
Ninth International Conference on 
Geometry, Integrability and Quantization 
June 8-13, 2007, Varna, Bulgaria 
Ivaïlo M. Mladenov, Editor 
SOFTEX, Sofia 2008, pp 292-300

^Qeometry, 
Integrability 
and ^
^Quantization

AN ALGEBRAIC APPROACH TO SAXON-HUTNER THEOREM

TSETSKA g . RASHKOVA and IVAÏLO M. MLADENOV

Department o f Algebra and Geometry, A. Kanchev University o f Ruse 
7017 Ruse, Bulgaria

tInstitute o f Biophysics, Bulgarian Academy o f Sciences 
1113 Sofia, Bulgaria

Abstract. Here we give some necessary and sufficient conditions for the 
validity of the Saxon-Hutner conjecture concerning the preservation of the 
energy gaps into an infinite one-dimensional lattice.

Let us consider the Schrödinger equation

0  + <E  -  U (* ))»  = » œ
where ^  is the wave function, the spectral parameter E  is the particle energy and 
U(x) is a known function -  the potential. Quantum mechanics deals with the 
above equation and its generalizations. When U (x) =  0 we have a free particle 
and when E  =  k2, two solutions are elkx and e-lkx representing respectively a 
particle moving to the right (k > 0) and a particle moving to the left (k < 0).
We will use the standard group theory notation for the invertible matrices listed 
below. The Lie group of pseudo-unitary matrices of signature (1,1) (i.e., those 
2 x 2 matrices having one positive and one negative square in their canonical form 
(z ,z) = jz1j2 — |z2|2), or what is the same -  the group of all linear transformations 
of the complex plane preserving the above hermitian form (, ) will be denoted as 
U (l,l) while SL(2, C) will denote the corresponding unimodular group keeping 
the symplectic structure [ , ] invariant (here [Z, n] is the oriented area of the par­
allelogram spanned on the vectors Z, n and GL(2, R) will denote the group of all 
real linear transformations. We have (a, b) =  2 [a, b].

Proposition 1. The intersection of any two groups coincides with the intersection 
o f the three o f them -  it is the special (1,1) unitary group SU(1,1).

A monodromy operator for (l) with a finite potential is a linear operator acting on 
the space of states of the free particle in a special way.
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Proposition 2. The matrix o f the monodromy operator in the basis (elkx, e lkx) is 
an element o f the group SU(1,1), where

s u (i , i ) =  { m a  = (  WA- f A  WA -  ‘ZA ) e  M 2(C); « ( " A ) - 1} .

Actually, we speak about groups of operators but the matrices of these operations 
are elements of SU(1,1) in the considered basis (elkx, e-lkx). The matrix groups 
SL(2, R) and SU(1,1) are isomorphic. We get from them one and the same group 
of operators. For the real basis (ei, e2) these matrices are in SL(2, R) and for the 
complex conjugate basis (elkx, e-lkx) they are elements of SU(1,1). Geometri­
cally, going from SL(2, R) to SU(1,1) means transforming Lobachevski’s plane 
model in the upper half plane to a model in the unit circle.
In 1949 Saxon and Hutner [8] have announced a conjecture concerning the cou­
pling of impurities introduced into an infinite one-dimensional crystal lattice.

Conjecture 1. Forbidden energies that are common to the pure A crystal and the 
pure B crystal (with the same lattice constant) will always be forbidden in any 
arrangement o f A and B atoms in a substitutional solid solution.

This can be easily reformulated using the transfer-matrix formalism [4]. As the 
concept of the transfer matrix has been used extensively in transport theory, op­
tics and engineering [2,3,7] let us remind that by its very definition the transfer 
matrix M  relates the wave functions (states, amplitudes) on either side of the po­
tential (force). The crucial point in using this formalism is the observation that real 
localized potentials and transfer matrices are in a one-to-one correspondence. The 
group nature permits defining a total transfer matrix for an arbitrary sequence of 
potentials as a product of their individual matrices. The forbidden energies for 
an electron propagating in a periodic lattice are given by the condition tr  M  > 2, 
where M  is a transfer (monodromy) matrix of a unit cell. Thus we can ask:

Question 1. Under what conditions for any arrangement A ri B S1 . . .  A rk B Sk o f A  
and B  atoms ( f i , Sj  E Z+) we have tr(MA1 M g  . . .  MAk M ßk) > 2 provided that 
tr(M ^) > 2 and tr(M B) > 2?

Various conditions for the validity of the above statement are discussed in [4-6] 
and [9] in the context of one-dimensional quantum mechanics which will have in 
mind in this paper as well.
For convenience from now on we denote the transfer matrices by A , B . We give 
the following necessary and sufficient condition:

Theorem 1. Let A  and B  be two elements o f the group SU(1,1) suchthat tr  A > 2 
and tr  B > 2. Then tr(A B) > 2 if and only if

(WA -  WB )2 +  (Za  +  Zb )2 < (nA +  nB )2 +  (v a  +  Vß )2.
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Proof: The condition t r (AB) > 2 gives

2wAWß — 2(a Cb +  2va v b  +  2^a Vb  > 2.

Taking into account that wA +  Za — v\  — nA =  wB +  ZB — uB — nB =  1 we get 
the desired inequality, □

For tr  A =  tr  B we get (Za +  Zb )2 < (ua +  ub)2 +  (nA +  nB)2,

Remark 1. The necessary and sufficient condition o f Theorem 1 could be ex­
pressed as det( A +  B) < tr  A tr  B.

Really det(A +  B) =  (wa +  w b)2 +  (Za +  Zb )2 — (nA +  nB)2 — (ua +  ub)2 and 
thus we get det(A +  B ) < tr  A tr  B,
We could formulate the following sufficient condition:

SC 1. Let det(A +  B ) < tr  A tr  B provided that tr  A > 2 and tr  B > 2, Then
tr(A B) > 2,

Exchanging SU(1,1) for SL(2, R) using the group homomorphism

M  =  (  w + iZ u +  in )  — . r (M ) =  (  w — u n +  Z
\ u  — in w — iZ / V n — Z w  +  u

one could associate with any transfer matrix a complex three-dimensional vector

cm =  w1 ( —in,  —Z, iu ) . (2)

In [6] one could find the following

SC 2 ([6, p, 995]). The conditions c a .c b < 0 and (ca x c b )2 < 0 are sufficient 
for the validity of the Saxon-Hutner theorem,

In this setting, symmetric potentials are represented by vectors, whose third com­
ponent is identically zero and this implies that they can be considered as ele­
ments of a pseudo-Euclidean plane of index one, In such a plane the condition 
(ca x cb )2 < 0 is satisfied automatically and SC2 is transformed into the inequal­
ity ŵ  (—nAnB +  ZaZB) < 0, which is equivalent to the Tong and Tong [6] 
criterion, namely

SC 3. Let sign(wAwB) =  sign(nAnB — ZaZB) when both tr  A > 2 and tr  B > 2, 
Then tr(A B ) > 2,

Proposition 3. In the symmetric case SC2 is equivalent to SC3.

Proposition 4. In the symmetric case SC3 is a stronger condition than SC1, i.e., 
SC1 follows from SC3.
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Proof: The inequality in Theorem 1 could be rewritten as

WAWB -  Za Zb  +  VAVB > 1.
Clearly, the Tong and Tong criterion, namely w aw b  > 1 and ^A^B — (a (B > 0 
gives wawb — CaCb +  Va Vb  > 1. □

We look for other sufficient conditions as well.
Our next step is to consider the characteristic polynomial of the matrix A +  xB 
for arbitrary x. Classifying pairs of n x n matrices (A, B) under the simultaneous 
similarity (T A T -1 ,T B T -1 ) Friedland has shown in [1] that if n =  2 and U is 
the set of pairs (A, B) such that | A E  — (A  +  xB) | =  0 splits into a product of two 
linear factors, then U could be defined as

U =  {(A, B ); (2 tr(A 2) — tr2 A )(2 tr(B 2) — tr 2 B) =  (2tr(A B) — tr  A tr  B )2 }.

We work really in U* =  U n  SU(1,1) and can prove the following:

SC 4. Let A, B G SU(1,1) such that tr  A > 2, tr  B > 2, tr  A =  tr  B and 
the characteristic polynomial |AE — (A +  xB)| is reducible over C[A, x]. Then 
tr(A B) > 2.

Proof: Starting with (tr A — tr  B )2 > 0, we rewrite it as

tr  A tr  B — 4 > \J (tr2 A — 4)(tr2 B — 4). (3)

The Cayley-Hamilton theorem gives A2 — tr  A.A +  E  =  0 and taking traces we 
get

tr(A 2) =  tr2 A — 2, i.e., 2 tr(A 2) — tr2 A =  tr2 A — 4. (4)

I) Let |AE — (A +  xB)| splits into two linear factors. Thus the Friedland’s repre­
sentation gives

± / ( t r 2 A — 4)(tr2 B — 4) =  2tr(A B ) — tr  A tr  B.

Considering the sign possibilities we get:

•  For the positive case 2tr(A B ) =  tr  A tr  B + (tr2 A — 4)(tr2 B — 4), i.e., 
tr(A B) > 2.

• In the negative one, we get respectively

— (tr2 A — 4)(tr2 B — 4) =  tr(A B) — tr  A tr  B 

which combined with the inequality

— \J (tr2 A — 4)(tr2 B — 4) > 4 — tr  A tr  B 

from (3) gives exactly tr(A B) > 2.
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II) Let | AE  — ( A +  xB) | be a square of a linear factor, Friedland describes the set 
V of such matrices A, B as

V  =  {(A, B) ; 2 tr(A 2) =  t r 2 A, 2 tr(B 2) =  t r 2 B, 2 tr (AB) =  tr  A tr  B}.

This is not the case for tr  A > 2 and tr  B > 2 (because of (4) the equality tr( A2) =  
tr2 A gives tr  A =  2, analogously tr  B =  2, a contradiction with the assumption),

□

Remark 2. For tr  A =  tr  B > 2, the reducibility o f the considered characteristic 
polynomial guarantees only that tr(A B) > 2.

Proof: The definition of U* gives in this case

(2 tr(A 2) — tr2 A)2 =  (2 tr(A B ) — tr2 A)2.

It could be written as

(2 tr(A 2) — tr 2 A — 2 tr(A B ) +  tr2 A)(2 tr(A 2) — tr2 A +  2 tr(A B) — t r 2 A) =  0 

i,e,, either

a) tr(A B) =  tr(A 2) > 2 or
b) tr(A B) =  t r 2 A — tr(A 2) =  2 as (4) is valid,

□

Remark 3. Using the computer algebra system Mathematica, we get thefol- 
lowing expression for  U*

(v a  +  uA — ZA )(nB +  uB — d ) (va  hB +  UAUB — Za Zb  )2

i.e.,
cA.cB =  (ca.Cb )2.

As (ca x cB)2 =  cA.cB — (ca.cb )2, i.e., (ca x cB)2 =  0 we see that SC4 does
not include the symmetric case as Proposition 3 is valid.

As an example of concrete matrices A and B, let us take wa  =  \/2, (a  =  Pa  =  
ua =  1, wB =  \/3, ZB =  0, nB =  uB =  1, so that tr(A B) > 2 although the
characteristic polynomial is not reducible, This proves again that the condition

WAWB — ZaZb +  VAVB >  1

is only a sufficient one, Nevertheless it is inequality for the three parameters only,

Another proof of SC4: We apply the canonization theory to the quadratic

f  (x, A) =  |A +  xB — AE|

=  x2 — 2Axwb +  2x(wawb +  Za Zb  — uaub — Pa Pb  ) +  A2 — 2 Aw A +  1.
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The characteristic equation 1 — A —wB 
—Wb  1 — A

=  0 gives two eigenvalues Ai =  1+  wB

and A2 =  1 — wB. The corresponding eigenvectors are e1 =  2—, and

e2 =  i —r , —2 ^ ) . The transformation

A =  —2 ^  ( A +  X V 2 , .  -x  =  (A — x

gives f  (x, Aj  =  A1 -2 +  A2X2 +  2b1 A + 2b2X + b3, where A =  A1A2 < 0 
and the quadratic form represents two crossing lines when c =  0, where c =  
b3 — b2/ A — b2/X.
In our case,

b1 =  f  WA + ~2~{w aw b  + Za Zb  — VAVB — VAVB ) 

b2 =  f  WA — ^22 (WAWB +  CaCb — UAUB — VAVB )

b3 =  1.
Then

c = 1
1

(1 — Wb )2 

The condition c =  0 gives

[wA +  (w aw b  +  CaCb — UAUB — riAVB )2

— 2waWB (w aw b  +  CaCb — ua ub — riAVB )].

wA +  (w aw b  +  CaCb — uaub — Va Vb  )2

— 2waWB (w aw b  +  CaCb — uaub — Va Vb  ) =  1 — wB.
This could be easily transformed to

(Za Zb — uaub — Va Vb  )2 =  (1 — wA )(1 — wB ) (nA + uA —z_a )(nB + uB —ZB)
which is the simplihed expression for U* as pointed out in Remark 3.
There are no other possibilities for the singularity of the considered quadratic form. 
The next step is to consider the arrangements A ri B S1 . . .  A rk B sk provided that 
tr  A =  tr  B > 2 and tr (AB) > 2. Direct computations in this case show that
tr(A ri B r2 Ar3B r4 ) >  2 for 2 < r 1 +  r 2 +  r 3 +  r4 < 5.
The main tools for proving it are:

a) equality (4) and
b) the equality tr( AB) =  tr  A tr  B — tr(B  A-1 ) proved directly for unimodular 

matrices in [5, equation (23)]. For tr  A =  tr  B it gives

tr(A B) =  tr2A — tr(B A -1 ). (5)
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For the general case we could prove

Lemma 1. Let k G N. Then tr(A k) > tr  A.

Proof: For k =  2, (4) gives tr(A 2) =  t r 2 A — 2 > tr  A for tr  A > 2. Item b) 
above gives tr(A 3) =  tr  A tr(A 2) — tr  A =  tr  A(tr(A 2) — 1) > tr  A and tr(A 4) =  
tr(A 2)2 =  tr2 A2 — 2 > 2, using (4) again.
Then we proceed by induction. Let tr(A s) > tr  A for every s <  2k +  1. Then

tr(A 2k+1) =  tr(A k) tr(A k+1) — tr  A > tr2 A — tr  A =  tr  A (tr A — 1) > tr  A.

□

Lemma 2. Let tr  A =  tr  B > 2 and tr  AB > 2. Then tr(A 2k+1B) > tr(A B ) 
and tr(A 2k B) > tr  A for every integer k.

Proof: For k =  1, tr(A 2B) =  tr  A tr(A B) — tr  A =  tr  A(tr(AB) — 1) > tr  A. 
Conditions (5), tr(A B ) > 2 and (4) give consequently

— tr(B A -1 ) =  tr(A B) — tr 2 A > 2 — tr2 A =  — tr  A2.

Thus

tr(A 3B) =  tr(A 2) tr(A B) — tr(B A  1) > tr(A 2) tr(A B ) — tr(A 2)

=  tr(A 2)(tr(A B) — 1)
> 2(tr(AB) — 1) > tr(A B) as tr(A B) > 2.

Then we can proceed by induction. Let tr(A sB) > tr(A B) for any odd s < 2k +  1 
(k is bxed) and tr(A sB) > tr  A for any even s < 2k. Applying tr(A 2B) > tr  A 
for A =  Ak we get

tr(A 2kB) =  tr  ^(Ak)2B^ > tr(A k) > tr  A

as Lemma 1 is valid.
Let k be even. Then

tr(A 2k+1 B) =  tr(A k) tr(A k+1B) — tr(AB)

> (tr2(Ak/2) — 2) tr(A B) — tr(AB)
> 2tr(A B ) — tr(A B) =  tr(A B).
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Let k be odd. Then using (5) we get

tr(A 2k+1B) = tr  (Ak+1j  tr  (Ak — tr  (B A -1 j

> ( tr2 ( A ^  — 2) tr(A B ) +  2 — t r 2 A

> ( tr2 A — 2) tr(A B ) +  2 — t r 2 A

=  ( tr2 A — 2) (tr(AB) — 1) > 2(tr(AB) — 1) > tr(A B).

□

Lemma 2 shows that tr  (AsBA k j  > 2 for all s, k provided that tr  A > 2, tr  B > 2 
and tr(A B) > 2.

Remark 4. In the general case (i.e., when tr  A =  tr  B and relying on vector 
parametrization (2)) one can see that (5) can be rewritten in the form

t(AB) =  t(A )t(B)(1 — CA.CB ), t(X  ) =  2 tr(M x  ), X  =  A, B, AB

which means that the second condition in SC2 is actually superfluous. In the same 
time it is easy to prove that

cAk =  a k (ca)ca, a k (ca) e  R+, k =  1, 2, 3, . . .

so that the validity o f the Saxon-Hutner conjecture fo r A mB, A B m, and AmBn 
for  m, n  e  N is obvious.
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	U = {(A, B ); (2 tr(A2) — tr2 A)(2tr(B2) — tr2 B) = (2tr(AB) — tr A tr B)2 }.

	tr A tr B — 4 > \J(tr2 A — 4)(tr2 B — 4).	(3)

	tr(A2) = tr2 A — 2,	i.e., 2tr(A2) — tr2 A = tr2 A — 4.	(4)

	±/(tr2 A — 4)(tr2 B — 4) = 2tr(AB) — tr A tr B.

	• For the positive case 2tr(AB) = tr A tr B + (tr2 A — 4)(tr2 B — 4), i.e., tr(AB) > 2.

	— (tr2 A — 4)(tr2 B — 4) = tr(AB) — tr A tr B which combined with the inequality

	— \J(tr2 A — 4)(tr2 B — 4) > 4 — tr A tr B from (3) gives exactly tr(AB) > 2.


	□

	□

	(va + uA — ZA )(nB + uB — d)

	f (x, A) = |A + xB — AE|

	= x2 — 2Axwb + 2x(wawb + ZaZb — uaub — PaPb ) + A2 — 2 Aw A + 1.

	tr(Ari Br2 Ar3Br4 ) > 2 for 2 < r1 + r2 + r3 + r4 < 5.

	tr(AB) = tr2A — tr(BA-1).

	□

	□
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