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Abstract. The notion of photon-like objects is introduced and briefly dis­
cussed. The nonlinear connection view on the Frobenius integrability theory 
on manifolds is considered as a frame in which appropriate description of 
photon-like objects to be developed.

1. The Notion Of Photon-Like Objects

We begin with giving the notion of photon-like object(s) (PhLO) which notion 
will be considered further from the point of view of theoretical modeling under the 
assuming that PhLO are free, i.e., interaction of any form of individual PhLO with 
any other physical object(s) is excluded. The notion we are going to consider reads 
as follows:

We give now some explanations concerning the above formulated notion of photon­
like objects. The feature “real” means:

• PhLO necessarily carry energy-momentum

• PhLO can be created and destroyed
•  PhLO are spatially finite and they carry finite integral values of physical 

quantities

• PhLO propagate and they do NOT move.

The feature “massless” means:

• their integral energy E  and momentum p satisfy E  =  cp, where c is the 
velocity of light in vacuum

PhLO are real massless time-stable physical objects with 
a consistent translational-rotational dynamical structure.
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• there exists an isotropic geodesic vector field (  =  (0,0, —e, 1), e =  ± 1, 
in Minkowski space-time determining the straight-line direction of transla­
tional propagation

• the stress-energy-momentum tensor field TßU satisfies TßUT ßV =  0.

The feature “time-stable” means:

• after their creation in appropriate conditions PhLO can be destroyed only 
by external influence. The feature “translational-rotational” means:

* the propagation has two components: translational and rotational
* these both components are of local nature
* these both components exist simultaneously and consistently and each 

of them shows definite constancy properties.

The feature “dynamical structure” means:

• some permanent local internal energy-momentum redistribution takes place 
with time

• PhLO may have interacting, i.e., energy-momentum exchanging, subsys­
tems.

Our purpose now is to find corresponding to this notion appropriate mathematical 
objects and equations these objects satisfy.

2. Non-Linear Connections

2.1. Projections

These are linear maps P  in a linear space W n satisfying: P .P  =  P  [2]. If P  is a 
projection then n =  dim(Ker P ) +  dim(Im P ). If ( a , . . . ,  en) and ( e i , . . . ,  en) 
are two dual bases in W  and dim(Ker P ) =  p, dim(Im P ) =  n — p, then the 
bases may be chosen in such a way that P  is represented by [3] (summation over 
the repeated indexes is assumed)

P  =  e“ ® ea +  (N j)“ e* x ea, i =  1, . . . , p ,  a =  p +  1, . . . , n .

Such bases are usually called P -adapted.

2.2. Nonlinear Connections

Let M n be a smooth (real) manifold with (x1, . . . ,  x n) be local coordinate system. 
We have the corresponding local frames {dx 1, . . . ,  dxn} and {dx i , . . . ,  dxn  }. Let 
for each x G M  we are given a projection Px of constant rank p =  dim(Ker Px),
i.e., p does not depend on x, in the tangent space Tx ( M ). Under this condition we 
say that a nonlinear connection is given on M  [3]. The space K er(Px) C Tx ( M ) 
is called P -horizontal, and the space Im(Px) C Tx( M ) is called P -vertical. Thus,
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we have two distributions on M . The corresponding integrabilities can be defined 
in terms of P  by means of the Nijenhuis bracket [P, P ] given by

[P, P  ](X, Y  ) =  2{[P (X  ) ,P  (Y  )] +  P  [X, Y  ] -  P  [X, P  (Y  )] -  P  [P (X  ), Y  ]}

where (X , Y ) are two vector fields. Now we add and respectively subtract the term 
P  [P (X  ), P  (Y  )], so, the right hand side expression can be represented by

[P ,P ](X , Y ) =  R ( X , Y ) +  R ( X , Y )

where

R (X , Y ) =  P([(Id —P )X , (Id - P ) Y ]) =  P ([Ph X , P h Y]) 

and

RR(X, Y  ) =  [PX , P Y ] — P  ([PX , P Y ]) =  P h  [PX , P Y ].

Since P  projects on the vertical subspace Im P , then (Id —P ) =  P H projects on 
the horizontal subspace. Hence, R (X , Y ) =  0 measures the nonintegrability of 
the corresponding horizontal distribution, and R (X , Y ) =  0 measures the nonin- 
tegrability of the vertical distribution.

If the vertical distribution is given before-hand and is integrable, then R (X , Y ) =  
P ([PHX , P HY ]) is called curvature of the nonlinear connection P  if  there exist 
at least one couple of vector fields (X , Y ) such that R (X , Y ) =  0.

3. Physics + Mathematics

Any physical system with a dynamical structure is characterized with some inter­
nal energy-momentum redistributions, i.e., energy-momentum fluxes, during evo­
lution. Any system of energy-momentum fluxes (as well as fluxes of other interest­
ing for the case physical quantities subject to change during evolution, but we limit 
ourselves just to energy-momentum fluxes here) can be considered mathematically 
as generated by some system of vector fields. A  consistent and interrelated time- 
stable system of energy-momentum fluxes can be considered to correspond to an 
integrable distribution A  of vector fields according to the principle: local object 
generates integral object.

An integrable distribution A  may contain various nonintegrable subdistributions 
A i ,  A 2, . . .  which subdistributions may be interpreted physically as interacting 
subsytems. Any physical interaction between two subsystems is necessarily ac­
companied with available energy-momentum exchange between them, this could 
be understood mathematically as nonintegrability of each of the two subdistribu­
tions of A  and could be naturally measured by the corresponding curvatures. For
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example, if  A  is an integrable three-dimensional distribution spent by the vec­
tor fields ( X \ , X 2, X 3) then we may have, in general, three non-integrable two­
dimensional subdistributions ( X i ,X 2), ( X ^ X 3), (X 2, X 3). Finally, some inter­
action with the outside world can be described by curvatures of nonintegrable dis­
tributions in which elements from A  and vector fields outside A  are involved (such 
processes will not be considered in this paper).

4. Back to PhLO

Our base manifold will be the Minkowski space-time M  =  (R4, n), where n is the 
pseudometric with sign n =  (—, —, — , +), canonical coordinates (x, y, z, £ =  ct), 
and canonical volume form wo =  dx A dy A dz A d£. We have the corresponding 
vector field

- d d
Z =  —£oZ +  e =

determining that the straight-line of translational propagation of our PhLO is along 
the spatial coordinate z.

The vector field -  determines a set of completely integrable three-dimensional Pfaff 
systems, denoted by A* (- ). Thus, any element of A * (- ) is generated by three 
linearly independent one-forms (a 1, a 2, a 3) which annihilate - , i.e.,

a i ( - ) =  a2(- ) =  a 3(Z) = 0 , a i  A a2 A a 3 =  0.

Instead of ( a 1, a 2, a 3) we introduce the notation (A, A*, Z) and define Z by

Z =  edz +  d{.

Now, since Z defines one-dimensional completely integrable Pfaff system we have 
the corresponding completely integrable distribution (A, A*, - ). We specify fur­
ther these objects according to the following

Definition 1. We shall call these dual systems electromagnetic if they satisfy the 
following conditions (( , ) is the coupling between forms and vectors):

1. (A, A*) =  0, (A*,A)  =  0

2. the vector fields (A, A* ) have no components along -

3. the one-forms (A, A*) have no components along Z

4. the vector fields (A, A* ) are n-corresponding to (A, A* ), respectively .

Further we shall consider only PhLO of electromagnetic nature.

From Conditions 2, 3 and 4 it follows that

A  =  u dx +  p dy, A*

A
d d

—u j,-----PT ^ ,dx dy
A *

v dx +  w dy 

d d
—v d x — w d y
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and from Condition 1 it follows v =  —eu, w =  ep, where e =  ± 1, and (u, p) are 
two smooth functions on M . Thus, we have

A  =  u dx +  p d y, A* =  - e p  dx +  e u  d y

j d d 
A  =  —u —  -  p^~, 

dx dy
a* d dA  =  e p - -----e u  —  ■

ox  dy

The completely integrable three-dimensional Pfaff system (A, A * , Z) contains three 
two-dimensional subsystems: (A, A *), (A, Z) and (A*, Z). We have the following

Proposition 1. The following relations hold

dA  A A  A A* =  0, dA* A A* A A  =  0

dA A A  A Z =  e[u(pç — epz) — p(uç — euz)]wo

dA* A A* A Z =  e[u(pç — epz) — p(uç — euz)}uo.

Proof: Immediately checked. □

These relations say that the two-dimensional Pfaff system (A, A*) is completely in­
tegrable for any choice of the two functions (u, p), while the two two-dimensional 
Pfaff systems (A, Z) and (A*,Z) are NOT completely integrable in general, and 
the same curvature factor

R  =  u(pç — epz ) — p(uç — euz ) 

determines their nonintegrability.

Correspondingly, the three-dimensional completely integrable distribution (or dif­
ferential system) A(Z ) contains three two-dimensional subsystems (A, A*), (A, Z) 
and (A*, Z). We have the following proposition.

Proposition 2. The following relations hold ( [ X , Y  ] denotes the Lie bracket)

[Ä, Ä*] A A  A A* = 0
d d

[A  Z] =  (uî — euz) o f  +  (p ç — epz) dy  

- d d
[,4*,Z] =  —e(pç — epz) d x  +  e(u< — euz) dy

Proof: Immediately checked. □

From these last relations and in accordance with Proposition 1 it follows that the 
distribution (A, A*) is integrable, and it can be easily shown that the two distribu­
tions (A, Z) and (A*, - ) would be completely integrable only if  the same curvature 
factor

R  =  u(pç — epz ) — p(uç — euz )

is zero.
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We mention also that the projections

(A, [A*, C|) =  - ( A * ,  [A, C|) =  eu(pç -  epz) -  ep(uç -  euz) =  e R

give the same factor R . The same curvature factor appears, of course, as coefficient 
in the exterior products [A*, 0] A A* A (  and [A, 0] A A  A 0. In fact, we obtain

- - -  - - - - -  d d d d d d
[A*.C]A A * A C = - [ a -C] a  a  a  C =  - e R  d x  A d y  A ^  + R  m  A d y  A *

On the other hand, for the other two projections we obtain

1 
2

Clearly, the last relation may be put in terms of the Lie derivative L^ as

(A, [A  C]) =  (A*, [A*, C]) =  ö [(u2 +  p 2)î -  e(u2 +  P2)z].

1 1
2 L-C(u2 +  p2) =  -  -  L f-(A, A) =  - ( A , L f-A) =  - ( A * , L f-A*).

Remark. Further in the paper we shall denote ^ u 2 +  p2 =  0 , and shall assume 
that 0 is a spatially finite function, so, u and p must also be spatially finite.

Proposition 3. There is a function f  (u,p) such, that

u(pç -  epz) -  p(uç -  euz) _  R
L C f 02

Proof: It is immediately checked that f  =  arctan u is such one. □

We note that the function f  has a natural interpretation of phase because of the 
easily verified now relations u =  0 cos f , p =  0 sin f , and 0 acquires the status of 
amplitude. Since the transformation (u, p) ^  (0 , f  ) is non-degenerate this allows 
to work with the two functions (0, f  ) instead of (u, p).

From Proposition 3 we have

R  =  02L çf  =  02( f  -  e f z ).

5. Back to Non-Linear Connections

The above relations show that we can introduce two nonlinear connections P  
and P . In fact, since the integrable distribution (A, A*) lives in the (x, y)-plane 
we present the coordinates in order (z,£,x,  y) and the bases (dz, d£, dx, dy), 
(dz , dç, dx , dy). We choose the vertical distribution to be generated by (dx , dy). 
The corresponding projections look like

_ . d d d d .. d d
P v  =  dx ® —  +  dy ---- e u  dz ®  -----u dz ®  -----ep  d£ ---- p dz ® —

dx dy dx dy dx dy

~ . d d . d . d .. d .. d
P v  =  dx ® —  + d y  ® —  +  p dz ® —  +  ep  dz ---- u d£ ---- e u  d£ •

dx dy dx dy dx dy
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The corresponding matrices look like

P v

(Pv  )*

P v

(Pv  )*

0 0 0 0
0 0 0 0
eu —u 1 0
ep —p 0 1

0 0 — eu ep
0 0 —u p
0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0

p ep 1 0
u — eu 0 1

0 0 p —u
0 0 ep —eu
0 0 1 0 5

0 0 0 1

P h

1 0 0 0
0 1 0 0

eu u 0 0
ep p 0 0

(Ph  )*

1 0 eu ep
0 1 u p
0 0 0 0
0 0 0 0

P h

1 0 0 0
0 1 0 0

—p —ep 0 0
u eu 0 0

(Ph  )*

1 0 —p u
0 1 —ep eu
0 0 0 0
0 0 0 0

The projections of the coordinate bases are:

/ d d d d  \ / d d d d d d  \

V dz dÇ dx dy J \ dx dy dx dy dx dy J

( d d d d \

[ d Z , d ï , d x , d y ) ' PH
d d d d d d

—  +  eu—  +  e p — , —  +  u —  +  p — , 0,0 
dz dx dy dÇ dx dy

(dz, dÇ, dx, dy).(PV)* =  (0, 0, - e u dz — u dÇ +  dx, - e p dz — p dÇ +  dy)

(dz, dÇ, dx, dy).(PH )* =  (dz, dÇ,eu dz +  u dÇ,ep dz +  p dÇ) . 

Consider now the two-forms

G =  (Pv )*dx A (Ph )*dx +  (Pv )*dy A (Ph )*dy 

=  eu dx A dz +  ep dy A dz +  u dx A dÇ +  p dy A dÇ 

G  =  (P v )*dx A (Ph )*dx +  (Pv )*dy A (Ph )*dy

=  —p dx A dz +  u dy A dz — ep dx A dÇ +  eu dy A dÇ.

It follows that G =  A  A Z, G  =  A* A Z and G =  *G, where * is the Hodge 
star operator defined by n. Clearly, the two two-forms (G, *G) represent the two 
nonintegrable Pfaff systems (A, Z) and (A*, Z).
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The corresponding curvatures are

d
R  =  e(ut — euz) dz A dë G —

dx
d

R  =  — (pt — epz ) dz A d{ ® d x

+  e(pç — epz) dz A d{ G 

+  (ut — euz) dz A d{®

d
dy
d_
dy

We obtain

R (pH l - p« |  ) =  i-w - R (pH d L -p « I  ) =  teA*

6. Again Physics + Mathematics

The two two-forms obtained (G, *G) suggest to test them as basic constituents of 
classical electrodynamics, i.e., if  they satisfy Maxwell equations. However, it turns 
out that dG =  0 and d * G =  0 in general. As for the energy-momentum part of 
Maxwell theory, determined by the corresponding energy-momentum tensor

V  =  2  [G„* G v  +  (*G)ßa (*Gva ] and T44 =  u2 +  p2 =  02

we obtain the following relations 

1 
2

V  T vv v G aß(dG)«ßM +  (*G )aß(d * G)aßß

G aß(dG)aßßdxß =  (*G )aß(d * G)aßßdxß =  2 L=(u2 +  p2).( 1  L c ^ C

and

A, R P h
d_

dz P h
d_

dë

On the other hand

( s ä *, R P H
d_

dz

2 L^(u2 +  p2) =  2 L-c^2.

(*G)aß(dG)aßßdxß =  —G aß(d * G)aßßdxß

=  [u(pç — epz ) — p(ut — euz )]Z =  R .( .

Also, we find

( Ä - R  (pH  d z . PH I ) )  =  — ( e Ä *, R  ( P H d z . PH |  ) )  =  — R

So, if  L^0  =  0 we can say that our two two-forms G =  Ä  A Z and *G =  A* A Z, 
having zero invariants, are nonlinear solutions to the nonlinear equations

G aß(dG)aßß =  0, (*G )aß(d * G )aßß =  0

G aß(d * G)aßß +  (*G )aß(dG)aßß =  0.
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From physical point of view these three equations say that the two subsystems of 
our PhLO, mathematically represented by the two two-forms G and *G  keep the 
energy-momentum they carry, and are in permanent energy-momentum exchange 
with each other in equal quantities, i.e., in permanent dynamical equilibrium [1]. 
The mathematical quantity that guarantees the dynamical nature of this equilibrium 
is the nonzero curvature R  or R . The permanent nature of this dynamical equi­
librium suggests to look for corresponding quantities/parameter(s), which should 
represent relation(s), charavterizing the state at a given moment of PhLO and its 
intrinsical capability to overcome the destroying tendencies of the existing nonin- 
tegrabilities by means of appropriate propagation properties.

We note the relations
l ± ~ d \ / , d \ / , d \

A , p H « ) =  ( a * , ^ h d z  )  = \ A , p y  8 ? )  =  e(VA p H & )
/ d ) / ~ d

=  - e ( A , p " < s ) = e ( A * , p H * )  = ~ \ A * , p ' ä

=  - e ( A * , P y  =  u2 +  p2 =  4 2 =  -r j( A ,A )  =  -p ( A * ,A * )

=  S 2.

On the other hand,

( ( p v )‘ (dx) A (p y )‘ (dy) ,R  ( p H4 , p H| )  A R  ( p H ; | ,p H | ) )

= 4 p y )*(dx) A (p  )*(ds ) , R  ( p H d , p B |  )  A R  ( P h  p  , p H d  ) )

=  e [(uç -  euz)2 +  (pç -  epz)2] =  e (R )2 =  e Z 2.

Hence, the relation

S 2 =  u2 +  p2 =  42 =  1 _  (I )2

Z 2 [(uç -  euz)2 +  (pç -  epz)2] 4 2(Pç -  epz )2 (L^p)2 ~  °

defines the quantity k1°, k =  ± 1  as an appropriate such parameter.

7. Translational-Rotational Consistency and Equations of Motion

In order to introduce mathematically the translational-rotational consistency we 
recall the relations

_ _  d d — — d d

A  A A * =  e42dX A dy =  °, [A  Z] A [A*P ]  =  e4>2(L<P)2dX A 9Ï  =

Thus, we have two frames (A, A * ,dz , dç) and ([̂ 4, £], [A*, £], dz , dç). The internal 
energy-momentum redistribution during propagation is strongly connected with
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the existence of linear map transforming the first frame into the second one since 
both are defined by the dynamical nature of our PhLO. Taking into account that 
only the first two vectors of these two frames change during propagation we write 
down this relation in the form

([A, Z ], [A*,Z ]) (A, A*)
a ß  
7  ö '

Solving this system with respect to the real numbers (a, ß,  7, ö) we obtain

— 2 L -ß 2 e Ra ß 1
7  ö =  ß 2 —e R  — 1 L -ß

1 L -ß 2 1 0 0 1
2 ß 2 0 1

+  e L -ß
— 1 0

Assuming the conservation law L -ß 2 =  0, we obtain that the rotational component 
of propagation is governed by the matrix e L - ß J , where J  denotes the canonical 
complex structure in R 2, and since ß 2L -ß  =  R  we conclude that the rotational 
component of propagation is available if  and only if  the Frobenius curvature is 
NOT zero: R  =  0. We may also say that a consistent translational-rotational 
dynamical structure is available if  the amplitude ß 2 =  u2 +  p2 is a running wave 
along Z and the phase ß  =  arctg u is NOT a running wave along ß.

As we have noted before the local conservation law L -ß 2 =  0, being equivalent to 
L -ß  =  0, gives one dynamical linear first order equation. This equation pays due 
respect to the assumption that our spatially finite PhLO, together with its energy 
density, propagates translationally with the constant velocity c. We need one more 
equation in order to specify the phase function ß . If we pay corresponding respect 
also to the rotational aspect of the PhLO nature it is desirable this equation to intro­
duce and guarantee the conservative and constant character o f this aspect o f PhLO 
nature. Since rotation is available only if  L -ß  =  0, the simplest such assumption 
respecting the constant character of the rotational component of propagation seems 
to be L -ß  =  const, i.e., lo =  const. Thus, the equation L -ß  =  0 and the frame 
rotation ( Ä , Ä * , ö z ,dç) ^  ([A,Z], [A*,Z],dz,dç), i.e., [A,Z] =  —eÄ *L -ß  and 
[A*, Z] =  eÄ L -ß , give the following equations for the two functions (u,p)

K
U  — euz =  — -rP,

lo

K
Pç — epz =  u.

lo
If we now introduce the complex valued function ^  =  u l  +  p J , where I  is the 
identity map in R 2, the above two equations are equivalent to

L csV =  K  J (* )
lo

which clearly confirms once again the translational-rotational consistency in the 
form that no translation is possible without rotation, and no rotation is possible 
without translation, where the rotation is represented by the complex structure J . 
Since the operator J  rotates to angle a  =  n / 2 , the parameter lo determines the
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corresponding translational advancement, and k =  ± 1 takes care of the left/right 
orientation of the rotation. Clearly, a full rotation (i.e., 2n-rotation) will require 
a 4lo-translation, so, the natural time-period is T  =  4lo/c =  1/v , and 4lo is 
naturally interpreted as the PhLO size along the spatial direction of translational 
propagation.

In order to find an integral characteristic of the PhLO rotational nature in action 
units we correspondingly modify (i.e., multiply by Klo/c) and consider any of the 
two equal Frobenius four-forms

—  dA A A  A Z =  — dA* A A* A Z =  —  eRw o. 
c c c

Integrating this four-form over the four-volume R 3 x 4lo we obtain the quantity 
H  =  s kE T  =  ± E T , where E  is the integral energy of the PhLO, which clearly is 
the analog of the Planck formula E  =  h v , i.e., h =  E T .
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