = 0 (42)

L0 = Qp1 =
1

n+ 1

(
−qTq∗ 0

0 q∗qT

)
, p2 = 0. (43)

Thus the first integral density is I1 = q†q. The results just obtained are generalized
in the following theorem to be given here without proof

Theorem 1. All conserved densities Lk corresponding to odd indices vanish while
the rest are generated by

Lk = Qpk+1 (44)

where the matrix coefficient pk can be found through the recursive formula

pk = ad−1
J

(
ipk−2,x −

k−2∑
l=1

plLk−2−l

)
. (45)

Taking into account the statement of the theorem it is easily seen that next nonzero
integral density reads

I2 = iq†qx −
1

n+ 1
(q†q)2. (46)

It represents the Hamiltonian density H of the multicomponent DNLS equation if
we choose Poisson bracket as follows

{F,G} :=

∫ ∞

−∞
dy tr

(
δF

δQ
∂x

δG

δQT

)
. (47)
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5. Conclusions

The direct scattering problem for quadratic bundle related to Hermitian symmet-
ric spaces of the type A.III has been formulated and discussed. We have suited
the Zakharov-Shabat dressing technique to quadratic bundles related to Hermitian
symmetric spaces of the mentioned type. This allowed us to construct analytically
the multisoliton solutions. In particular, the one soliton solution has been written
down explicitly. This result naturally generalizes the classical result by Kaup and
Newell [13] for the soliton solution to scalar DNSE. The latter can be derived by
using a dressing factor chosen in the form

g(x, λ) = 11 +
λB

µ(λ− µ)
+

λσ3Bσ3
µ(λ+ µ)

·

We have described the integrals of motion for the DNSE (4) by deriving a general
recursion formula. In order to do this we have applied the method of diagonal-
ization of Lax pair. As a simple illustration we have calculated the first two inte-
grals of motion. The latter represents the Hamiltonian of DNSE when the Poisson
bracket is defined as in (47). All this underlies the Hamiltonian formalism for the
corresponding nonlinear equation.
All results presented in this report can be extended in several directions. Firstly,
one can consider quadratic bundles (5) related to other Hermitian symmetric spaces,
say BD.I type symmetric spaces. Since the corresponding DNSE look more com-
plicated way than (4) so the theory of such equations would be more complicated
than in A.III case.
Another meaningful direction consists in studying complete quadratic bundles, i.e.,
Lax operators in the form

L(λ) = i∂x +Q0 + λQ1 − λ2J (48)

where Q0 splits into a diagonal and off-diagonal part, Q1 is strictly off-diagonal
and J is a diagonal matrix. It is evident that the theory of complete quadratic
bundles gets more complicated than the one related to symmetric spaces.
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