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Abstract. Solutions of the free elastica are deformed in order to provide the
analytical part of the corresponding mechanical construction which produce
the shapes of Euler elastica by bending appropriately the rectangular one.

1. Introduction

The formal mathematical definition of the elastic line or elastica will be presented
quite soon but one should easily imagine the equilibrium configurations of an in-
extensible wire which potential energy is due to the deviation of the wire from the
straight line, i.e., the so called bending energy.

Elsewhere [3], we have presented a short historical review on this fascinating sub-
ject and here we will outline only some conceptional developments which we hope
will be interesting and helpful in its understanding.

Assuming that the deflection is governed by the Bernoulli-Euler law, i.e., that the
bending moment M at any point of the elastica is proportional to its curvature k
leads to the following sequence of equations

d2z

M=EIx=EIY _ By dz?
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where FT is the flexural rigidity, € is the slope of the tangent of the elastica, s is
the so called arclength parameter and z = z(z) is the transversal deflection.

By continuity of the bending moment A and the axial force N acting along the
curve one easily proves that they are related by the equation
M2
2ET
The meaning of this equation is that in mechanical equilibrium the sum of forces at

all points of the elastica is zero. Rewritten in differential-geometric terms it states
that the curvature x(s) obeys to the equation
1 3

K(s) + gF (s) — 5/1(8) =0 3)

in which the parameter o denotes the tension. One can arrive (following Euler)
at the same equation by considering the variational problem of minimizing the so
called bending energy & given by the integral

& = /FLQ(S) ds 4

under a constraint of the fixed length

ﬂz/ds (5)

and an appropriately chosen Lagrangian multiplier.

)

2. The Free Elastica

In the case when the tension is not present, the equation (3) reduces to
1
K(s) + 5/13(8) =0 (6)

which is known as the equation of the free elastica. For the first time in this form
it appears in the paper by Birkhoff and de Boor [1] but has been used implicitly by
Bernoulli for describing the so called rectangular elastica.

Note that this equation is scale invariant and therefore up to dilation, there is only
a one-parameter family of possible profile curves. Another way to realize why the
portion of the undulating elastica deformed into the specific form shown in Fig. 1
generates (when scaled) the rest of known forms is to look again to the fundamental
relation (2). It is apparent that in the case under consideration the applied forces are
normal at the elastica ends which means that equation (2) holds since the bending
moment and axial force are just zero there.

In what follows we will present an analytical proof of the above statement.
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Figure 1. Bernoulli’s elastica with normal applied forces.

3. Solutions in Terms of Elliptic Functions

It is an easy task to integrate once the second order equation (6) and this gives the

first order equation
de\? a* kK? 7
T =25 2
in which a is an integration constant. The later equation can be rewritten into the

form
s

/ dk B
Vet —kf 2

and can be integrated eventually via Jacobian elliptic functions.

(8)

Various basic facts about these functions and their integrals are collected in the
Appendix.

Relying on it, one can easily check that any of the functions

k(s) = a sn (?,i) 9
k(s) = a cn (a_\/; %) (10)
k(s) = a dn (% x/i) (11

satisfies both of equations (6) and (8). Combining this with the theorem in the
classical differential geometry (see e.g. [6]) which states that any plane curves is
determined uniquely (up to an Euclidean motion in the plane) by its curvature, we
conclude that actually we have solved the free elastica problem.

4. Elastica with Tension

Elsewhere (see [7]) we have proved that the “energy” which appears in the integral
of the equation (3) describing the elastica with tension, i.e.,

dr\? k1
(£> =28 - -+ 50/12 (12)
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and the “tension” itself can be written in the forms

Case (I) FE= %aQCQ, o= %(a2 —c?), a,ceR
_ 1,22 _1/.2 2

Case (II) E = —ga“c?, o = 5(a® 4 c*).

Let us now “deform” the solutions (9), (10) and (11) and write them as

k(s) = n sn(As, k) (13)
k(s) =n cn(As, k) (14)
k(s) =n dn(As, k) (15)

in which n, A and k£ are some parameters that have to be determined so that the
equations (3) and (12) would be satisfied simultaneously. Entering with (13) in
any of these equations gives us for the first case (I) that we have among several
others the solution

n=+a, Azi% E=+2 (16)

Similarly, (14) and (15) produce

n=+a, A=x22T¢ -4 2 17
_ o (17)
/2 2
n=x+a, A:i% oYU T (18)
a

Following the same idea, we have in the second Case (II) the solutions with pa-
rameters specified in Table 1. To the above two cases we should add also the case

Table 1. Parameters for the solutions of the elastica with tension in

Case (II).
Type (1I) n A k
k(s) =nsn(As, k) |fa| L3 +2
te| +4 +£
a?—c? a
k(s) = ncen(As, k) | £a +V 5 | T

to|x¥YEetp_ o

V2 —a?
k(s) =ndn(As, k)| La a i#
+c +£ i@
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when the “energy” is just zero. In these circumstances the relevant solution is

n o
k(8) cosh(As)’ n V20, A \/ 5 o>0 (19)

5. Elastica Shapes

As we have mentioned before, after having an explicit expression for the curvature,
one is able to find the respective curve as well. Formally, this can be achieved by
solving the fundamental geometrical equations

df(s) dz(s)
P = k(s), p = cos(f(s)),

but we have described more direct way to furnish this (see [3]). More precisely,
there it has been proven that the explicit parameterizations of the elastica curves
with tension can be found by taking into account the intrinsic equation of the curve
and in this way one could bypass one of the integrations, i.e.,

k2(8) — o sind(s) = _ 2 dk(s)
k2(0) — o’ 6(s) k2(0) — o ds

dz(s)

S

=sin(0(s))  (20)

cosf(s) = . (21)

Combining these expressions with (20) we obtain

_ 1 9 oS8 B 2k(s)
xz(s) = m/ﬁ (s)ds — 20)— o’ z(s) = 20— o (22)

which leads to the conclusion that we actually end with the problem to evaluate
the bending energy, i.e., the integral of squared curvature. In the cases when & is
expressed via the Jacobian elliptic functions use has to be made of the following
formulas

/ sn2(u, k)du = (u — E(am(u, k), k))/+2 23)
/ en?(u, k)du = (E(am(u, k), k) — (1 — k2) u) /&2 24)
/ dn?(u, k)du = E(am(u, k), k). (25)

Finally, when & is expressed via the hyperbolic function sech(u) (see (19)) the
bending energy can be easily found by taking into account that

/ sech?(u) du = tanh(u). (26)

The complete list of the elastic curves (drawn by different parameterizations) can
be found in [2], [3] and [5].
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Appendix

The easiest way to introduce Jacobian elliptic functions is to consider them as for-
mal analogues of the ordinary trigonometric functions. From any calculus course,

we know that
du

x
arcsin(z) :/
0 v1i—u

Of course, if x = sin(t) (—7/2 < t < w/2), then we have

sin(t) du
t = arcsin(sin(?)) = / —_
GO =) ice
In this way, we may view sin(¢) as an inverse function for the integral. Now, fixing
some k with 0 < k£ < 1 (called the modulus), we define the Jacobi sine function
sn{u, k) as the inverse function of the following integral. Namely,

/sn(u,k) dt (27)
T V1 —12y/1 — k22

= .

More generally, we write
z dt
F(z,k) = / 28
(z:k) 0 V1—1t3/1— k22 8
and call F(z, k) an elliptic integral of the first kind. An elliptic integral of the
second Kkind is defined by

21— /{:2t2
1-— t2
When z = 1 in F(z,k) and E(z, k), then these integrals are respectively denoted

by K (k) and FE (k) and called the complete elliptic integrals of the first and second
kind. The Jacobi cosine function cn(u, k) may be defined in terms of sn(u, k)

sn?(u, k) + cn?(u, k) = 1. 29

A third Jacobi elliptic function dn(u, k) is defined by the equation
dn®(u, k) + k2 sn?(u, k) = 1. (30)

The integral definition of sn(u, k) makes it clear that, sn{u,0) = sin(u) and of
course, cn{u, 0) = cos(u) as well.
The derivatives of the elliptic functions can be found from the definitions. For

instance, let us compute the derivative of sn(u, k). For that purpose let us suppose
in (28) that z = z(u). Then

dF  dFdz 1 dz

du ~ dz du \/1_22\/1_1{;222@.
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But, from (27), we know also that, when z = sn(u, k), we have F(z,k) = u.
Hence, replacing z by sn(u, k) and using du/du = 1, we obtain
- 1 dsn(u, k)
VI —sn(u, k)21 — KZsn(y, k)2 du
dsn(u, k) 5 5 5
—qu \/1—sn(u,k) \/1 — k2 sn(u, k)
d k
% = cn(u, k) dn(u, k).
In a similar way we get also
d k dd k
% = —sn(u, k) dn(u, k) and % = —k%sn(u, k) cen(u, k).
u u

Finally, the Jacobi amplitude am(u, k) is defined by writing

sn(u, k) = sin(am(u, k))

with analogous relations for cn(u, k) and dn(u, k). More details about elliptic
functions and integrals can be found in [4].
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