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Abstract. We study a diffeological Calculus for rough loop spaces.

1. Introduction

Let us consider a topological space N . Let us recall what is a diffeology (see 
[5,24]). It is constituted of a set of maps 0 of any open subset U of any Rn into N . 
These maps are called plots. They have to satisfy to the following requirements:

• The constant map is a plot.
• If (U, 0) and (U' , 4>')U ç  Rn, U' ç  Rn are two plots such that U n  U' = 0, 

then (U U U', 0 U 0') is still a plot.
• If j  : U ^  U' is a smooth map, and (U ', 0') is a plot, (U, 0' o j ) is still a 

plot.

Let us consider as topological space the Hölder based loop space L 1/2-e>x(M ) of 
1/2 — e Hölder maps y from S 1 into a compact Riemannian manifold M  such that 
Y(0) =  x. L 1/2-ex(M ) can be endowed with the Brownian bridge measure as 
well as the heat kernel measure (see [1]). Over it natural functionals are stochastic 
integrals (see [15,16,18] for the definition of stochastic integrals for the heat kernel 
measure).
Inspired by the considerations of Chen-Souriau, Léandre has established a differ­
ential calculus over L 1/2-e>x(M ) which allows to take derivatives of stochastic 
integrals. Various stochastic cohomology theories were established. The key point 
is that there are equal to the de Rham cohomology of the Hölder loop space. For 
the Brownian bridge measure, it is the purpose of [13,14]. For the heat kernel 
measure, it is the purpose of [15] in the case where we replace the loop space by 
a torus group. As a corollary, [14] shows that a stochastic line bundle (with fiber 
almost surely defined) is isomorphic to a line bundle over the Hölder loop space.
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There is a theory, created recently by Lyons [21], which allows to define stochastic 
integral path by path: this is the theory of rough paths. Brownian loops are almost 
surely rough loops. Our goal is to define a diffeology over the rough loop space 
of a Riemannian manifold, and to show that the associated cohomology groups are 
equal to the cohomology groups of the Hölder loop space. As a corollary, we show 
that a line bundle over the rough loop space (a subset of the Hölder loop space) 
is isomorphic to a bundle of the Hölder loop space. We consider the example of 
Brylinski of the transgression of a three-form in [3]. The study of this example 
led Léandre in [9-12] to the introduction of line bundle over the loop space whose 
transition functional contain stochastic integrals in their definition. By using the 
theory of rough loops, these stochastic integrals are surely defined and continuous 
over the rough loop space. We refer to [4] for the studying of such an example. 
The difference with [4] is that we use here an intrinsic definition of the based rough 
loop space of a manifold.

2. The Topological Space of Rough Loops

Let M  be a Riemannian manifold of dimension d. Let Rd =  Tx(M ).
Over Rd, we consider the space of rough loops Gp(Rd) where p G (2,3). It is the 
completion for the distance öp of flat C 1 loops

Sp(Y , yO =  V a r ^  j ')  +  V a r^ ^  j ’) (1)

where

Var1 (Y, Y') =  sup |y(L) -  Y(ti+i) -  Y,(ti) +  j ' (ti+1)\p) /P (2)

where we take the supremum over all the subdivision ti of S 1. Varp(j, j ' )  is 
defined as follows: we consider the iterated integral j 1,s,t =  f s<u<v<t ® d jv.
Then

VarP(Y, Y') =  suP IYi,ti,ti+i y1 ,ti . t i+ i
| P /2

2/p
(3)

where we take the supremum over all the subdivision ti of the circle.
In the sequel, we will replace the variational norm Varp by the Holder norm

sup !y(s) -  Y(t)| 
Is -  t | 1/p Hp1 (Y) (4)

which is stronger than the variational norm. We put 1/p =  1/2 — e. For the set 
of rough loops Gp(Tx(M )), we will consider the completion of the space of C 1 
loops with respect of the distance

(Y, Y') +  VarP (Y, Y') =  P̂  (Y, Y') . (5)
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Lemma 1. Let F be a smooth function from S 1 x Tx(M  ) into Tx(M  ) such that 
F (0,0) =  F (1,0) =  0. Then the Nemystky map ^

Y ^  {s ^  F  (s, y (s))} (6) 

is a continuous function on the space of rough loops endowed with the distance 6'p.

Proof: The Nemytsky map is continuous for the Holder norm (see [14, Theorem 
A.1]). It remains to study the continuity for the second variational distance. But

r * d [ * d
F ( t ,Y ( * ) ) = /  ^ F (u, y (u))du  + — F(u,Y(u))dY(u). (7)Jo dt Jo dy

It is classical (see [20,21, Corollary 3.1]) that the integral of a one-form is continu­
ous over the rough loop space. Moreover, s ^  (s, y(s)) is a rough path. Therefore 
the result. □

We will define the space of rough loops Gpx(M ) starting from x as a topological 
manifold modelled on the space of rough loops in Tx(M ). The main difficulty to 
overcome is that the flat rough loop space is not a linear space.
Let s ^  Ysm(s) a smooth loop issued from x. We write

Y(s) = e x p 7sm(s)[rs(Ysm)X s] (8)

where expYsm(s) is the exponential map in ysm(s) for the Riemannian distance 
and s ^  rs(Ysm) the parallel transport along the path s ^  ysm(s). If y is 
closed enough for the uniform distance of Ysm, we will say that y belongs to 
GP.(M ) if s ^  X s belongs to Gp(Tx(M )). This notion is consistent by Lemma 1. 
The map (8) realizes by definition a local homeomorphism between Gpx(M ) and 
Gp(Tx(M )). The local trivialization (8) produce a topology on Gpx(M ), which 
endows it with the structure of a topological manifold modelled on Gp(Tx(M )). 
We get

Lemma 2. Let F  be an application from [0,1] x M  into M  such that F (0,0) =  
F (1,0) =  x. Let ^  be the application y  ^  {s ^  F (s, y(s))}. ^  is a continuous 
application from Gx(M  )) into Gx(M ).

Proof: In a convenient chart, ^  is given by

Y ^  {s ^  F  1(s, y(s))} (9)

where F 1 is a convenient function with values in Tx(M ). The result arises by 
Lemma 1. □
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3. A Diffeology on the Space of Rough Loops

We will define a diffeology on GpP(M ). Let us consider an open subset U of Rn . 
We consider a cover of U by open subset U  of Rn. We consider an element Yi of 
GP(M ) and a tubular neighborhood Oi in S 1 x M  of the graph of y%. Over Oi, we 
consider a map 0 i : Ui ^  Gp(M ) 00u, s) = Fi(u, s, j i (s)) where Fi is smooth 
from Ui x Oi into M . We suppose that 0i =  0j over Ui n  Uj. The collection of 
(Ui , 00  constitutes a plot (U, 0) from U into Gpx(M ). The fact that s ^  00u , s) 
is a rough loop can be seen by the considerations of the previous part.
The set of (U, 0) constitutes clearly a diffeology.
We can define what is a n-form relatively to the diffeology on Gpx(M ) (see [5,24]).

Definition 1. A n-form a on Gpp(M) smooth in the Chen-Souriau sense is given 
by a the assignment of a n-form 0*a on U associated to any plot (U, 0). The set 
of 0*a has to satisfy to the following requirement: if j  : U1 ^  U2 is a smooth map 
and (U2, 02) is a plot, and if 02 o j  =  0 1 is the composite plot, we have

0 1ia = j  *02*a. (10)

Let us give an example of a form on GP(M ). Let w be a closed Z -valued three- 
form on M . Let us consider the transgression t (w) of it (see [3])

t ( w ) = (  w(dY(s),.,.). (11)
Js1

It defines a two-form over Gpp(M) in the Chen-Souriau sense

0iT (w )(X ,Y  )
(12)

= w(Fi(u, s, yi(s))), dsFi(u, s, yi(s )) ,d x Fi(u, s, yi(s)),dyFi(u, s, Yi(s))
JS1

where X  and Y are vector fields over Ui.
The fact that it defines a smooth form on U =  UUi is proved by the following 
lemma.

Lemma 3. Let y  £ GP(M ). Let au a form which depends smoothly from u in 
the open subset U of Rn. Then the Stratonovitch integral f Si (au, dY(s)) depends 
smoothly on u.

Proof: For any multi-index a, we can define the Stratonovitch integral, by using 
Lyons’s theory

LX s u O ) dY(s))  • (13)
It is bounded over each compact of U. By Sobolev imbedding theorem, we deduce 
that fs i (au, dY(s)) depends smoothly on u. □
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To a form a smooth in the Chen-Souriau sense, we can associated its exterior 
derivative defined for a plot (U, f )  by

f*da  := # * a .  (14)

In particular, dr(w) =  0. Namely, we can approach in (Ui, f i) y% by smooth 
loops yn. 0*r(w) is approached by (w) for the smooth topology. But on Uj
d^n*r(w) =  0 (see [3]).

4. Isomorphism of Cohomology

This part is an adaptation of the proof of Theorem 2.9 of [14]. We will refer to it 
without to give all the details.
Let us recall that an open subset for the Hölder topology is still an open subset of
GX(M ).
Let us give some notations. Let x i  be a finite set of elements of M  such that the 
balls B (x i; ö) constitute an open cover of M  for ö small enough. We consider the 
set of polygonal curves Yi , n  associated to a subdivision t k = k /n  of the interval 
[0,1] such that d(Yi,n(tk), Yi,n(tk+1)) < 2ö. Moreover, between t k and t k+1, 
the polygonal curve is the unique geodesic joining the two points yi , n (tk ) and 
Yi , n (tk +1) and each yi , n (tk ) is some of the points Xj . When i and n describe the 
set of integers, the set of open balls for the uniform distance B (Yi , n , ö”) constitutes 
an open cover O i>n of L 1/2-iX(M ) for ö” small enough.
Let us recall the following statement (see [14, Theorem 2.4]): Associated to the 
cover Oi> n , there exists a smooth partition of unity gin  for the Hölder topology. 
Moreover, each gi  n  defines a functional smooth in the Chen-Souriau sense over 
GX (M ), because a plot (U, f )  is smooth for the Hölder topology.
Let us put a  =  (i, n). There exists a natural order over the system of multiindices 
a. In the sequel, a 1 < a 2 < ■ ■ ■ < an. Oa is contractible as well as Oai...,an =  
nOa i .
We can consider plots constrained to belong to Oait..,an and we get Chen-Souriau 
cohomology groups associated to Oait..,an.

Lemma 4. The Chen-Souriau cohomology groups of Oait..,an supposed nonempty 
are equal to zero in degree different to zero and to R in degree 0.

Proof: We proceed as in [14, p. 127]. There exists a functional from Oa i . . ,an  x 
[0,1] on Oa i ..... a n  such that:

i) Fai ,..,an  (Y,t)(s) =  Fai ,...,an  (s ,Y(s ) ,t) .
ii) Fai ,..,an  (.,.,.)  is smooth in s, y(s) and t.

iii) Fa i ,..,an  ( s ,Y(s^ 1) =  Y(s).
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iv) Fa1,...,an (s,Y(s), 0) =  Y« i , . . . , « n (s) where Y« i , . . . , « n  (.) is any smooth loop 
belonging to O« i , . . . , « n .

If (U, 0) is a plot with values in Oai,...,an, we can construct a retraction plot (U x 
[0,1], 0e x t) which is still a plot with values in Oai,...,an by putting

4>eXt(u,t) = Fai,...,an (0 (u),t). (15)

This retracts the plot 0 into a constant plot.
By using Cartan’s homotopy formula (see [14, (2.16)]), we deduce that a closed 
form in Chen-Souriau sense over Oai,...,an is exact if its degree is not zero and is 
constant if its degree is 0 (see [14, Lemma 2.7]). Therefore the result. □

By using a spectral sequence as in [2] and comparing de Rham cohomologies with 
Cech cohomology associated to the cover Oa, we have the analogue of Theo­
rem 2.9 of [14].

Theorem 1. The cohomology groups in Chen-Souriau sense of GPX(M ) are equal 
to the de Rham cohomology groups of L 1/2-ep(M ).

5. Isomorphism of Line Bundles

Let us recall the definition of a Z-valued n-form in the Chen-Souriau sense on 
GX(M). Let A n  be the canonical n-simplex in Rn . Let us consider a plot (An, 0) 
with values in Gpp(M). We can define its oriented boundary. We can add and 
subtract simplices (An , 0). If the boundary destroy, we say that we are in presence 
of a n-cycle.
If (An , 0) is a n-simplex and a a n-form in Chen-Souriau sense over GPX(M ), we 
define

This allows to define the integral of a n-form in Chen-Souriau sense over a n-cycle. 
We say that a is Z-valued if its integral over any n-cycle is an integer and if a is 
closed.
Let us suppose that n 1(M ) =  n 2(M ) =  0.
Let us consider a Z-valued two-form on GPX(M ) called a 1.
Let us introduce a system of smooth loops ya such that the system of balls for the 
uniform distance B(Ya, ö) for ö small enough constitute a cover of L 1/2-ep(M ). 
Let x(.) be the constant loop. If y €  B(Ya ; ö), there is a distinguished la joining y 
to x(.): we go from y to Ya  by the curve la (y)(t)(s) =  exp7a (s ) [t(Y(s) -  Ya (s))] 
where expYa (s ) is the Riemannian exponential in Ya (s) and y (s) — Ya (s) is the 
unique vector field over Ya (s) of the unique geodesic joining Ya (s) to y(s) . We 
continue the path la (Y)(t) by a path joining Ya  to x(.) which does not depend on
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Y. If y belongs to B(Ya ; S) n B (Yß; S) n GpP(M ), we can produce a system of 
transition functionals as follows: we join the two loops la (Y)(t)(.) and lß (y )(t)(.) 
in the small triangle constituted of y , Ya and Yß by using exponential charts. We 
use the fact that n 2(M ) = 0  in order to find a surface in the smooth loop space 
whose boundary is the curve joining x(.) to Ya , the exponential curve joining Ya 
to Yß and the curve joining Yß to x(.). We produce a surface Sa,ß(y ) in Gpx(M ) 
which is a union of two-simplices. We put

pa,ß (Y) =  exp —2ni o\ (17)
■>Sa ,ß (y )

From the fact that a1 is closed and Z-valued, we deduce for y £ B (Ya i  ; S) n 
B (Ya 2 ; S) n  B(Ya 3 ; S) n  GP(M ) that

Pai,a2 (Y)pa 2 ,« 3  ('l')Pa3,ai (y ) 1 (18)

and that
pa,ß (Y)pß,a(Y) =  1. (19)

Moreover, the functionals pa ß are smooth in the Chen-Souriau sense. They define 
a line bundle over Gp(M ) which is smooth in the Chen-Souriau sense A1.
But

ai =  doY +  u 3 (20)
where a3 is a true form over L 1/2-ep(M ).
The functional pia ß(y) is defined analogously to pa ß (y), by replacing a 1 with a3. 
The map y ^  pa ß(Y) is continuous for the Hölder topology on Gp(M ). It defines 
a continuous line bundle A3 for the Hölder topology on GPX(M ).
But

pa,ß (y) = pa,ß (y ) exp

By Stokes theorem

exp —2in / d a2 =  exp —2m U2 exp 2in a2 . (22)
Jsa,p (y) Jla( y) ■'lß (y)

This means that A1 and A3 are isomorphic in Chen-Souriau sense over G p (M ). 
Let us consider the case of t (w).
We remark that

-2in / d a2
JSa,p (y)

(21)

/ t (w) +  / t (w) +  / t (w) £ Z (23)
P Sa i , a 2  (y ) P Sa 2 , a 3  (y ) “ Sa 3 , a i  (y )

over Gp (M ) (see [3,4]). We can replace a 1 by t (w) in (17) and (23) show that 
the transition functionals pa,ß(y) got by this procedure still satisfy (18) and (19).
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Moreover, if we use Lemma 3, we see that pa,ß(y) is continuous on Gpx(M ) for
the rough loop topology. We deduce

Theorem 2. t (w) determines a continuous line bundle over GP.(M ) for the rough
loop topology.
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