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Abstract. In this paper we give a presentation of the basic vacuum relations 
of Extended Electrodynamics in terms of linear connections.

1. Linear Connections

Linear connections are first-order differential operators in vector bundles. If such 
a connection V is given and a  is a section of the bundle, then V a  is one-form on 
the base space valued in the space of sections of the vector bundle, so if X  is a 
vector field on the base space then i ( X ) V a  =  V y c  is a new section of the same 
bundle [2], If /  is a smooth function on the base space then V ( f a )  = d f  ® a  +  
f V a ,  which justifies the differential operator nature of V : the components of a  are 
differentiated and the basis vectors in the bundle space are linearly transformed. 
Let ea and eb, a,b =  1 , 2 , . . . , r  be two dual local bases of the corresponding spaces 
of sections < eb,ea >= 5b, then we can write

a  =  a aea, V  =  d  id +TbadxJl (ea <S> eb), V ( e a) =  <S> eb

Since the elements (sa <̂> eb) define a basis of the space of (local) linear maps of the 
local sections, it becomes clear that in order to define locally a linear connection it
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and therefore
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is sufficient to specify some one-form 6 on the base space and a linear map 
4> =  4*ba£a ® 65 in the space of sections. Then

V(<t) =  d ( ja ® ea +  9 ® 4>(a)

defines a linear connection with components T^a =  öß(pba in these bases. So, 
locally, any linear connection V can be written as

V =  d  ® (ea ® ea) +  ^ bßadxß ® (ea ® eb).

Let T© and be two one-forms valued in the space of linear maps in a vector 
bundle. A map ('Ll, T^) —>• (A, ©)(\Di, T^) is defined by (we shall write just ® 
for (A, ®) and the usual o will mean just composition)

© (% ,% )  =  ( ß ! ) bßJ ß 2)vmdxV A d x v ® [ o ( s a ® e b,£m ® e n)\

=  ( ß i ) bßJ ß 2 ^ mdx^  A d / ® [ <  £a, en >  (sm ® eb)]

=  ( ^ i ) bm (^2)lrrA^  A ® (eTO ® eb) fi <  V.

In the case of trivial vector bundles, the curvature of V is given by [2]

® (ea ® ea) +  ® ( ^ ,^ ) .

2. Some Facts From the Clasical and the Extended Electrodynamics

We recall now some facts from the Classical Electrodynamics (CED) and from 
the Extended Electrodynamics (EED) [1], The vector bundle under considera­
tion is the (trivial) bundle A2(M ) of two-forms on the Minkowski space-time M.  
Recall that if (F, *F) is a CED vacuum solution, i.e., d  F  =  0, d *  F  =  0, then 
the combinations

F  = a F - b * F , F * = b F  + a * F

where (a, b) are two arbitrary real numbers, also give a CED vacuum solution and, 
since on Minkowski space the corresponding Hodge star * 2  satisfies the relation 
*2 =  — id^^M), we obtain F* =  *F. The two corresponding energy tensors are 
related by

T ( F ,  F* ) = (a2 + b2) T(F,  *F).
Recall the real representation of complex numbers z =  a l  +  bJ where I  is the unit 
matrix in R2 and J  is the standard complex structure matrix in R2 with columns 
(0, —1)T, (1, O f .  So, we obtain an action of the linear group G  of matrices a  =  
a l  +  bJ on the CED vacuum solutions. This is a commutative group G  and its 
Lie algebra Q just adds the zero (2 x 2) matrix to G, and (I, J) define a natural 
basis of Q. So, having a CED vacuum solution, we have in fact a two-parameter 
family of vacuum solutions. Hence, we can define a (J-valued two-form Q on M  by 
O =  F ®  I + * F ®> J ,  and the equation dO =  0 is equivalent to d F  =  0, d * F  =  0.
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Consider the new basis (! ', J ')  in Q given by

r  =  a l  +  bJ, J' =  -5 1  +  aJ.

Accordingly, the “new” solution O', i.e., the old solution in the new basis of Q, will 
be

O' =  F  ® I '  +  *F  <g> J '  =  F  <g> (al' + bJ) +  *F  <g> ( - 5 J  +  aJ)
=  ( a F  — 5 * F ) ® I  +  ( 5 F  +  a * F ) ®  J  F  ® I  +  F* ® J.

In view of this we may consider this transformation as nonessential, i.e., we may 
consider (F ,* F ) and (F , F *) as two different representations in corresponding 
bases of Q of the same solution.
Such an interpretation is approporiate and useful if the field shows some invariant 
properties with respect to this class of transformations. For example, if the Lorentz 
invariants

h  =  \  F ^ F ^  =  (B 2 -  E 2), h  =  \  =  2E.B

where E  and B  are the corresponding electric and magnetic components of F, 
are zero: I\  =  I2 =  0, (the so called “null field case”) then all the above trans­
formations keep unchanged these zero-values of I \  and I 2. In fact, under such a 
transformation (F, *F) —>• (F , F*) the two Lorentz invariants transform to (I{, I'2) 
in the following way

I[ = (a2 -  b2) h  +  2ab J2, I'2 = - 2 a b h  +  (a2 -  b2) I 2

and the determinant of this transformation is (a2 +  52)2 ^  0. So, a null field, i.e., a 
field with zero invariants I \  and J2, stays a null field under these transformations. 
Moreover, NO non-null field can be transformed to a null field by means of these 
transformations, and, conversely, NO null field can be transformed to a non-null 
field in this way. Hence, the Lorentz invariance and the dual G-invariance of I \  and 
I2 hold simultanoiusly only in the null-field case. Further we are going to pay due 
respect to this invariance, keeping in mind the basic fact that only in this case the 
velocity of the energy propagation of the field is equal to “c” and follows straight 
lines, so this is intrinsic property of the field.
In order to come to the equations of EED we can recall that every bilinear map 
<p : G x G W,  where W  is some linear space with basis {e^}, i =  1, 2 , . . . ,  
defines corresponding product in the valued differential forms by means of the 
relation

(p(Q\ ® ei, Qrj ® ej) =  A Orj <g) tp(ei, ej).
Recall now the following identity in Minkowski space

~ ( * F M * F r
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and the standard energy-tensor Qvß of electromagnetic field

Ql = - 2  LFaßF av +  (*F)aß(*FY

We see that under I\ =  0 the two fields F  and *F carry the same energy-momentum 
during propagation. Moreover, there is NO interaction stress-energy-momentum 
between F  and *F  as it is seen from the expression for Q

Corollary 1. The two fields F  and *F may interact only in regime of dynamical 
equilibrium, i.e., any energy-momentum loss of F f  * F  should be compensated by 
equal gain of *F/F: F  ^  *F.

EED makes use of these facts assuming that the corresponding dynamical equa­
tions must have local energy-momentum exchange physical sense, so the symme­
try F  ^  *F  must be respected.
Now, let p  =  V, where “V” is the symmetrized tensor product in Q. We consider 
the expression V(Q, * dO).

V(0, * dO) =  (F  A * d F )  ® J  V I (* F  À * d  * F )  ® J  V J  
+ ( F  A * d * F ® + * F A *  d F )  ® /  V J.

The vacuum EED equations are V(Q, * dO) =  0, or equivalently

F A *  d F  =  0, (*F) A * d  * F  =  0, F  A * d  * F  +  (*F) A * d F  =  0.

In terms of the codifferential S =  *d* these equations look like

ô * F  A F  = 0, ÔF A *F  =  0, 5F A F  -  ô * F  A *F  =  0. 

Correspondingly in components we obtain

F )aß„. =  (*F)„.„(Ä * F T  =  0 

i ( * F ) ^ ( d * F ) aft,. =  F ^ { 5 F Y  =  0 

i ( * F ) ^ ( d F ) aßll +  1 f “3(d * F ) aß„, =  (6 * F f F v,L +  ( 6 F r ( * F ) vll =  0.

3. Basic Property of the Nonlinear Solutions

All nonlinear solutions to the EED vacuum equations, namely, those satisfying 
d F  f  o, d  * F  f  0, have zero invariants: I\  =  I2 =  0, so, they minimize the 
quantity i f  +  i f  >  0. Moreover, for any nonlinear solution defined by F  there 
exists a canonical coordinate system on M,  called further F-adapted, in which F  
and *F look as follows

F =  A A ( , *F =  A* AC
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A =  u dx +  pdy ,  A * = p d y  — udz ,  £ =  edz  +  d£, e ±  1 
and (u ,p ) are two functions on M ,  satisfying the equation

u (uç -  euz) + p ( p ç -  spz ) =  0.

As for the energy-momentum tensor TßV of the vacuum solutions, considered as a
symmetric two-form on M,  it is defined in terms of Q as follows

T (X ,  Y)

X ßY v Fß(JFv a +  (*F)ßa(*F)v ‘ X ßY vTßV

where (A, A) are two arbitrary vector fields on M , g is the metric in Q defined by 
g(a, ß)  =  I  tr(a./3*), and ß* is the transposed to ß. Note that g(I, J)  =  0, which 
eliminates the corresponding coefficient which reads

F ^ F T "  +  =  ^Faß(*F)a%

so, in a g-NONorthogonal basis of Q this coefficient will appear.
Finally, recall the generalization of Lie derivative C p  with respect to the fc-vector 
K ,  acting in the exterior algebra of differential forms according to the formula 
Cp  =  i ( K )d  — (—l) fed i (K ) .  Then, in view of the relations 
FßVF ßV =  {*F)ßVF ßV =  0, the above equations acquire the form

C pF  =  0, C^p(*F) =  0, Cp(*F)  +  C^pyF  =  0

where F  and *F are the ^-corresponding two-vectors. In terms of the two-form Q
and
Ö =  F  ® ei +  *F ® e2 these three equations can be united in one as follows

£^Q  =  C p F  ® ei V ei +  C^p * F  ® e2 V e2 +  (Cp  * F  +  C^pF) ® e\ V e2 =  0.

4. Linear Connection Interpretation of the Nonlinear Part of the EED

If X is the identity in A2(M ) and J  =  * is the complex structure in A2(M ) then a 
representation p of G  in A2(M ) is given by

p(a)  =  aX +  b j .

Also, a representation p' of the corresponding Lie algebra Q is defined by the same 
relation. So, if a  : M  —> G is a map then p'{a) is a linear map in A2(M ), and 
recalling our one-form C, =  edz  +  d£ we define a linear connection V in A2(M ) 
by

V =  d  <g> idA2(M) +C <g> p\oi(u, p))
= d ® i d A 2( M ) + C  ®  (uX +  p J ) ,  a e Q .
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Two other connections V and V* are defined by

p'(a(u,p))  =  (1 (a(u, —p)) =  uX — p J  
(p')*(a(u,p))  =  p'(a.J)  =  p'(a(—p,u))  =  —pX + u X

and we introduce for further use

X =  uX  +  p X ,  X =  FX ~~ p J \  X* =  —pX  +  u j .

Denoting
^  =  C ® x ,  * = C®x, ** = C®x*

we have (because £ A (  =  0)

®(\P, *P) =  ©(S', *P) =  ®(*P, VP*) =  0.

Now, since
lP =  u (  +  p (  ® J  

lP =  u ( ® X - p ( ® J  

(P* =  — pQ ® X  F uQ ® X

we obtain for the corresponding curvatures

71 =  d ( u ( )  ® X +  d ( p ( )  ® J  

Ü  =  d(«C) ® X — d ( p ( )  ® J  

71* =  d ( — p ( )  ® 1 +  d(«C) ® X-

By direct calculation we obtain also
1

* -  TP [© ('P ^d 'P )]

Tr[@ ('P*,*d'P)]

e \u (uç — euz) +  p  (p£ — epz)] dz 

■ [u (uç -  euz) + p ( p $ -  spz)] d£

P («£ ~~ £W«) -  w (p$ -  ep2) da; À dr/ À

p (uç — suz ) — u (pç — spz) da; À dy A d£

=  SF A F  = ô * F  A *F = s -  Tr * d®*)}
6

where 5 is the coderivatie. Denoting by \7l\2 the quantity | |  * Tr [®(7£ A *1t)] | 
we obtain (in the F -adapted coordinate system)

\7Z\2 =  ^ | * TP [®(d(P, * d # )]  I =  (uç — su z)2+ (pç — £pz)2 =  \ÔF\2 =  \6 * F \2. 

Finally we note the relations

i  tr(x ) =  ^  tr (« Z  +  p J )  =  u
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and
-  t r  [(x ox)]  =  - t r  [ ( u l  +  p j )  o ( u X - p  J ) ]  =  u2 +  p2.

These relations allow to introduce two characteristic functions for any nonlinear 
solution: the phase-function iß and the scale factor C, as

=  arccos
| t r x V t r ( x ° x )  

M  '

Since the nonlinear solutions of the two equations

ÔF A *F =  0, ô * F  A F  =  0

Le., those satisfyiing ÔF f  0 and S * F  f  0, are parametrized by two functions 
(■u,p ) and satisfy the relations

u {uç -  euz) + p ( p $ -  spz) =  0 , uç — euz ±  0 , p^ -  epz f  0

in the corresponding F-adapted coordinate system, we obtain that on those solu­
tions the following relation holds

Tr [® (T ,*dT )]  =  0

and that the equation
ô f a f  =  ô * f a *f

is equivalent to
Tr [®(T, * dT*)] =  s Tr [®(T*, * dT)] .

It can easily be shown (we leave this to the reader) that the non-zero value of the 
squared curvature invariant \1Z\2 guarantees availability of rotational component of 
propagation.

5. Conclusion

The linear connection V is defined through £ ® p'{a(u , p)). We note that the two- 
form F0 =  àx ® £ gives the possibility to consider a nonlinear solution F(u,p)  as 
an appropriately defined linear map

pf(a(u,p)) =  u l  +  p j

in A2(M), since the action of pf(a(u , p)) on F0 gives F.
This special importance of £ is based on the fact that it intrinsically defines the 
translational part of the dynamical befavior of the solution, and its uniqueness is 
determined by the fact that all nonlinear solutions of EED equations have zero 
invariants: FßVF ßV =  Filv(*F)ßV =  0. As for the rotational part of the dynamical 
behavior of the solution it is available only if the curvature 71 iz nonzero and is 
locally represented by any of the two three-forms F  A ÔF =  *F A S * F  f  0. For
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all nonlinear solutions we have 5F  ^  0 and ô * F ^  0, and all finite nonlinear 
solutions have finite energy density

® <(P2 = \  t r (F ° F )  = \  tr (x  ° x )  =  (u2 +  p2) < oc. 
o o

The nonzero finite scale factor 0 <  C <  oc separates those finite nonlinear solu­
tions which carry spin momentum, and this happens only when \SF\ =  \1Z\ ^  0. 
The spin momentum is carried by any of the two three-forms ÔFAF  =  ô* F A*F,  
determining the energy -momentum exchange between F  and *F. Clearly, on the 
linear Maxwell solutions these three-forms are zero.
Hence, in terms of curvature we can say that the nonzero curvature invariant \R\, is 
responsible for availability of rotational component of propagation, in other words, 
the spin properties of a nonlinear solution require non-zero curvature.
From physical viewpoint the corresponding dynamical process that generates these 
spin properties is the mutual energy-momentum exchange between the two field 
components F  and *F during propagation. It has the following three characteristic 
properies:

- it is permanent, i.e., it occurs constantly during propagation
- it is simultanious in the both directions: F  *F
- it is in equal quantities.

It follows that F  and *F  live in a permanent dynamical equilibrium. They carry 
always the same quantities of energy-momentum

FßVF ßV =  0 =* FitaF va

This dynamical equilibrium is quantitatively described by the equation

ÔF A F =  ô * F A *F

or by
Tr [®(T, * d'F*)] =  e Tr [®(T*, * dT)] .
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