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Abstract. New reductions for the multicomponent modified Korteveg de
Vries (MMKdV) equations on the symmetric spaces of DIlI-type are derived
using the approach based on the reduction group introduced by A. Mikhailov.
The relevant inverse scattering problem is studied and reduced to a Riemann-
Hilbert problem. The minimal sets of scattering data Ti, i = 1, 2 which allow
one to reconstruct uniquely both the scattering matrix and the potential of the
Lax operator are defined. The effect of the new reductions on the hierarchy of
Hamiltonian structures of MMKdV and on Ti are studied. We illustrate our
results by the MMKdV equations related to the algebra g ~ so(8) and derive
several new MMKdV-type equations using group of reductions isomorphic
to 22,73, Z4.

1. Introduction

The modified Korteweg de-Vries equation (MKdV) [27]
gt + Qux + 6egxg2(x, t) = 0, e= %1 (D

has natural multicomponent generalizations (MMKdV) related to the symmetric
spaces [3]. They can be integrated by the ISM using the fact that they allow the
following Lax representation

Lf = +Q(x, ) —AIMf (X, 1, A) = 0 @)
10
Q(x-t>= {1'0 & _1> ©)
ME = is Vo ) + AVI(GE) + A2V2(x1)  4A3) f(x.t, A

f (x, t, A)C(A) J 4)
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Va(a,t) = 4Q(x,t),  Vi(a,t) = 21JQ, +2JQ° (5)
Vol 1) = —Quw —2Q°. 6)
The corresponding MMKdV equations take the form
0Q | 9*Q 2 20 )
5t 13 (@7 + Q%Q.) —o. )

The analysis in [2, 3, 11] reveals a number of important results. These include
the corresponding multicomponent generalizations of KdV equations and the gen-
eralized Miura transformations interrelating them with the generalized MMKdV
equations, two of their most important reductions as well as their Hamiltonians.

Our aim in this paper is to explore new types of reductions of the MMKdAV equa-
tions. To this end we make use of the reduction group introduced by Mikhailov
[22, 24] which allows one to impose algebraic reductions on the coefficients of
Q(x,t) which will be automatically compatible with the evolution of MMKAV.
Similar problems have been analyzed for the NV-wave type equations related to the
simple Lie algebras of rank 2 and 3 [16, 17] and the multicomponent NLS equa-
tions [18, 19]. Here we illustrate our analysis by the MMKdV equations related to
the algebras g ~ so(2r) which are linked to the DIII-type symmetric spaces se-
ries. Due to the fact that the dispersion law for MNLS is proportional to A\? while
for MMKGAV it is proportional to A* the sets of admissible reductions for these two
NLEE equations differ substantially.

In the next Section 2 we give some preliminaries on the scattering theory for L, the
reduction group and graded Lie algebras. In Section 3 we construct the fundamen-
tal analytic solutions of L, formulate the corresponding Riemann-Hilbert problem
and introduce the minimal sets of scattering data 7;, ¢ = 1, 2 which define uniquely
both the scattering matrix and the solution of the MMKdAV Q(x, t). Some of these
facts have been discussed in more details in [18], others had to be modified and
extended so that they adequately take into account the peculiarities of the DIII-
type symmetric spaces. In particular we modified the definition of the fundamental
analytic solution which lead to changes in the formulation of the Riemann-Hilbert
problem. In Section 4 we first briefly outline the hierarchy of Hamiltonian struc-
tures for the generic MMKdAV equations. Next we list nontrivial examples of two
classes of reductions of the MMKdV equations related to the algebra so(8). The
first class is performed with automorphisms of so(8) that preserve .J and the second
class uses automorphisms that map J into —.J. While the reductions of first type
can be applied both to MNLS and MMKdV equations, the reductions of second
type can be applied only to MMKAV equations. Under them “half” of the mem-
bers of the Hamiltonian hierarchy become degenerated [3,9]. For both classes
of reductions we find examples with groups of reductions isomorphic to Zs, Z3
and Z4. We also provide the corresponding reduced Hamiltonians and symplectic
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forms and Poisson brackets. At the end of Section 4 we derive the effects of these
reductions on the scattering matrix and on the minimal sets of scattering data. The
last section contains some conclusions.

2. Preliminaries

In this section we outline some of the well known facts about the spectral theory
of the Lax operators of the type (2).

2.1. The Scattering Problem for .

Here we briefly outline the basic facts about the direct and the inverse scattering
problems [4,5,7,8,10,15,25,26,28,29] for the system (2) for the class of potentials
Q(x, t) that are smooth enough and fall off to zero fast enough for x — o0 for all
t. In what follows we treat DIII-type symmetric spaces which means that Q(x, t)
is an element of the algebra so(2r). In the examples below we take » = 4 and
g ~ s0(8). For convenience we choose the following definition for the orthogonal
algebras and groups

X €50(2r) — X + 50 XTSy =0, T e€S0@2r) — SoT Sy =T (8)

where the “hat” denotes the inverse matrix 7 = 7! and

r O -
So = (=1 (Ekk + Ekk) — ( Y “BO > . k=2r+1—k (9

k=1

Here and below by F;, we denote a 2r x 2r matrix with just one non-vanishing
and equal to 1 matrix element at 7, k-th position: (Ejx)mn = 0jm0kn. Obviously
S2— 1,
The main tool for solving the direct and inverse scattering problems are the Jost
solutions which are fundamental solutions defined by their asymptotics at © —
+o0

lim (x, A =1, lim ¢z, \)er* = 1. (10)

T—00 r——00

Along with the Jost solutions we introduce

£(m7 )‘) - 1/1(357 )‘)ev\va QO(LE, )‘) - ¢(£E, )\)eiAJm (1)

which satisfy the following linear integral equations
) = 11 [ dgem ™ EDQ(y)e(y, N (12)
pla, ) = 1 +i / dye™ M0 Q(y)p(y, A Y. (13)

These are Volterra type equations which, have solutions providing one can ensure
the convergence of the integrals in the right hand side. For A real the exponential
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factors in (12) and (13) are just oscillating and the convergence is ensured by the
fact that Q(x, t) is rapidly vanishing for x — oo.

Remark 1. It is an well known fact that if the potential Q(x,t) € so(2r) then
the corresponding Jost solutions of equation (2) take values in the corresponding
group, i.e., ¥(x, \), ¢(z, A) € SO(2r).

The Jost solutions as whole can not be extended for im A # 0. However, some of
their columns can be extended for A € C, others — for A € C_. More precisely
we can write down the Jost solutions ¥ (x, A) and ¢(x, A) in the following block-
matrix form

1/1(90: )‘) - (|’(/J_(£E, )‘)>7 |1/J+($a )‘)>) ) (]5(%, )‘) - (|¢+(5E7 )‘)>7 |¢_(5E7 )‘)>)
(@) C(eEen)
W=, \)) = (,#;E(ﬁ, \ ) ECCOVE ((p;t(x’ ) )

where the superscript 4+ and (respectively —) shows that the corresponding r x r
block-matrices allow analytic extension for A € C (respectively A € C_).
Solving the direct scattering problem means given the potential Q(x) to find the
scattering matrix 7'(\). By definition T°(\) relates the two Jost solutions

o, 3) =, NT(N), Tm(;;j&)) T s

and has compatible block-matrix structure. In what follows we will need also the
inverse of the scattering matrix

v oI, T =( G0 G0 e

where
(N =atW@+pph) ™ = (1Tt lat () (172)
d=(N) =a" NN+ pt ) = (7)) (e () (A7)
ct) =a~ W+ ptpT) = ()T aT () (17¢)
dT(N) =a " NpT NI+ p pH) =@+ 77D (at (). A7)

The diagonal blocks of 7'(\) and T'(\) allow analytic continuation off the real axis,
namely a® ()), ¢t () are analytic functions of A for A € C4, while a™ (), ¢™(\)
are analytic functions of A for A € C_. We introduced also p=(\) and 7%()\) the
multicomponent generalizations of the reflection coefficients (for the scalar case,
see [1,6,21])

PN = brat(\) = eEdE(N),  7E() = aTbT()\) = dFeE(N). (18)
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The reflection coefficients do not have analyticity propertics and are defined only
for A € R,

From Remark 1 one concludes that T'(\) € SO(2r), therefore it must satisfy the
second of the equations in (8). As a result we get the following relations between
c¢t, d* and a*, b

eV = s0atT(Nso, e (V) = soa™T (Mg (19)
dT(\) = —sob™T(N)sg,  d(\) = —seb™T (N30

and in addition we have
pt(A) = —=30p"T (N30, p~(\) = —s0p"T (N30 o)

() = —SQT+’T()\)§0, T (N = —fsor_’T()\)so.

Next we need also the asymptotics of the Jost solutions and the scattering matrix
for A — o0

Jim g, e e Jim (x, Ne e Jim T() =1
/\hm at(\) = /\hm c (AN =1, /\hm a (\) = /\lim ct() =1

The inverse to the Jost solutions ¥ (, A) and ¢(z, \) are solutions to

dp -
1 Q) — M) = 0 )
satistying the conditions
lim 7R, \) = 1, lim e~ *"g(x, \) = 1. (23)

Now it is the collections of rows of t(2, A) and ¢(z, A) that possess analytic prop-

erties in A
; @tV 2 (P (@, )]
w(m’”<<w—<x,x>|>’ e <<<2>*<x,A>|> o1

WH V) = (557195, 857 0E) (@, ), (05 V)] = (7195, T 97 (2, A).
Just like the Jost solutions, their inverse (24) are solutions to linear equations (22)
with regular boundary conditions (23) and therefore they have no singularities on
the real axis A € R. The same holds true also for the scattering matrix 7'(\) =
W(x, \Yo(x, \) and its inverse T'(A) = ¢(x, M) w(x, A), i.e

at ) = e N @), a0 = @ 6@ ) e5)

as well as

() = @@, N (@, N), (N = @@ N (=, N)  (@26)
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are analytic for A € C4 and have no singularities for A € R. However they may
become degenerate (i.e., their determinants may vanish) for some values )\;'E e Cy
of A. Below we briefly analyze the structure of these degeneracies and show that
they are related to discrete spectrum of L.

2.2. The Reduction Group of Mikhailov

The reduction group Gr is a finite group which preserves the Lax representa-
tion (2), i.e., it ensures that the reduction constraints are automatically compati-
ble with the evolution. G must have two realizations: i) Gg C Autg and ii)
Gr C ConfC, ie., as conformal mappings of the complex A-plane. To each
gr € G'r we relate a reduction condition for the Lax pair as follows [24]

Ce(L(Tk(N)) = meL(N), Ce(M(k(N)) = e M(N) 27

where Cj, € Autg and ['y(\) € Conf C are the images of g and 7 = 1 or —1
depending on the choice of . Since G is a finite group then for each g, there
exist an integer Ng such that g,]cv B —11.

More specifically the automorphisms Cy, & = 1,...,4 listed above lead to the
following reductions for the potentials U (x, ¢, \) and V' (2, ¢, A) of the Lax pair

2
Uz, t,\) = Qa, t) — \J, Via, t,\) = > MVila, t) — 4T (28)

k=0
of the Lax representation
1) U (s1(N)) = UV, LV (51 (V) = V(N (29)
2) Co(UT (k2(N)) = =U(N),  Co(VI(52(N)) = =V(N) (30)
3) C3(U™(k1(N)) = =U(N), Cs(V*(k1(N)) = =V(N) (G
1) Cy(U(r2(N)) = UN), Ca(V(k2(N)) = V(A). (32)

The condition (27) is obviously compatible with the group action.

2.3. Cartan-Weyl Basis and Weyl Group for so(2r)

Here we fix the notations and the normalization conditions for the Cartan-Weyl
generators of g ~ so(2r), see e.g. [20]. The root system A of this series of
simple Lie algebras consists of the roots A = {£(e; — e;), £(e; + e;)} where
1 < ¢ < j < r. Weintroduce an ordering in A by specifying the set of positive
roots At = {e; —ej,ei+e;) for 1 < i < j < r. Obviously all roots have the
same length equal to 2.
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We introduce the basis in the Cartan subalgebra by hr € h, kK = 1,...,r where
{h} are the Cartan elements dual to the orthonormal basis {e, } in the root space
E". Along with hj we introduce also
r
Ho = (o, ex)hy, aeA (33)
k=1

where (a, ey ) is the scalar product in the root space E” between the root v and ey.
The basis in s0(2r) is completed by adding the Weyl generators F,,, o € A.
The commutation relations for the elements of the Cartan-Weyl basis are given
in [20]

[hkvEOé] — (avek)Eom [EaaE—a] — Ha
34
(B, ] — NopgBoys fora+peA 34)
0 fora + 5 ¢ AU{0}.

We will need also the typical 2r-dimensional representation of so(2r). In order
to have the Cartan generators represented by diagonal matrices we modified the
definition of orthogonal matrix, see (8). Using the matrices £/, defined after equa-
tion (9) we get

hie = Epp — g, Eejme; = Biy — (-1)V By

i
o (35)
E€i+€j - Ez} - (_1)z+]Eﬁv E_o = Eg

where k = 2r + 1 — k.
We will denote by @ = >_}._; ex the r-dimensional vector dual to J € f where
J =351 hr. If the root v € A is positive (negative) then (v, @) > 0 (o, @) <
0 respectively). The normalization of the basis is determined by

E_o = Egv <E—0m Ea> =2, N—a,—ﬁ - _Na,ﬁ- (36)
The root system A of g is invariant with respect to the Weyl reflections S, which
act on the vectors ¢/ € E” specified by the formula

L 2a,y)
Sa =Y —
V=V "0, a)

a, e A. 37

All Weyl reflections S, form a finite group Wy known as the Weyl group. On
the root space this group is isomorphic to S, @ (Z3)"~! where S, is the group of
permutations of the basic vectors e; € E". Each of the Zj groups acts on E” by
changing simultaneously the signs of two of the basic vectors e;.

One may introduce also an action of the Weyl group on the Cartan-Weyl basis,
namely [20]

Sa(Hg) = AallpAy" = Hs,s

(38)
Sa(Eﬁ) = AaEﬁAgl = naﬁESaﬁ, naﬁ = +1.
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The matrices A, are given (up to a factor from the Cartan subgroup) by
Ay = eleeFraghepy, (39)

where H 4 is a conveniently chosen element from the Cartan subgroup such that
Hfl = 1. The formula (39) and the explicit form of the Cartan-Weyl basis in the

typical representation will be used in calculating the reduction condition following
from (27).

2.4, Graded Lie Algebras

One of the important notions in constructing integrable equations and their reduc-
tions is the one of graded Lie algebra and Kac-Moody algebras [20]. The standard
construction is based on a finite order automorphism C' € Autg, CV = 1. The
cigenvalues of C' are w*, k = 0,1,..., N — 1, where w = exp(27i/N). To each
eigenvalue there corresponds a linear subspace g(*) C g determined by

gk = {X; Xeg OCX)= ka} : 40)
N-1
Then g = k@ g'® and the grading condition holds
=0

[g<k>,g<”>] c gkt 41)

where k -+ n is taken modulo N. Thus to each pair {g, C'} one can relate an infinite-
dimensional algebra of Kac-Moody type g whose elements are

X =YXk, Xxpeg®. (42)
k

The series in (42) must contain only finite number of negative (positive) powers of
Xand g*tN) = g(®) This construction is a most natural one for Lax pairs and we
will see that due to the grading condition (41) we can always impose a reduction
on L(A) and M(\) such that both U(z,t, ) and V(x,t, \) € go. In the case of
symmetric spaces N = 2 and C' is the Cartan involution. Then one can choose the
Lax operator L in such a way that

QegV, Jeg?® 43)

as it is the case in (2). Here the subalgebra g<0> consists of all elements of g
commuting with .J. The special choice of J = >} hx taken above allows us to
split the set of all positive roots AT into two subsets

AT = A(J)r U Air, A(J)r = {ei — ej},'<j, Air = {ei + ej},'<j. 44)

Obviously the elements o € A7 have the property a(J) = (, @) = 2, while the
clements 3 € Ad have the property 5(J) = (3,d) = 0.
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3. The Fundamental Analytic Solutions and the Riemann-Hilbert
Problem

3.1. The Fundamental Analytic Solutions

The next step is to construct the fundamental analytic solutions (FAS) y*(z, \)
of (2). Here we slightly modify the definition in [18] to ensure that x*(x, \) €
SO(2r). Thus we define

X @, N = (107), [Teh) (@, A) = o2, )ST(N) = (@, VT~ (M) DT () us)
X (@, ) = (97¢7),197) (2, A) = ¢(2, )S™ (V) = v, VT (N D~ (N)

where the block-triangular functions S*()\) and T¢(\) are given by

ST = (g d_é;w ) (= (b%ﬁ(A) g)

(1)

SO gy 1) T

The matrices D*()) are block-diagonal and equal

v (" b)) 4

The upper scripts & here refer to their analyticity properties for A € C.

In view of the relations (19) it is easy to check that all factors S*, T* and D*
take values in the group SO(2r). Besides, since

TO) =T~ (NDHNS () = TH VD~ (N)S~(\)

A — A /\+

) . (48)
T\ = STDTNT (\) = S~ (WD~ (NT (V)

we can view the factors ST, TF and D¥ as generalized Gauss decompositions
(see [20]) of T'(A\) and its inverse.

The relations between ¢*()\), d=(\) and a*()\), b()\) in equation (17) ensure
that equations (48) become identities. From equations (45), (46) we derive

XJr(mv )‘) =X (iE, )‘)GO()‘)v X_(mv )‘) - XJr(mv )‘)GO()‘) 49)
1 + - 1 +r=
o=y ) aw=("TT ) o

valid for A € R. Below we introduce

XE(x,\) = xF(x, NN, (51)
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Strictly speaking it is X*(z, \) that allow analytic extension for A € Cx. They
have also another nice property, namely their asymptotic behavior for A — +o0 is
given by

lim X*(x, \) = 1. (52)

A—00

Along with X¥(z, \) we can use another set of FAS X=(x, \) = X*(z, \)D¥,
which also satisty equation (52) due to the fact that

Jim DE(\) = 1. (53)

The analyticity properties of X*(x, A) and X*(z, \) for A € C. along with equa-
tion (52) are crucial for our considerations.

3.2. The Riemann-Hilbert Problem

The equations (49) and (50) can be written down as

X, \) = X~ (2, VG2, \), AeR (54)
where
Gz, \) = e MG N)eM”, (55)
Likewise the second pair of FAS satisfy
X, \) = X~ (2, VG(x, N), AeR (56)
with
G, \) = e NG (A)eMe, Go(A) — ( 1 +pp+_P+ Pﬂ_ > . (57)

Equation (54) (respectively equation (56)) combined with (52) is known in the
literature [12] as a Riemann-Hilbert problem (RHP) with canonical normalization.
Itis well known that RHP with canonical normalization has unique regular solution
while the matrix-valued solutions X (2, A) and X (2, \) in (54), obeying (52)
are called regular if det X3 (2, ) does not vanish for any A\ € C.

Let us now apply the contour-integration method to derive the integral decomposi-
tions of X*(x, \). To this end we consider the contour integrals

L di ot _L;{ dp_ -
RO = 5= 7{+M_AX @ =g § I w6

and

b dp oy _i]{ du o_
RN = 5 74 K w5 69)

where A € C; and the contours 4 are shown in Fig. 1.
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Figure 1. The contours v+ = R U vi.

Each of these integrals can be evaluated by Cauchy residue theorem. The result for
AeCy are

Ji(\) = X+xA+ZRsX +ZR X ) (60)
1“/\ —1H=A; )‘

To(N) = X T (2, \) + ZResi ZRes _7’) (61)
Py J=LH=A p—A

The discrete sums in the right hand sides of equations (60) and (61) naturally pro-
vide the contribution from the discrete spectrum of L. For the sake of simplicity
we assume that I has a finite number of simple eigenvalues )\;'E € Cy4 and for
additional details see [18]. Let us clarify the above statement. For the 2 x 2
Zakharov-Shabat problem it is well known that the discrete eigenvalues of L are
provided by the zeroes of the transmission coefficients a® (), which in that case
are scalar functions. For the more general 2r x 27 Zakharov-Shabat system (2)
the situation becomes more complex because now a*(\) are » x r matrices. The
discrete eigenvalues )\;'E now are the points at which a*(\) become degenerate
and their inverse develop pole singularities. More precisely, we assume that in the
vicinities of )\;'E a®(\), ¢ (\) and their inverse a=(\), €5(\) have the following
decompositions in Taylor series

a*(N)=al +t(A=XD)a + -, TN =+t A=A+ (62)
at R et .
a*(\)=—Lprar -, N =—Lrrart (63)

A= AT A=A\
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where all the leading coefficients ;'E d;t, c;t ;'E are degenerate matrices such
that
P Ot P
a;a; a;a; =0, cyc; =cjc; = 0. (64)
In addition we have more relations such as
cAL;'EajE + a a =1, é;tc;t + (':;.'Ec;.IE =1 (65)

that are needed to ensure the identities a=(\)a®(\) = 1, eE(\)eF(\) = 1, etc
for all values of A.

The assumption that the eigenvalues are simple here means that we have considered
only first order pole singularities of d;t()\) and é;k()\) After some additional con-
siderations we find that the “halfs” of the Jost solutions [)% (z, \)) and |¢*(a, \))
satisfy the following relationships for A = )\j.E

Wi (@)er) = £loF (@), |5 @)ad) = £ (@)ey)  (66)
where [¢)57(2)) = [*(x, A7), 165 (2)) = |¢*(x, A7)
py =¢rdy =brar, 1S =a;b; =die; (67)

and the additional coefficients b;t and d* S are constant r X r nondegenerate matrices
which, as we shall see below, are also part of the minimal sets of scattering data
needed to determine the potential Q(x, t).

These considerations allow us to calculate explicitly the residues in equations (60),
(61) with the result

X, ) (0),1¢) (@)7) X)) (W) (@)p)),10))
R = . Res -
ot A N o A M .
X~ (z,p) (g5 @)7;7),10)) X~ (w,p)  (10), 105 (2)7;7))
i S DY B D N

where |0) stands for a collection of r columns whose components are all equal to
Zero.

We can also evaluate J1(\) and J>(A) by integrating along the contours. In inte-
grating along the infinite semi-circles of Y4 o, we use the asymptotic behavior of
XF(2, \) and X*(z, \) for A — oo. The results are

1 > d .

T =14 g [ ot e K ) (9)
1 < d . .

Fo(N) =1+ o— /_Oo ﬁlﬂ(%u)el“hK(%M) (70)

K, 0) = e W Ko (e, R () = e R Ry (71
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= (5, ") R (4, 7)

where in evaluating the integrands we made use of equations (15), (17), (54)
and (56).

Equating the right hand sides of (60) and (69), and (61) and (70) we get the fol-
lowing integral decomposition for X+ (x, \)

1 [ du N X5 () Ky ()

=1+ — — X~ YK ( J—
Xt(x, \) +27T1/oo,u_)\ (z, ) K1 (2, 1) +Jz:1 — (73)

N 1= dp ol 2,5()

where X]i(:v) = X*(x, )\;'E) and

+ +
Kyj(x) =e 7" (T(J)_ pé ) T K () = e T (P(j_ 76 ) EES
(75)
Equations (73), (74) can be viewed as a set of singular integral equations which are
equivalent to the RHP. For the MNLS these were first derived in [23].
We end this section by a brief explanation of how the potential Q(x,t) can be
recovered provided we have solved the RHP and know the solutions X*(x, \).
First we take into account that X *(x, \) satisfy the differential equation

d :I:
d
which must hold true for all A. From equation (52) and also from the integral

equations (73), (73) one concludes that X*(x, \) and their inverse X *(2, \) are
regular for A — oo and allow asymptotic expansions of the form

(2, ) XE(z, \) — \[J, XE (2, \)] =0 (76)

XE@, ) =1+ 3 A X(w),  XE@, ) =1+ A X(2). (T

s=1 s=1
Inserting these into equation (76) and taking the limit A — oo we get

Qx,1) = lim A(J — XE@, NI XE (2, N)]) = [J, X1 (z)]. (78)

3.3. The Minimal Set of Scattering Data

Obviously, given the potential () one can solve the integral equations for the
Jost solutions which determine them uniquely. The Jost solutions in turn determine
uniquely the scattering matrix 7'(\) and its inverse 7'(\). But the potential Q(x)
contains r(r — 1) independent complex-valued functions of . Thus it is natural
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to expect that at most »(r — 1) of the coefficients in 7'(\) for A € R will be
independent and the rest must be functions of those.

The set of independent coefficients of 7'(\) are known as the minimal set of scat-
tering data. As such we may use any of the following two sets 7; = 7; . U 7; q

N
Tie={pt 0.0, AR}, Tia= (N}
. (79)
N
Te= {0, AeR),  Ta={7a)

where the reflection coefficients p*()\) and 7% () were introduced in equation (17),
)\;'E are (simple) discrete eigenvalues of L and p;t and T;t characterize the norming
constants of the corresponding Jost solutions.

Remark 2. A consequence of equation (20) is the fact that SE()\), ST(\) e
SO(2r). These factors can be written also in the form

SEN) =exp| Y. TENExa |, TN =exp| Y. pE(MNExa|. (80)
ozGAl+ aeAf

Taking into account that in the typical representation we have Iy fry g = 0 for all
roots a, 3 € A{ we find that

¥ e (07T mwe.(,9,9)

aeAt aeat
81)
_ Opw) _ ( 0 0)
TN Eya = , SNE_o = _
> e (07 > O 0

where A7 is a subset of the positive roots of s0(2r) defined below in Subsec-
tion 3.3. The formulae (81) ensure that the number of independent matrix elements
of 71 ()\) and 77 (\) (respectively, pt()\) and p~(\)) equals 2|A[| = r(r — 1)
which coincides with the number of independent functions of Q(x).

The reflection coefficients p*(\) and 75(\) are defined only on the real \-axis,
while the diagonal blocks a®(\) and ¢*(\) (or, equivalently, D*()\)) allow ana-
lytic extensions for A € C. From the equations (17) there follows that

atWe () =M +ppt )~ a=We ) =1 +ptp= (M) 82
cNat N =W+ etWNa (A =1+ )7 (83)
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Given 77 (respectively, 75) we determine the right hand sides of (82) (respec-
tively (83)) for A € R. Combined with the facts about the limits

/\lim at(\) = /\lim c (N = /\lim a (A = /\lim ct(\) =1 (84)

each of the relations (82), (83) can be viewed as a RHP with canonical normaliza-
tion. Such RHP can be solved explicitly in the one-component case (provided we
know the locations of their zeroes) by using the Plemelj-Sokhotsky formulae [12].
These zeroes are in fact the discrete eigenvalues of L. One possibility to make use
of these facts is to take log of the determinants of both sides of (82) which leads to

AT+ C7(N) = —Indet(1 + p~pt(N), AER (85)

where
AE(N) =Indeta®()),  CE(\) =Indetct(N). (86)
Then Plemelj-Sokhotsky formulae allows us to recover A*()\) and C£()\)

i [ du n NoooA— )\;“
A =5 | Indet(ll + p~ | 87
N =gp | oy mdet(@+p7p (“)szlnA—A; (87)
where A(X) = AT()\) for A € C; and A(\) = —C—(\) for A € C_. In deriv-
ing (87) we have also assumed that )\;'E are simple zeroes of A%(\) and C*()).
Let us consider the reduction condition (29) with ' from the Cartan subgroup
C1 = diag(B,, B_) where the diagonal matrices By are such that B3 = 1. Then
we get the following constraints on the sets 77 2

P~ = (B_pt B, ey = (Bopf BT AT = ()" (88)
T =Byt BO)Y = (Barf BN, AT = () 89)
where § = 1,..., N. For more details see Subsection 4.4 and Subsection 4.5.

Remark 3. For certain reductions such as, e.g. Q@ = —Q' the generalized Zakha-
rov-Shabat system L(A)y) = 0 can be written down as an eigenvalue problem
Ly = Mp(x, \) where L is a self-adjoint operator. The continuous spectrum of
L fills up the whole real A-axis thus “leaving no space” for discrete eigenvalues.
Such Lax operators have no discrete spectrum and the corresponding MNLS or
MMKAdV equations do not have soliton solutions.

From the general theory of RHP [12] one may conclude that (82), (83) allow unique
solutions provided the number and types of the zeroes )\;'E are properly chosen.
Thus we can outline a procedure which allows one to reconstruct not only 7°(\)
and T'(\) and the corresponding potential Q(2) from each of the sets 7;, i = 1,2:

i) Given 75 (respectively 77) solve the RHP (82) (respectively (83)) and con-
struct a® () and ¢*(\) for A € Cy.
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ii) Given 7; we determine b () and d*()) as

bE(N) = pE(Na*(h),  dF(N) = T (\)pt(N) (90)
or if 75 is known then
bE(N) = aT ()TN,  dEO) = 1E(V) ). 1)

iii) The potential Q(x) can be recovered from 7; by solving the RHP (54) and
using equation (78).

Another method for reconstructing Q(z) from 7; uses the interpretation of the ISM
as generalized Fourier transform, see [1,13,21].

4. Finite Order Reductions of MMKdV Equations

In order that the potential Q(x,t) be relevant for a DIII-type symmetric space it
must be of the form

Qx,t) = Z (qol(x, ) Eq + pala, t)E_g) 92)
ozEAl+
or, equivalently
Quty= > (0@ D Eerre; T pis(@ DB e, ) - 93)
1<i<j<r

4.1. Hamiltonian Formulations for the Generic MMKdYV Type Equations

Let us, before going into the non-trivial reductions, briefly discuss the Hamiltonian
formulations for the generic (i.e., non-reduced) MMKdAV type equations. Itis well
known (see [18] and the numerous references therein) that the class of these equa-
tions is generated by the so-called recursion operator A = 1/2(A; + A_) which
act on generic block-off-diagonal matrix valued function Z(x) by

1oz =i {4 o, [ avlew. 2w} ow

Any nonlinear evolution equation (NLEE) integrable via the inverse scattering
method applied to the Lax operator L (2) can be written in the form
0

iad7! a—cf F2£(A)Q(x, 1) = 0 95)
where the function f(\) is known as the dispersion law of this NLEE. The generic
MMKGAV equation is a member of this class and is obtained by choosing f(\) =
—4)\3. If Q(x,1) is a solution to (95) then the corresponding scattering matrix
satisfy the linear evolution equation

5 T TO D] =0 96)
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and vice versa. In particular from (96) there follows that a™()\) and c*()) are
time-independent and therefore can be considered as generating functionals of in-
tegrals of motion for the NLEE.

If no additional reduction is imposed one can write each of the equations in (95)
in Hamiltonian form. The corresponding Hamiltonian and symplectic form for the
MMKYV equation are given by

My =7 [ 4 (50QuQun) —315(7Q°Q0)) ©7)

QO _ % /_ °; da tr (m;lacz(xm E ad;lécz(@]) 08)

_ %/_O; dz tr(J5Q(x) A 6Q(x)).

The Hamiltonian can be identified as proportional to the fourth coefficient 14 in the
asymptotic expansion of AT () (84) over the negative powers of A

AT =D iR (99)
k=1

This series of integrals of motion is known as the principal one. The first three of
these integrals take the form

I = i/_o:o da tr(Q*(2,1)), I = —% /_O:o dz tr(Q ad 7' Q,)
gy [ de (00QuQu) — 31(Q°Q.)).

We will remind also another important result, namely that the gradient of I} is
expressed through A as

1
Vorle = —§Ak_1Q(x,t). (101)

Then the Hamiltonian equations written through (©) and the Hamiltonian vector
field X j7(0) in the form

QO X o) +6H® =0 (102)

for H(®) given by (97) coincides with the MMKdAV equation.

An alternative way to formulate Hamiltonian equations of motion is to introduce
along with the Hamiltonian the Poisson brackets on the phase space M which is
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the space of smooth functions taking values in a\® and vanishing fast enough for
x — 00, see (93). These brackets can be introduced by

(FGYo =1 [ ot (Var P [1. Vorm6]) (103)

Then the Hamiltonian equations of motions
dgs; 0 dpi; 0
o~ e Y, gt = o Y (104)

with the above choice for H(?) again give the MMKdAV equation.

Along with this standard Hamiltonian formulation there exist a whole hierarchy of
them. This is a special property of the integrable NLEE. The hierarchy is generated
again by the recursion operator and has the form

HIE/IWK)IKdV = —8l4gm (105)

1 o0
e = /_oo dz tr <ad;1 5Qx) A [, A™ ad ! 5Q(x)D . (106)
Of course there is also a hierarchy of Poisson brackets
(F,G}my = i /_ drwr (VorwF [1 A VgrG]) . (0D

For a fixed value of m the Poisson bracket {-, - }(,,,) is dual to the symplectic form
Q0™ in the sense that combined with a given Hamiltonian they produce the same
equations of motion. Note that since A is an integro-differential operator in general
it is not easy to evaluate explicitly its negative powers. Using this duality one can
avoid the necessity to evaluate negative powers of A,

Then the analogs of (102) and (104) take the form

QU (-, X o)) + SH™ =0 (108)
dgs; _m dpij —m
- {435 H™ } oy a {pig, HT™} oy (109)
where the hierarchy of Hamiltonians is given by
H™ = 43" filkyi-m- (110)
k

The equations (108) and (109) with the Hamiltonian H ™ given by (110) will
produce the NLEE (95) with dispersion law f(\) = 3, feA¥ for any value of m.

Remark 4. It is a separate issue to prove that the hierarchies of symplectic struc-
tures and Poisson brackets have all the necessary properties. This is done using the
spectral decompositions of the recursion operators AL which are known also as
the expansions over the “squared solutions” of L. We refer the reader to the review
papers [14, 18] where he/she can find the proof of the completeness relation for
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the “squared solutions” along with the proof that any two of the symplectic forms
introduced above are compatible.

In the next two subsections we display new reductions of the MMKdV equations.

4.2. Class A Reductions Preserving ./

The class A reductions can be applied also to the NLS type equations. The corre-
sponding automorphisms C' preserve J, i.e., C~1JC = J and are of the form

CUN 2, \YC =U(x, N), Uz, \) = Qa, t) — AJ (111)

where J is an element of the Cartan subalgebra dual to the vector e; +-es+e3+e4.
In the typical representation of s0(8) U(x, A) takes the form

A gl t)
Ul t.4) = (za(x, D o )

(112)
qua 13 G120 P14 P24 P34 0
g4 23 0 qui2 P13 P2z 0 pas
z,t) = , z,t) =
ata, ) gsa 0 go3 —qi3 P, 1) P12 0 pa3 —poy
0 @34 —Q24 qua 0 pi2 —p13 Pua

Remark 5. The automorphisms that satisfy C~!'JC = J naturally preserve the
eigensubspaces of ad z; in other words their action on the root space maps the
subsets of roots AT onto themselves: CAT = AT,

We list here several inequivalent reductions of the ZS system. In the first one we
choose C' = Cj to be an element 