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Abstract. A MATHEMATICA® package for finding Lie symmetries of partial 
differential equations is presented. The package has been applied to perform 
a full Lie group analysis of basic models of nonlinear fiber optics. As a 
result of this group invariant solutions have been obtained. Comparisons 
with earlier published computer algebra implementations of the Lie group 
method are discussed.

1. Introduction

The Lie group method for establishing the transformations leaving a system of 
partial differential equations (PDEs) invariant can be found in many books on this 
subject [8,11,12]. The key to finding a Lie group of symmetry transformations 
is the infinitesimal generator of the group. In order to provide a bases of group 
generators one has to create and then to solve the so called determining system of 
equations (DSEs). The operations are straightforward but nonetheless formidably 
tedious to be done by hand. It is very frequent occurrence that hundreds of equa­
tions are manipulated when PDEs of order higher than two are considered and the 
independent variables are more than about two. In situations like this it is essential 
in our days the use of a contemporary computer algebra system, such as Reduce, 
MATHEMATICA®, Maple, etc.
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The aim of this paper is to present a computer algebra implementation of the Lie 
method -  the MATHEMATICA® package LieSymm-PDE. The package is designed 
to create and solve the DSEs of an arbitrary number of simultaneous PDEs. It 
works without any restrictions on the number of the equations, on the number of 
the variables, either independent, or dependent, and on the highest order of the 
derivatives that may be involved. To the authors knowledge other programs related 
to Lie symmetries have been developed in various packages like Reduce [16], 
MATHEMATICA® [3], Maple®. The algorithm of LieSymm-PDE (Maple®10 
standard release) for solving the DSEs is closely related to the solving technique 
of [16].

2. Finding Lie Groups of PDEs: Formulation of the Problem

Following the terms and notations in [11] we give a brief outline of the basic con­
cepts of the Lie theory. Let be given a system of PDEs in p independent x =
(x1, . . . ,  xp) G X  = Rp and q dependent variables u = (u1, . . . ,  uq) G U = Rq 
involving derivatives up to order n

Fm (x, u, u (1), u (2), . . . ,  u (n)) =  0, m =  1,2 , . . . , l  (1)

where the notation u (s) stands for a vector in the Euclidean space U(s) having 
as coordinates the derivatives ua1...js =  dua/ d x jl . . .  dxjs, s =  1, . . . ,  n, a  = 
1 , . . . ,  q, j v = 1 , . . . ,  p, v = 1 , . . . ,  s. It is said that the system (1) admits a one- 
parameter local Lie group of point-symmetry transformations of the space Z  =
X U

x' = f  (a, x, u) 

u' = p(a, x, u)
(2)

(a is the group parameter, a G A c R, 0 G A), if each solution after the trans­
formation of the group remains a solution of the system. Finding the admitted 
Lie groups of PDEs is based on the fundamental correspondence between the Lie 
groups and their Lie algebras of infinitesimal generators

v  =  £  e i (x,u)
i= 1

d
dx i +  £  na (x,u)

a = 1

d
dua

(3)

with coefficients £i (x ,u ) =  d f i (0,x ,u) /da,  pa (x,u) = ö p a (0,x ,u) /öa,  f  = 
( f 1, . . . ,  f p), p  = (p1, . . . ,  <pq ). From a geometrical point of view V  is a tangent 
vector field on Z , which flow coincides with a one-parameter group of transforma­
tions.
The milestone of the Lie method is the infinitesimal criterion which is based on a 
special technique for prolongation of the groups and their infinitesimal generators.
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The system of PDEs (1) is viewed as a sub-manifold A F in the prolonged space
Z (n) =  Z *  U(1) x • • • x U(n)

A f  =  { z (n) G Z (n) ; Fm(z(n)) =  0, m  =  1, 2, . . . , l }  C Z (n). (4)

If the rank of the Jacobi matrix of F (z(n)) =  (F1(z(n)) , . . . ,  F) (z(n))) is assumed 
to be l whenever the point z(n) belongs to the sub-manifold A F , then the sys­
tem (1) admits a one-parameter group of transformations (2) with the infinitesimal 
generator V  if and only if the following infinitesimal condition holds

pr(n)V F (z(n)) 0 for y ( n ) G A f

where

pr(n) V =  V +  £ £  Z
o_

• 1 1 * du f% =  1 a =1  %
+  ■ ■ ■ +  £  ■ £  £  • . . •

jl = 1 jn = 1 a = 1

d
j n .a

° Uj l . . . jn

(5)

(6)

is the n-th prolongation of the infinitesimal generator V . The coefficients • , 
k =  1, . . .  , n  depend on the functions £(x, u), n(x,u) and can be obtained by the 
recursive formulae

Z%a =  D%(na ) < A ( r )
s = 1 (7)

C c  =  D * Kj1...j,_i ) -  £  u“i ...j,- i ,Ojk («■)
s=1

where D* is the operator of total differentiation with respect to the variable x%

d q d p q d 

D% =  dX% +  £  dua  + £  £  •  au» +a=1 j=1a=1 j
p p q

+  £ • • •  £  £
d

(8)
ujl...jn - l% ß„.a

jl = 1 jn - 1 = 1a=1 j l ...jn - 1

Since the variables x%, ua , ual ...j-s are supposed to be independent, the equation (5) 
can be facilitated by equating to zero all the coefficients of the monomials in the 
partial derivatives ual ...js . Thus, a large number of linear homogeneous partial 
differential equations are obtained. They are known as the DSEs of the symme­
try group admitted by (1) for they serve to determine the unknown coefficients 
£*(x,u), na (x,u) of the respective group generator. The solutions of the DSEs 
constitute the widest admitted Lie algebra.
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3. Algorithm of the Package LieSymm-PDE

The algorithm of the package (see Fig. 1) follows strictly the theoretical formulae 
in the preceding section. It consists of the following steps:

i) Basic Setup. In full accordance with the definitions (3), (4), (6)-(8) by 
using the data input some basic symbolic expressions, rules and operators 
are generated. They include the submanifold A F represented by a list of 
rules, the prolonged group generator pr(n)V defined as an operator and 
the coefficients £l (x, u) and r/a (x, u) of the group generator determined 
as two lists of p +  q arbitrary functions.

ii) Determining Equations. The prolonged infinitesimal generator pr(n) V is 
applied to the functions F l , F2 , . . . ,  Fl. Then the resultant expressions 
are recalculated on the submanifold A F and all the coefficients of the 
monomials in u“1...js are equated to zero. It means that the infinitesimal 
criterion (5) is completed and the determining equations are created.

iii) Solving procedure. An automatic procedure for solving of the DSEs is 
carried out. It is based on a repetition of several programming modules 
capable of solving some distinct types of equations with known solutions

C i x  +  C2 =  0, C i x  +  =  0
(9)

C lyx +  C2 =  0  Clyxx +  C2 =  0  C l yxxx +  C2 =  0

where Cl and C2 are arbitrary constants, yx =  dy/dx, etc. If any such 
equation does exist in the list of the DSEs, its solution is substituted for 
the respective variable in the remainder of the equations. As a result the 
functions £l (x, u) and r/a (x, u) change getting closer to the exact explicit 
solution and the number of the equations in the DSEs diminishes. The 
solving process is completed when, either the number of the determin­
ing equations has been reduced to zero, or all of the remaining equations 
have become unsolvable by the existing modules. In this latter case the 
solution (£l , . . . ,  (p, n l , . . . ,  nq) generated at the package output is ex­
pressed in terms of some unknown functions satisfying certain differen­
tial and algebraic equations. If this happens, two additional program­
ming tools named Rules and Hints (see Fig. 1) are available in the 
package providing a possibility for the user to solve these equations in a 
partly automatic way. Rules collects together special modules for mak­
ing transformations such as for adding, subtracting, and differentiating 
of equations. One special module is designated to carry out a search for 
functionally independent parts of the equations that after being equated 
to zero are added to the list of the DSEs. Hints is a list of substitutions 
specifying the functions being sought.
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Figure 1. Algorithm’s flowchart.

4. Using the Tools of LieSymm-PDE

Following standard MATHEMATICA® conventions [19] the function that finds the 
solution of the determining system is named L ieIn fG en . LieInfGen[{lhs1, 
lhs2, {rhsl, rhs2, {ivl, iv2, {dvl,
dv2, ...}] gives the coefficients £z( x , u ), r)a (x , u ) of the infinitesimal gen­
erator (3) admitted by the system of PDEs lhs1 = rhs1, lhs2 = rhs2, 
... with independent variables iv1, iv2, ... and dependent variables 
dv1, dv2, ... . The package displays an usage message that tells the user 
all that is needed to execute the program. For instance, the original equations must 
be solved in regard to either one independent or dependent variable, or any of the 
derivatives, and then these single variables must be substituted for the left-hand 
sides of the equations lhsi. The message also explains that the derivatives must 
be typed as dvi [ivj, ivk, ...], which means the derivative of the i-th 
dependent variable in regard to the independent variables ivj, ivk, ... . 
Notice that the package contains private context specification, which protects the 
objects from getting confused with other objects defined outside the package and 
having the same names.
If the functions generated at the package output are not in their full explicit form 
the user is advised to proceed with applying the package in interactive mode. This
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mode gives a possibility to the user to effectively participate in the solving pro­
cess by giving hints to the solutions and by using some user-level commands for 
making transformations of the determining equations. This is needed in view 
of the fact that no general solution scheme of the DSEs has been known yet. 
First, by using the command CreateDSE[{lhs1, lhs2, {rhsl,
rhs2, ...}, {ivl, iv2, ...}, {dvl, dv2, ...}] the determining 
equations are being created, and second, the solving process is started up by ap­
plying the iterative function SolveDSE. By using this command special solving 
modules are applied repeatedly in sequence to determining equations in order to 
identify and solve those of them that match any of the pre-defined types of equa­
tions (9). There are also two commands D etSysE qs and L ieIn fG en  used to 
display any current state of the DSEs and its solution.
In most cases the coefficients of the infinitesimal generator are expressed in terms 
of some unknown functions. These functions must satisfy certain differential equa­
tions that are not handled by the package modules. Instead of trying to solve them 
by hand the user can take advantage of the additional tools of LieSymm-PDE -  
the commands S p litD S E  [ ], D iffD SE  [ ], AddDSE [ ]. They provide au­
tomatic equivalent transformations of the DSEs that are, respectively, for splitting 
up of polynomials to functionally independent terms, for differentiating of equa­
tions, for adding and subtracting of pairs of equations.
It is very frequent occurrence that the solving modules and the transformation rules 
available by the package are not enough to solve all of the determining equations. 
In cases like this it suffices that the user could derive some additional information 
from the returned equations that to be fed back as hints to the solving modules. 
This is achieved by the special command H in ts  [{subs1, subs2, ...}, 
{newfun1, newfun2, ...}], which input consists of a list of substitutions 
specifying some of the undefined functions by other functions -  those given in the 
second curly brackets, that are considered by LieSymm-PDE as new functions to 
be determined. By following this semi-automatic way of giving hints and applying 
transformation rules the DSEs is completely solved.

5. Application of LieSym m -PDE to Basic Models of Nonlinear Fiber 
Optics

We are going to present the results of the package application to a) equation de­
scribing light pulses propagation in single-mode nonlinear fibers at zero-dispersion 
wavelength [1]

i A x +  2 Att +  lA |2A =  i ß A ttt (10)
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(ß =  const), and b) two coupled nonlinear Schrödinger equations (CNSEs)

iAx +  7 A tt +  (Ia | 2 +  y |b |2  — ^(|A|2)t — ^(|B |2)t)A +  kB =  0
2 (11) 

iB x +  - Btt +  (y |A |2 +  |B |2 -  0(|A |2)t -  d(lBl2)t)B +  k A  =  0

which are the basic mathematical model of two polarization modes propagating in 
weak [10] (k =  0, 7 =  0) and strong [1] (k =  0, 7 =  2/3) birefringent fibers
(WBF and SBF), of two waves at different carrier wavelengths in two-mode fibers 
(TMF) [6] (k =  0, y =  2), and of nonlinear directional couplers (NLDC) [18] 
(k =  0, y =  0). The terms with the parameter d account for the parallel Raman 
gain [7]. The functions A(x, t) and B(x,  t) represent the normalized electric field 
components depending on the dimensionless time t and the longitudinal coordi­
nate x.

The admitted Lie symmetries of equations (10) and (11) that we found by the help 
of the package LieSymm-PDE were used to prepare a full Lie group analysis of all 
physically relevant cases. It means that the optimal set of one-dimensional subal­
gebras and the corresponding optimal set of ordinary reduced differential equations 
(RDEs) have been obtained. In all of the considered cases the determining equa­
tions were solved automatically by applying the LieSymm-PDE tools for making 
equivalent transformations. There were no needs of giving hints.

a) Pulse propagation at zero-dispersion wavelength. The DSEs consists of 94 equa­
tions, which solution reveals that the equation (10) admits a four-dimensional Lie 
algebra with the following bases of group generators

Vi =  dt, V2 =  dx, V3 =  dip, V4 =  (x -  6ßt)dt -  18ßxdx +  tdp +  9ßzöz (12)

where A =  zeip; dt = d/dt ,  etc. The corresponding one-parameter Lie groups of 
transformations are: for V1, t  =  t +  a 1, for V2, X  =  x +  a2, for V3, +  a3,
and for V4

x

te-6ß“4 + x
12ß

e - 6 ß a 4

xe-1®ß“4

x
12ß

e -  18ßa4

z
-  6 ß e

-  6ßa4t

ze9ßa4

x
72ß 2

e-6ßa4 +
x

216ß2
e -  18ßa4
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The inner automorphisms Ai(V j) =  Ad(exp(eVi))Vj, e G R, generated by the 
basic vectors Vi are acting on Vj according to

Ai(Vj ) 
A2(Vj ) 
As(Vj )

A4(Vi)

A4(V2) 

A4(Vj )

Vj, j  =  1,2,3, Ai(V4) =  V4 +  6ßeVi -  eVa

Vj , j  =  1, 2, 3, A2(V4) =  V4 -  eV1 +  18ßeV2
Vj, j  =  1 ,2,3 ,4  (13)

Vie-6ß£ +  V| (1 -  e-6ß£)6ß

—  (e-6ß£ -  e-i8ß£) +  V2e-i8ß£ +  —^  (e-i8ß£ -  3e-6ß£ +  2) 12ß V /  2 216ß2 V )

Vj , j  =  3, 4.

Each one of the Lie group generators (12) and their various linear combinations can 
be useful for yielding group invariant solutions. For this purpose group invariant 
quantities are substituted for the independent and the dependent variables so that 
a simpler system of ordinary RDEs is obtained. The adjoint representations (13) 
allow introducing a conjugate relation in the set of all subalgebras of the same 
dimension, which leads to a classification of all cases of reduction. By taking 
one representative from each family of conjugate subalgebras an optimal set of 
subalgebras is created. We built up the optimal set of one-dimensional subalgebras 
and the corresponding optimal set of RDEs, which we present here in three unified 
cases by using two auxiliary parameters e and 5.
Case A. The subalgebras of this case are represented by the group generators 5V3 +  
V4, 5 G R. They lead to the invariant solutions

A(x, t)

y

/p (y)
x

expi f  (y)

tx -i/3  +
x2/3

12ß

t
6ß

x 5 ln |x| 
108ß2 -  18ß

and the RDEs for the unknown functions p(y) and f  (y) (here and hereafter prime 
denotes differentiation)

12ßp2pw -  18ßpp'pw +  9ß(p')3 -  36ßp2p/( f /)2 +  4yp2p'

-  72ßp3f 'f "  +  12p3 =  0

36ß2p2f +  54ß2pp' f  -  36ß2p2( / ) 3 +  54ß2p p"f' -  27ß2f '(p ')2

+  12ßyp2f  ' +  36ßp3 +  25p2 =  0.

Case B. The subalgebras representatives are Vi +  eV2 +  5V3 with e, 5 G R. They 
imply the group invariant solutions A =  p(y) exp i{ f (y) +  5t}, y =  et -  x. The
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new functions p(y) and f  (y) satisfy the RDEs

2e3 ßp'" — 6e3 ßp ' ( f ' )2 — 2e2(6 öß +  1 )p 'f' — 2(3eö2ß  +  eö — 1 )p'

-  6e3ß p f  f '  — e2(6öß +  1)pf'' =  0 

2e3 ß p f ''' +  6 e3ß p 'f '' — 2 e3ß p (f ')3 — e2(6öß +  1)p (f ')2 +  6 e3ß p ''f '

— 2(3eö2ß  +  eö — 1)pf' +  e2 (6öß +  1)p'' +  2p3 — ö2(2öß +  1)p =  0.

Case C. The set of subalgebras in this case is given by V2 +  öV3, ö G R . The cor­
responding invariant solutions A =  p(t) exp i{ f (t) +  öx} depend on the functions 
p(t) and f  (t) through the equations

2ßp''' — 6ßp' ( f  ')2 — 2p' f  ' — p f  '' — 6ßpf  ' f  '' =  0

2ßpf ''' +  6ßp' f  '' — 2ßp( f  ')3 — p ( f  ')2 +  6ßp ''f ' +  p'' +  2p3 — 2öp =  0.

There are not invariant solutions related to the subalgebra V3. 
b) Pulse propagation governed by two CNSEs. If the Raman terms in (11) are not 
taken into account (9 =  0) the DSEs consists of 139 equations but when 9 =  0 this 
number increases to 173 equations. LieSymm-PDE gives the solution for each 
one of the considered cases: for TMF and SBF with 9 =  0

Vl =  dt , V2 =  dx , V3 =  fy, V4 =  ^
4 (14)

V5 =  xd t  +  t(3$  +  Ö0 ), V6 =  — td t  — 2xdx  +  zd z  +  (dç

for WBF and NLDC with 9 =  0

Vi =  dt , V2 =  dx , V3 =  d0 +  Ö0, V4 =  xd t  +  t(d^  +  d^ ) (15)

and for SBF with parallel Raman gain (9 =  0)

Vi =  dt , V2 =  dx , V3 =  d^, V4 =  3^ , V5 =  xd t  +  t(d4> +  d4, ) (16)

where we have used the notation A =  ze10, B =  Zel4. The operators (15) coincide 
with those obtained in [2] by the help of the symbolic computer language Reduce. 
The infinitesimal generators (14), (15) and (16) were applied to perform a full Lie 
symmetry classification of one-parameter group invariant solutions to all physi­
cally relevant cases [13-15]. Most of the exact solutions found in literature for 
WBF are invariant for some of the subgroups having the generators V2 +  öV3 =  
dx  +  ö(d0  +  84 ), ö G R (see, e.g., [5,9,17]). Here we present a stationary solution 
valid for NLDC

A

B

E  +  U (x)
2 expi x  x —

3E

'E  — U (x) . f 3E
— 2— exP M y  x +

^(x )
2

^(x )
2

(17)
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with the functions U (x) and ^ (x ) defined, either by

U(x) =  E c n (2kx |h2), ^ (x ) =  arcsin(dn(2kx |h2)), h < 1

or by

U(x) =  E d n (2khx |1/h 2), ^ (x ) =  arcsin(cn(2khx |1/h 2)), h > 1

where cn( |m), dn( |m) are the Jacobian elliptic functions with parameter m, h =  
E /4k , E  =  const. We obtained the solution (17) as a result of the symmetry 
reduction process that lead us to the RDEs

q
—' +  kq sin (g -  f  ) =  0, f  ' =  —2 +  k -  cos(g -  f  )

——
q' +  k— sin ( f  -  g) =  0, g' =  q2 +  kq  cos(f -  g)

satisfied by the functions —(x), q(x), f  (x) and g(x) related to the original unknown 
functions through the substitutions A =  —(x) exp i{f (x)}, B  =  q(x) expi{g(x)}.

6. Discussions and Conclusion

The MATHEMATICA® package LieSymm-PDE has been presented. The package 
is developed for automatic determination of Lie point symmetries of PDEs, either 
directly in one step, or by taking advantage of an elaborate interactive mode. In 
comparison with the MATHEMATICA® program in [4] the package described here 
does not require a polynomial ansatz for the infinitesimals and needs less external 
advice (hints) to fulfill the task. We compared the functions of LieSymm-PDE 
with those available by the package liesymm of Maple®. We revealed that the 
LieSymm-PDE function CreateDSE for creating of the DSEs can be used as 
an alternative of the Maple® command liesymm[determine]() . We found 
also that Maple® does not provide special tools for solving of the DSEs as it is 
done by LieSymm-PDE.
The method of LieSymm-PDE for solving DSEs is based on several programming 
modules for dealing with some pre-determined types of equations. This method is 
generally allied with the approach applied in the Reduce package [16]. Finally, 
it should be noted that LieSymm-PDE is open to adding new solving modules 
and transformation rules so that its capabilities can be constantly enhanced. This 
leads to reducing the needs of user’s hints and makes the program flexible and self- 
contained. As a result new larger and more complicated systems of PDEs become 
manageable. The package has been tested to a large number of PDEs with known 
symmetries and has been successfully applied to different models of nonlinear fiber 
optics. All these prove the effectiveness of the package LieSymm-PDE in solving 
practical problems and justify this presentation.
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