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Abstract, Here we discuss the concept of essential nonlinearity, i.e., one 
which cannot be meaningfully decomposed into well-defined linear back
ground and “small” nonlinear correction. Therefore, die traditional pertur
bative techniques and asymptotic methods are non-effective then. Two well- 
established classes of essentially nonlinear field theories exist in die mar
ket: 1) The General Relativity and odier generally covariant schemes, 2) The 
Bom-Infeld type nonlinearity in traditional and generalized sense. The es
sential nonlinearity of 1) is intimately connected with the invariance under 
die very huge group Diff(A/) of all space-time diffeomorphisms. The Bom- 
Infeld scheme 2) is also geometrically motivated by die dieory of scalar den
sities in manifolds. But there is no explicitly seen relationship between diese 
two types of nonlinearities. Below we show diat diere exists however some 
hidden link between general covariance and Bom-Infeld mechanism. The 
structure of the group of internal symmetries (target space symmetries) is also 
relevant. Roughly speaking, “huge” symmetry groups are intimately con
nected widi essential strong nonlinearities. It is so even in finite-dimensional 
analytical mechanics. Let us remind our affinely-invariant models in me
chanics of homogeneously deformable bodies [18-21,23,25-29]. There is no 
systematic dieory, nevertheless some rough aldiougli convincing arguments 
do exist. This essay is just concentrated around die study of die interplay be
tween (high) symmetries and (essential) nonlinearities. The examples quoted 
below confirm die idea and exhibit a kinship between general covariance and 
Bom-Infeld paradigm. The special stress is laid on models which, by abuse 
of language, resemble die structured continua widi affine geometry of de
grees of freedom. These models are based on die bundles LA/ =  T \M  
over die “space-time” manifold A/, and FA /, die principal bundle of linear 
frames. And die special stress is laid on scalar multiplets (trivial bundles 
over A/).
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1. Introduction

Our presentation is concentrated around the study of certain essentially nonlinear 
dynamical models and their invariance properties. The special stress is laid on 
nonlinearities the structure of which resembles the Born-Infeld electrodynamics. 
It turns out that there exists some relationship between this kind of nonlinearity and 
the symmetry group of the model. This is a special case of the more general, yet not 
completely understood “phenomenological” rule: mathematically and physically 
interesting nonlinear models turn out to be invariant under “large” and intuitively 
“natural” symmetry groups, sometimes “hidden” ones. Conversely, the demand 
of invariance of hypothetic models under such groups implies their essential non
linearity. Of course, to some extent this is a rough qualitative statement. First of 
ah, let us explain what we mean by “non-essential” and “essential” nonlinearity. 
Obviously, “non-essential” does not mean mathematically or physically trivial in 
any way and so perhaps the term “perturbative” would be more adequate. In such 
models there exists a well-defined linear background and nonlinearity appears as a 
“small” correction term, just “perturbation.” Field theories used in elementary par
ticle physics have such a structure. After quantization they work effectively when 
the perturbation techniques are used together with the renormalization procedure. 
Below we present some general discussion and review some geometrically distin
guished models. The particular attention is devoted to generally covariant models 
for multiplets of scalar fields (they are related to things like strings membranes, p- 
branes, cr-models). By the way, there is an interesting class of scalar-valued models 
with GL(n, R) (n =  dim M )  as the target space, i.e., with cross-sections of the 
trivial bundle M  x GL(n, R) as field variables. There exists an interesting kinship 
between models using the bundles LM  (the bundle of mixed second order tensors 
on M), F M  (the bundle of linear frames on M), M  x GL(n, R). All of them may 
be also considered as an alternative descriptions of gravitation or continua (both 
relativistic and non-relativistic) with internal degrees of freedom. There is some 
kinship between models discussed here and ones developed by Mladenov, Vassilev 
and Djondjorov in biomechanical models of cells [7,33], There are also some sim
ilarities to models used in mechanics of engineering structures like plates, shells, 
etc. An essential part of this study is a formulation of open questions which in 
our opinion are worth of detailed study because of both geometrical and physical 
reasons. We start with some general remarks. Let us quote a few purely symbolic 
expressions. Physical situations will be denoted by elements $  of some linear 
space H.  For example, when we deal with mechanical motion in a flat space, $  
is a system of coordinates as functions of time, R 9 t  i-» tf(t) e R , i  =  1 
( /  is the number of degrees of freedom). In classical field theory $  is a vector
valued function on the physical space-time, X  3 x  i-» ^ ( x )  e  V,  where the 
linear space V  is the corresponding target space. Analytically, i.e., componentwise
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we use the symbols '$A(xtl) as field-theoretic counterparts of ql (t) (“fields” on 
the one-dimensional time axis). Let L  be some linear operator on H  and /  some 
element of H.  Homogeneous linear equations may be symbolically written as

M  = 0 (1)

and their linear non-homogeneous (affine, strictly speaking) counterparts have the 
form,

L *  = f  (2)
where /  is physically interpreted either as a source or an external excitation term. 
In realistic applications which are of interest for us L  is a differential operator of 
at most second order (in mechanics and classical field theory). In any case it is so 
in fundamental theories. In various branches of applied physics integral operators 
and higher-order differential operators are also used (e.g., fourth-order differential 
equations in shell theory). If L  is a differential operator with constant coefficients, 
the homogeneous problem is in principle “rigorously solvable” in terms of Fourier 
transforms. In certain problems with variable coefficients also something may be 
done, e.g., with the use of Frobenius power series method or other means based 
on the function series expansions. Non-homogeneous equations are also treatable 
with the use of Green functions and variation-of-constants methods. Even if it is 
impossible to find a rigorous solution, approximate techniques like Galerkin and 
Ritz methods are in linear problems incomparably more efficient than in nonlinear 
ones. In weakly (perturbatively) nonlinear models the equations (1) and (2) are 
replaced respectively by

M  +  N(e,  \P) =  0 (3)
I T  -  N{s.  T) /  (4)

where N(e,  •) are nonlinear operators in H  depending in a sufficiently smooth way 
on the real parameter e and vanishing when e vanishes

N (  0 ,T ) =  0. (5)

Therefore, for 5 0 the problem becomes linear. Roughly speaking, the magni
tude of e controls the degree of nonlinearity. It is convenient to assume N(-,  T) to 
be analytic at e =  0 and expand it into power series,

QG

iV(£,T ) =  5 > fciVfc(T). (6)
k= i

Obviously, in realistic and effective models N(e,  T) is a low-order polynomial of 
e, i.e., Nk =  0 for k > m,  where m  is some fixed threshold. Very often, but 
obviously not always, N(e,  'P) =  e N o ß ) ,  i.e., N  is linear in e. In fundamental 
theories based on at most second order differential equations the quantities N k ß ) ,
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and therefore the total N(e,  \P) as well, are built in a pointwise algebraic way on 
$  and its at most second order derivatives,

(jVfcOP)) (x) = Mk (tf (*), d * { x ) , & * { x ) )  . (7)

The perturbative procedure consists in assuming that $  is in the form of power 
series of e

QG

$  =  E  (8)
n = 0

and substituting it into (3) or (4). The quantities are independent of e. If N  is 
non-polynomial in e, i.e., m  =  oo (non-efficient, non-physical model), then one 
still can Taylor-expand the N k-terms about $o- After substituting (8) into (3) or (4) 
one obtains on the left-hand side of these equations the infinite power series with 
respect to e. To satisfy the resulting equation identically with respect to e, one 
must put the e-independent term to zero (respectively to /  for non-homogeneous 
case) and also all coefficients at en, n > 0, must vanish. In this way one obtains 
the infinite hierarchy of equations for coefficients \Pn. It implies that $o is a solu
tion of the background linear system (1) or (2). And this solution is assumed to be 
“known.” For \Pn, n > 1, one obtains non-homogeneous equations with “source” 
(“excitation”) terms built of the “earlier” \Pfc-s, k < n. “Solving” this hierarchy 
and using the “known” solutions \Pq of the background linear system one obtains 
“in principle” the total \P. Obviously, one can achieve this just only “in principle.” 
And even if we manage to calculate all coefficients explicitly, it turns out that, 
as a rule, the resulting series (8) is merely an asymptotic one, usually divergent. 
Usually one terminates on determining the first order correction, i.e., 'Pi. It is in
tuitively seen that this procedure is rather artificial, it is a kind of the “necessary 
evil.” In a sense, it looks like a miracle that in quantum field theory the union 
of perturbative expansion and renormalization procedure is so effective at least in 
electrodynamics and electro-weak interactions. It fails however in strong inter
actions, where e is “large.” In fundamental field theories one derives differential 
equations from the variational principle. Lagrangian densities C q of linear mod
els are built in a local quadratic way of the pair ('P, 5 $ ). In specially-relativistic 
Poincare-invariant theories expressed in terms of pseudo-Euclidean coordinates the 
coefficients of the underlying quadratic forms are constant (^-independent). Ob
viously, they are non-constant in curvilinear coordinates. In Lagrangian theories it 
is more convenient to introduce the perturbative nonlinearity by deforming C q in 
the following way

QG

£ ( $ ,ö $ )  =  ^ e n£ n( $ ,ö $ )
n = Q

where Cn are polynomials of (*P, 5 $ )  of the degree higher than 2 if n > 0.

(9)
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Remarks:

i) The meaning of e in (9) differs from that in (6), however, to avoid the crowd 
of symbols we do not change the notation.

ii) When n increases, the polynomial degree of Cn increases as well, however it 
need not and in general does not equal n +  2, with the obvious exception of

Writing down the Euler-Lagrange equations for (9) we again obtain (3), (4) or (6) 
and “solve” it with respect to \Pn appearing in the Ansatz (8) (keeping in mind 
that the meaning of e is now different). Let us remind that the quantum field- 
theoreticians use the terminology according to which the linear models, i.e., ones 
based on Cq, are non-interacting. From this point of view any discrete or contin
uous system of harmonic oscillators is “non-interacting,” i.e., “free.” Obviously, 
literally this is not true, because the elements of such a system are mutually cou
pled by some “elastic strings.” But the resulting system is trivial because in prin
ciple “already solved.” Indeed, the normal modes coordinates turn it into a system 
of fictitious non-interacting one-dimensional harmonic oscillators. Anharmonic 
terms may qualitatively perturb this structure, generating mutual (and irreducible) 
interaction between modes. That is why for quantum field-theoreticians the linear 
background Cq is free and genuine interactions are introduced by the terms Cn, 
n > 0. Let us quote a few commonly known examples:

• Quartically-corrected charged Klein-Gordon field

where g denotes the space-time metric tensor, and \g\ is an abbreviation for 
the absolute value of its determinant in given coordinates

Here it is x  that plays the role of the perturbation parameter e. This toy 
model, especially with the real (neutral) field 'P, was an important “theo
retical laboratory” for studying quantum fields phenomena. Let us mention 
incidentally that in general the quartic Lagrangians, i.e., cubically-nonlinear 
discrete or continuous oscillator systems play an essential role in mechanics 
and field theory as they provide the simplest models of physically reason
able (e.g., reflections-invariant) nonlinearities. The most elementary model 
is that of one-dimensional cubically anharmonic oscillator in mechanics

n =  0.

( 10)

öl := |det [gflv\ ( 11)

(12)
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where m, k, p are constants. Some toy models of deterministic chaos 
may be formulated in such terms. When speaking about Lagrangians alge
braically quartic in the field $  (thus cubically-nonlinear) one should men
tion about Higgs models and their profound role in explaining the mass gen
eration of gauge fields via the spontaneous symmetry breaking mechanism. 
This is however something physically else than (10), namely the constant 
m 2 is then negative and cannot be directly interpreted as the squared mass 
of the linear background.

• The coupled system: Maxwell and charged Klein-Gordon field,

£  =  g ßI/D fj ¥ D v 'ÿ \J\g\ — m 2¥ $ ^ |  -  \g>ia c f ßF,lvF aß^ \  (13)

with the usual meaning of symbols

-  i e A ^ ,  Fflv =  dflA v ~  dvA fl (14)

where e is the coupling constant (elementary charge in natural units), and 
A fl are the components of the covector potential of the electromagnetic 
field. In this minimal-coupling scheme e plays the role of the perturbation 
parameter e and the nonlinear correction is a second degree polynomials of 
e. The terms linear and quadratic in e are respectively given by

i e sT A p  ( ¥ & ¥  -  * & ¥ )  y/\0\ = g ^ A p f o  = A flf  (15)

e V % ^ ¥ $ v^ .  (16)

They are respectively cubic and quartic in the field system (\P, A). 
Remark: j fl on the right-hand side of (15) denotes the Noether U (l) current 
of *P, not the local U(l)-gauge-invariant electric four-current 3?̂  appearing 
in Maxwell equations as the source term as the latter is obviously given by

%  =  ie (¥ D m$  -  (D M¥ )  <p) \[\g\-

•  The coupled system: Maxwell and charged Dirac field,

£  = l- e » A ( § 7 a D ^  -  (d ,3 )  1AV)  \f\g\ ~  m ^ J \ g \

where the meaning of symbols is as follows: ë l A are the components of 
some g-orthonormal anholonomic reference frame,

g(eA,eB) = g,lve>lAevB =  VAB (18)

g is the standard Minkowski metric on R4

[»Mb ] =  d ia g ( l,  - 1 ,  - 1 ,  - 1 ) (19)
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eAfl are components of the dual co-tetrad of eA ,

(eA, eB^ = eAflê lB =  SAB, efJlAeAv =  g = rjABeA ® eB

and thus,

=  r]ABeAßeBv, gl^ = ê lAeVBÏ}AB (20)

g,iagav = gACgcB = Sa b

1 A1 B +  7 S7A = 2r]AB I4 (21)
_  -pAL rs — L sri ■pA _ s~i Az1 rs — i-irz i‘ s (22)

where G is sesquilinear hermitian of neutral signature, e.g.,

[Gfs] =  diag(l, 1, —1, —1). (23)

Besides
§  r =  ¥ SGSr (24)

is Dirac conjugate bispinor,

KLf, (7 ^ 7 L -  1 L1 K) (25)

is the bispinor connection and

r  KLfi =  —r  LKfi = r)KMTM Lfi (26)

is the SO(l, 3)-ruled connection with

r %  =  eaATABßeBß +  eaAeAß4l. (27)

Automatically Taßfl is a Riemann-Cartan connection, i.e.,

^[r]5 =  0 (28)

and
+  UpV  -  ie A ,#  =  -  ie A ^  (29)

is the covariant differentiation of bispinors. This is a crowd of symbols, 
obscure when “telegraphically” quoted. However it simplifies remarkable 
in flat Minkowskian space when pseudo-Cartesian coordinates and their as
sociated tetrad fields are used

e A fi =  $ A ß, =  Vßv, r “ ^  =  0, T A Bfi  =  o. (30)

The general message is that the nonlinear correction term is linear in the
perturbation parameter e (coupling constant), Lagrangian is cubic in the 
field system ( ¥  A) and the field equations are quadratically nonlinear. The 
nonlinear correction term is given by

7 ß $  = (31)
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The models quoted above are well established in physics, experimentally con
firmed and theoretically efficient. The coupling constants controlling the nonlinear 
interaction terms appeared there as a low-degree polynomial. There are also other 
practically useful and theoretically important models like, e.g., sin-Gordon, sinh- 
Gordon, etc. Nevertheless, usually they have the same general structure: additively 
combined linear backgrounds of well-known properties and nonlinear corrections 
describing “true interactions.” In spite of their practical utility, the above and other 
perturbative models (linear background plus nonlinear corrections) look rather ar
tificial from the point of view of perspectives and philosophical foundations. One 
has the feeling that there is something provisional, non-essential in this kind of non
linearity. It seems much more natural to search essentially nonlinear models with
out any distinguished linear background, when the perturbative procedures fail and 
the only reliable way is a kind of constructive analysis based on some geometric 
ideas, first of all on symmetry principles. This is just what we mean by essential 
nonlinearity. Obviously, the very necessity of nonlinear studies follows directly 
from experimental data and even from very rough phenomenological models. But 
there are also very deep, fundamental arguments. As mentioned, without nonlin
earity there is no thermalization of energy in multiparticle and continuous systems 
like fields and radiation, no equipartition, etc. Let us also mention the classical 
problem of the relationship between field equations and equations of motion of 
field sources, e.g., the paradox of non-interacting charges in Maxwell electrody
namics. And even in models without canonical linear background in fundamental 
dynamical laws, the idea of linearization is non-reliable and often dangerous or 
tricky. For example, it happens that luckily some particular solution or a set of par
ticular solutions may be found. Then it is a natural temptation to linearize the prob
lem in a neighbourhood of the particular known solution. Namely, the unknown 
function is represented as a sum of this background solution and some “small” cor
rection, substituted to the original field equation, and then only the terms linear in 
this correction are retained while all higher-order ones are dropped out. One ob
tains a linear equation for the perturbation terms. This is the so-called Jacobi field. 
In variational theories it is ruled by some effective variational principle based on 
the quadratic Lagrangian. However, as a rule, in strongly nonlinear field prob
lems it is only solutions with large and geometrically well-established symmetry 
groups that (sometimes) may be found in an explicit analytical form. And the point 
is that in generally covariant field theories (infinite-dimensional symmetry group 
of the Lagrangian is essential here) solutions invariant under some Lie subgroups 
of transformations (do not confuse the symmetry group of the Lagrangian with 
its subgroup preserving a given solution) are often pathological and always sus
pected from the linearization point of view. The set of a priori admitted fields is 
an infinite-dimensional manifold. The particular structure details usually depend 
of some physical demands because there is even no natural, canonical topology
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in infinite dimension. One expects the general solution of field equations to be a 
differential submanifold in the mentioned variety of all “kinematically allowed” 
fields. It turns out however that some critical points-solutions may exist at which 
there is no well-defined tangent space and the submanifold structure breaks down 
there. And it is just solution invariant under Lie subgroups where it may happen. 
As linearization procedure consists just in moving infinitesimally along tangent 
vectors, it fails in such situations. Such “linearly non-perturbable” solutions are 
various “cusps” in the variety of fields given by the general solution. The assumed 
symmetry demands to facilitate remarkably the finding of some particular solu
tions, however, these “beautiful” solutions are just exceptional and have a good 
chance to be singular points and therefore this is some kind of qualitatively deep 
non-stability. So, there are two shortcoming of simplifying things on the basis 
of linearity idea -  the linear background of dynamics seems artificial and the lin
earization procedure is non-reliable. One has the feeling that some link exists 
between essential nonlinearity and high-symmetry demand. There is an important 
message from the soliton theory where good, non-accidental nonlinearities lead to 
an infinite number of constants of motion, therefore, to “large” groups of hidden 
symmetries. But also conversely: roughly speaking, linearity implies that the ac
tion functional is quadratic in the system ( $ ,5 $ )  or, more precisely, it becomes so 
if an appropriate coordinatization of the target space is chosen (usually one deals 
with vector bundles and a “proper” coordinatization is self-evident). Therefore, the 
Lagrangian is a local quadratic function of ( $ ,5 $ ) ,  possibly with a:'1-dependent 
coefficients. But this means that the dynamical model pre-assumes some fixed 
bilinear (or sesquilinear) scalar product as an absolute object. And to be able to 
construct a quadratic Lagrangian as a one-component geometric object (scalar W - 
density of weight one) one must have at disposal a fixed metric tensor in space
time. These pre-established quadratic forms (external with respect to the physical 
degrees of freedom of a given model) restrict the groups of dynamical symmetries 
to certain isometries (quadratic forms must be preserved), i.e., to relatively “small” 
groups. To avoid this restriction one should somehow avoid absolute objects re
placing them by something dependent on degrees of freedom, i.e., on the fields $  
themselves. But quadratic forms on a linear space V  become non-quadratic ex
pressions when their constant coefficients are replaced by some functions on V. 
The action functional becomes non-quadratic in ( $ ,5 $ )  and leads to nonlinear 
field equations for \P. The natural demand of higher dynamical symmetry implies 
nonlinearity, in this case an essential one because geometrically motivated. Sum
marizing: “essential nonlinearity” implies large symmetry groups, and conversely, 
large symmetry group often just implies essential nonlinearity. To finish this philo
sophical introduction let us mention a profound master pattern. This is the General 
Relativity. When no matter is included, just only the pure gravitational field, it is 
the dynamical metric tensor g that is used as the above field quantity \P. It gives
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rise to the well-known sequence of concomitants, namely, the Levi-Civita affine 
connection, its curvature tensor, Ricci tensor and finally the scalar curvature R[g). 
Variational principle of General Relativity is based on the Hilbert Lagrangian

£ h [g] = £ h  (g,dg, d2g) =  -  j ^ R [ a } (32) 

possibly modified additively by the cosmological term,

jCcosmb] =  AV/ ^  (33)

with A denoting the cosmological constant. As is well known, £ h  depends on 
the second derivatives d2g in an artificial way, namely, linearly with coefficients 
depending on g alone, not on dg. The corresponding term may be represented 
as a total divergence and removed from the Lagrangian. The main term of the 
Lagrangian is proportional to

g^ g^g^d f .gaßd^g js -  (34)
Because of this the leading second order differential term of field equations is given 
by

g,lvdfldvgaß. (35)
This is obviously a non-tensorial expression, nevertheless, obviously, field equa
tions are tensorial

Gflv =  R flv -  -Rg, lv =  0 (36)

where R flv are components of the Ricci tensor built of g. In the absence of matter 
this is obviously identical with

R ilv =  0. (37)
There are no fixed absolute objects, tensor indices at g, dg are contracted just with 
the use of g itself, not something external with respect to g. Because of this the ac
tion functional is non-quadratic in (g, dg) and the resulting field equations are non
linear in g, although they are quasi-linear. And because of the absence of absolute 
objects, variational principle and field equations are invariant under the infinite
dimensional group Diff(M) of all diffeomorphisms of the space-time manifold 
M.  The elements of this huge group are labelled by four arbitrary (up to smooth
ness demands) functions on the space-time manifold (coordinates of image-points 
as functions of argument-points). There is no well-defined linear background in 
the dynamics, nonlinearity is essential and non-perturbative. And really the very 
strong Diff(M)-invariance demand (general covariance) just implies the essential 
nonlinearity, moreover, up to cosmological term, it determines uniquely the cor
responding nonlinear model. Let us also remind some models from the realm of 
mechanics of systems with a finite number of degrees of freedom. In our earlier 
papers [18-21,25-29] we have discussed the so-called affinely-rigid bodies, i.e., 
roughly speaking, homogeneously deformable gyroscopes. The idea appeared also



58 Jan Jerzy Stawianowski

earlier in mechanics of structured continua, in molecular dynamics and the theory 
of molecular crystals, and also in certain astrophysical problems. Application of 
the model in macroscopic elasticity and in dynamics of inclusions and suspensions 
are also possible. Practically in all papers devoted to this topic the kinetic energy 
was quadratic with constant coefficients in generalized velocities. Therefore, the 
corresponding contribution to equations of motion was linear. Such a structure of 
kinetic energy implied that the corresponding symmetry groups in physical and 
material spaces were various subgroups of the corresponding orthogonal or rather 
isometry groups. This is qualitatively incompatible with the affine group which 
rules geometry of degrees of freedom and kinematics. The kinetic term of the cor
responding Hamiltonian system with the affine or linear group as a configuration 
space is neither left- or right-invariant. Therefore, it does not belong to the category 
of invariant systems on groups as developed by Arnold, Hermann and others. And 
because of this theoretical and analytical profits from the group structure of de
grees of freedom are rather limited in comparison with system with left or right (or 
both) invariant geodetic backgrounds. If we demand the kinetic energy form (i.e., 
the configuration metric tensor underlying it) to be affinely-invariant, the coeffi
cients of the corresponding quadratic form become essentially non-constant, i.e., 
non-reducible to constants by any change of generalized coordinates, and there
fore the configuration metric has a non-vanishing curvature tensor. Because of 
this one obtains an essential non-perturbative nonlinearity even before introducing 
any potential (interaction) term. In such a model with affinely-invariant geodetic 
background three very interesting new novelties appear:

i) the dynamics of the volume-preserving elastic vibrations may be encoded 
in a purely geodetic model, without any potential term. This encoding of 
the dynamics in the configuration space metric tensor resembles the Jacobi- 
Maupertuis variational principle. The resulting models of elastic vibrations 
shows a strong non-perturbative nonlinearity. In a sense this is an over-simpli
fied finite-dimensional counterpart of the nonlinearity which appears in the 
General Relativity as a consequence of postulating the total diffeomorphism 
group as a physical symmetry. It is also a finite-dimensional model of the 
nonlinearity appearing in hydrodynamic equations of the ideal incompressible 
fluid (where the essential nonlinearity of Euler equations has to do with the 
huge group of the volume-preserving diffeomorphism of the material space).

ii) to some extent the above mentioned models may be explicitly solved in terms 
of the exponential matrix expressions. Just here the dynamical affine invari
ance enables one to use the standard analytical techniques applicable to sys
tems on Lie groups.

iii) it turns out that the resulting equations shed some light on the dynamics of 
one-dimensional multiparticle chains.
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Roughly speaking, passing over to the “large” affine group of symmetries is a 
finite-dimensional model of passing over to the invariance under the group of all 
diffeomorphisms. In both cases the remarkable extension of the symmetry group 
leads to essential, non-perturbative nonlinearities where the perturbative methods 
fail.

2. Bom-Infeld-type Nonlinearities

It is our opinion that on the fundamental level the deepest and most promising 
nonlinearities are those based on some extension, generalization of the model of 
nonlinear electrodynamics formulated long ago by Bom and Infeld [3-5,14,16,30]. 
It is interesting that such models are also useful in quite practical, almost engineer
ing problems of shells and membranes. Incidentally, such intuitive, near to the 
common sense “engineering” concepts inspired also some models in fundamental 
physics like strings, p-branes, etc. At the same time, they turn out to be of interest 
for biophysics and biomechanics, e.g., in the dynamics of biological cells, ery
throcytes, leucocytes, etc. Quite an interdisciplinary model covering fundamental 
fields of theoretical physics and children-toys-like soap bubbles. From some point 
of view the modified Bom-Infeld nonlinearity is just optimal and most natural 
within the framework of theories based on seriously treated variational principles. 
And as yet one believes commonly that fundamental field and mechanical theories 
are structurally variational. This is particularly evident when one starts from quan
tum models as primary ones, because the path integration formalism just assumes 
Lagrangian as something fundamental. It turns out that there is a natural link be
tween generalized Born Infeld nonlinearities and symmetry principles, including 
also hidden symmetry groups. We mentioned above that nonlinearity of Einstein 
equations and the structure of Hilbert variational principle are particularly inter
esting as a model of essential, non-perturbative nonlinearity in fundamental field 
theories. Nevertheless, even this theory is based on some kind of a compromise 
with the linearity idea. Namely, it is quasi-linear, i.e., the second order (highest- 
order) derivatives of field quantities enter the field equations (Einstein equations) in 
a linear way with coefficients built algebraically of the fields themselves. In more 
details, in the Einstein theory the coefficients at d ^ d p g ^  are rational functions of 
^-quantities, simply ga>3 are the components of the reciprocal contravariant metric. 
Unlike linearity, the quasi-linear structure is compatible with the demand of general 
covariance (invariance under the huge group of all smooth diffeomorphisms). The 
early ideas of nonlinear electrodynamics were motivated by two problems faced 
with in Maxwell theory:

i) infinite electromagnetic mass of the electron (of point sources in general)
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ii) a bad relationship between field equations and equations of motion of its 
sources (their independence in a sense).

Infinite electromagnetic self-energy is not immediately seen as a direct conse
quence of linearity. It follows from the simple formula based on classical elec
trostatics and Coulomb potential. But in the Maxwell theory Coulomb potential is 
not assumed from outside as it describes a stationary spherically symmetric solu
tion of Maxwell equations without extended sources. When physically reasonable 
“boundary conditions” at infinity are chosen, this solution is unique up to the mul
tiplicative integration constant, just interpreted as a charge value of the hypothetic 
point source placed at the centre of spherical symmetry. Within the specially- 
relativistic framework this is the only solution (up to the mentioned conditions at 
infinity) invariant under the “small subgroup” of the Poincare group preserving a 
fixed time-like straight line (the world line of a freely moving “charge”). And the 
corresponding “infinite self-energy” appears when the Minkowski-orthogonal pro
jection of the energy momentum tensor onto this world line is integrated over any 
three-dimensional spatial hyperplane orthogonal to the world line (synchronous 
hypersurface). Taking two world lines and superposing the corresponding solu
tions we obtain a new solution defined in the open region of space-time remaining 
after removing the world lines. This is a consequence of linearity of free Maxwell 
equations. And so it is for any finite or discrete system of time-like straight lines. 
But this solution represents a system of freely moving, non-interacting charged 
particles, thus something non-physical. Nonlinearity would prevent this kind of 
solutions. It is just the case in the General Relativity where, moreover, equations 
of the gravitational field imply in a sense equations of motion of particles. This 
was an additional motivation for the search of nonlinear electrodynamics. And 
after Dirac some hypothetic nonlinearity introduced by non-electromagnetic cohe
sive forces was expected to prevent the self-acceleration catastrophe in classical 
electrodynamics. The idea of the Born Infeld electrodynamics was simple: to 
avoid divergences one must prevent the electromagnetic field to be “too strong,” 
i.e., introduce some saturation mechanism. Some hint is suggested by relativistic 
mechanics. Namely, if some reference frame is fixed and we use the correspond
ing 3 +  1 decomposition of Minkowski space-time, Lagrangian of the relativistic 
material point has the form

v2
L = Tkin -  U(t , r, v) = - me2 y 1 -  -  U(t , r, v) (38)

with the standard meaning of symbols, i.e., (t, r, v) denote respectively the time 
variable, radius vector and velocity vector, v2 is the squared absolute value of v 
and the label “kin” refers to the “kinetic” term of L  and obviously, c is the velocity 
of the light. The crucial point is that Tkm is non-differentiable at v = c and
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this luminal situation is a repulsive singularity. If the resulting Euler-Lagrange 
equations are written in the Newton form

dw -
m —  =  F(t, r, v) (39)

it is seen that the repulsive singularity of F  at v =  c prevents the material point to 
exceed the velocity of light, independently of the shape of generalized potential U. 
Similarly, the electromagnetic Bom-Infeld Lagrangian is given by

(40)

where 6 is a constant and S, P  are basic invariants of the electromagnetic field, 
respectively the scalar and pseudoscalar one

5  =  - \ f )ivF ^  = \ g fiagvßFfll/Faß = \ ( ê 2 -  B 2) (41)

P  = ~ \ p tiVP lv = ~  ̂ = P lvaßF,lvFaß = Ë  ■ B  (42)

with the obvious meaning of symbols. Here e is the totally skew-symmetric Ricci 
symbol with the convention

e0123 =  1 (43)
and therefore,

£0123  =  -1 - (44)
The Lagrangian (40) was the final model. The primary idea was

C = b2 ( l - ^ l  + ^ ( B i - Ë i ) j  \f\g\. (45)

The model was originally formulated on the basis of the flat Minkowski an space
time in pseudo-Cartesian coordinates where

\gtiA =  diag(l, -1 ,  -1 ,  -1 ) ,  y/\g\ = 1.

The final version (40) may be written down as follows

£  =  b2sj\g\ -  \J\àet [bgtliy +  Ftlv\\. (46)

Obviously, the first term, independent on the electromagnetic field (and constant in 
specially-relativistic theory formulated in pseudo-Cartesian coordinates) does not 
influence field equations and is chosen in such a way that both the Lagrangian and 
field energy (to be more precise, energy-momentum tensor) vanish when the field 
F  vanishes. The parameter b in (40) and (46) fixes the saturation strength of the 
field. Saturation is attained when the expression under the square-root sign van
ishes, i.e., when the tensor bg + F  has a singular coefficients matrix. Just like in the 
relativistic point mechanics one is faced with “repulsive singularity” and the field
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cannot attain some finite critical strength. Therefore, the field remains bounded in a 
neighbourhood of point sources. Namely, for the vacuum field (no external contin
uously distributed charges) the stationary spherically symmetric solution has, in an 
appropriate gauge, the vanishing magnetic vector potential and the scalar potential 
is given by

e drc

\ / 4  +  2:4
(47)

where e is an integration constant interpretable physically as the value of the elec
tric charge placed at r  =  0. The non-essential additive constant is chosen as zero 
so that ip vanishes at infinity. If r/rg is large, (47) asymptotically approaches the 
Coulomb formula

<p(r) = -  (48)r
following from the Maxwell theory. Obviously, the electric field is given by

E ( f )
e r

(49)

with f  denoting the radius vector laid off from the symmetry centre. It is seen 
that Ë,  although bounded around the origin, is non-definite there, just as expected, 
because the scalar potential as a function on the three-dimensional space suffers 
non-differentiability at f  =  0. The reason is that the derivative of (47) as a func
tion of one real variable r  has a non-vanishing limit when r  —» +0. The electric 
displacement (induction) vector D  and the energy density w =  Too are infinite at 
r  =  0, nevertheless the total energy, i.e., the electromagnetic mass multiplied by 
c2, is finite

£ =  wd%r < oo (50)

(the improper integral is convergent). For our purposes the most important message 
of (46) is its structure as the square root of the determinant of matrix components 
of some twice covariant tensor built in a simple way from the field (its first deriva
tives, to be more precise). This will be just the main hint for developing our models. 
However, before doing this we remind briefly some important features of histori
cal Horn Infeld models. These features make the Horn Infeld paradigm promising 
and reliable at least just as a guiding idea. Various models of nonlinear electrody
namics were formulated, let us mention, e.g., one due to G. Mie. However, the 
Born-Infeld theory is characterized by the astonishing and amazing coincidence 
of a lot of very desirable things [3-5,16]. Let us quote them as an evidence of 
exceptionality of this theory and its uniqueness in a sense:

• Born-Infeld model is gauge-invariant, unlike, e.g., Mie theory
• field energy is positively definite
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• point charges have a finite electromagnetic mass (finite electrostatic self
energy)

• the energy current four-vector is not space-like
• there is no birefringence in vacuum
• there exist plane wave solutions imposed onto the background of the con

stant electromagnetic field. In particular, solitary waves do exist.

What concerns the peculiarity and exceptionality of (40) and (46) however, let 
us mention that (45) is equivalent to the final Horn In fold model in all problems 
concerning stationary spherically symmetric solutions. And in both models the 
quantity rg may be interpreted in a sense as the classical radius of the electron. Af
ter some period of focusing the attention of physicists the Bom-Infeld model lost 
for some time its attractive power, in spite of the advantages listed above. Activity 
of physicists concentrated mainly on quantum problems, in particular on quantum 
electrodynamics. Efficacy of renormalization techniques in QED reduced remark
ably the motivation for fighting with infinities in classical electromagnetism, the 
more so that even the purely classical Dirac renormalization turned out to be rel
atively successful. One expected the evidence of nonlinearity in the spectra of 
superheavy atoms, but nothing has been found. And there are some intrinsic the
oretical difficulties in the Bom-Infeld model. The Lagrangian is non-polynomial, 
the nonlinearity is perfectly essential and non-perturbative, and, therefore, no easy 
success in quantization might be expected. Although the paradox of freely moving 
non-interacting point charges does not occur in Bom-Infeld theory, there was no 
remarkable success in deriving equations of motion from the field equations. In 
this respect the analogy with the General Relativity is rather misleading. The point 
is that it is not a mere nonlinearity that is responsible for the generally-relativistic 
problem of motion. This is the very special kind of nonlinearity implied by the 
general covariance, i.e., invariance of the Hilbert Lagrangian with respect to the 
group Diff(M) of all diffeomorphisms of the space-time manifold M.  Elements 
of this group are labelled by n arbitrary functions of n variables, where, obviously, 
n =  dim M  (physically n =  4). According to the Noether theory this implies n 
identities. Roughly speaking, they have to do with the four-momentum balance 
and in the case of purely mechanical sources they are essentially equivalent to the 
equations of motion. These equations need not be separately formulated and in 
variational principle there is no need to subject world lines to the variation pro
cedure. Some difficulty is faced with when the “external” charged matter is to be 
taken into account. In a sense the primary motivation was monistic: the pure field 
was to be “materia prima” and charged particles were expected to appear as “non
singular singularities” of the field, thus some byproducts. Their “non-singularity” 
was due to the regularizing effect of nonlinearity. In the monistic treatment based 
on linear Maxwell electrodynamics they were true singularities. The Bom-Infeld
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nonlinearity results in an effective smearing out the point charge. The divergence 
of the displacement (induction) field D is not proportional to the Dirac della func
tion. This mechanism replaces nonlinearity of the dualistic field-mailer model like, 
e.g., (13). But nowadays it seems almost sure lhal il is impossible lo eliminate ei
ther field or mailer degrees of freedom. One should have both of them. But then 
the question arises whal would be the Born-Infeld version of (13). The simplest 
hypothesis would seem lo be

£  = b2^ W \ -  yj\bg + F\ +  c g ^ D ^ D ^  -  m 2¥ *  ^  (51)

with the obvious meaning of symbols. But such a model is very complicated be
cause the Lagrangian mixes two kinds of irrational expressions. Therefore, the 
resulting field equations are irrational in field variables and their derivatives. Al
though the “monistic” Born-Infeld Lagrangian (46) is also irrational in fields and 
their derivatives, the corresponding Euler-Lagrange equations are rational, or, lo 
be more precise, become so after multiplying by \/\bg +  F |. All physical quanti
ties like, e.g., the energy-momentum tensor factorize into the products of rational 
expressions and the standard irrational term. Unlike this, the essentially irrational 
structure of (51) implies the model lo be rather artificial, computationally very 
non-effeclive and because of this probably non-physical. Because of all these ob
jections the Born-Infeld model for many years almost disappeared from the fun
damental research. Il was used, perhaps heuristically, in certain quasi-classical 
considerations concerning the light-light scattering represented in quantum field 
theory as shown in Fig. 1. Such a process with virtual electron and positron lines

Figure 1
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may be calculated on the basis of the quantized version of the classical model based 
on the Lagrangian (17). The underlying classical model is perturbatively nonlin
ear in (A, $ )  and dualistic. It turns out that the above process may be relatively 
adequately described by the classical light self-interaction based on the monistic 
Born-Infeld model. From the point of view of quantum electrodynamics it is so as 
if the virtual electron-positron loop shrank to the point quartic vertex replacing the 
quadruple of cubic vortices. This is something like replacing the Salam-Glashow- 
Weinberg model of electroweak processes by the old Fermi model (again quartic 
instead of cubic). This is just eliminating some degrees of freedom and reobtaining 
their contribution by introducing stronger nonlinearity in the effective Lagrangian 
of remaining degrees of freedom. Predictions concerning the light-light scattering 
based on the classical Born-Infeld model are relatively acceptable.
But this was phenomenology done by hand which is a kind of Ersatz-Model. As 
an attempt of fundamental theory the Born-Infeld model for many years became a 
kind of historical curiosity. Recently the things are changed due to the advent of 
new theories like strings, p-branes and other field-theoretical ideas. And besides, 
the Born-Infeld paradigm was modified and extended so as to be based on deeper 
and more convincing geometric ideas. And in any case the exceptional features of 
the model, its uniqueness in a sense, seemed to indicate that it was based on good 
intuitions, in spite of certain shortcomings to be overcome. In the meantime a new 
interesting observation was done. Namely, the sourceless Maxwell electrodynam
ics is invariant under duality transformation which replaces (Ë , B)  by (Ë , —Ë).  
In four-dimensional notation this is just the Hodge transformation [3-5], F  ^  *F. 
Later on it was shown that as a matter of fact this is nothing but the very special 
case of the SO(2, R) group of internal symmetries,

(Ë, B)  I—> (Ë B ' )  =  (Ë  cos a  +  B  sin a, —B  sin a  +  Ë  cos a) . (52)

In four-dimensional notation

F  I—» F'  = cos a F  + sin a  * F. (53)

Obviously, the usual duality corresponds to a  =  tt/ 2. In non-Maxwellian (thus 
nonlinear) models this suggestive SO(2, R)-invariance in general does not hold any 
longer. And again the Born-Infeld model is exceptional. It shares this symmetry 
with the Maxwell theory. In a sense, the Maxwell and Born-Infeld models are 
two opposite poles somehow distinguished by mysterious physical reasons. Let us 
summarize the final message of the above heuristic analysis:

i) Physically promising and natural nonlinearities are non-perturbative, i.e., do 
not possess a well-defined linear background

ii) Interesting nonlinearities have to do with “large” symmetry groups. In field 
theories it is natural to expect the general covariance and rich group of internal 
symmetries (the ones acting in target spaces)
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iii) There is something deep and fundamental in the square-root structure of the 
Horn Infeld Lagrangians.

The above mentioned square-root structure is due to the very fundamental fact that 
the status of the Lagrangian £  as a geometric object on M  is that of the scalar W - 
density of weight one. If M  is orientable it is equivalent to the differential n-form 
L locally given by

L ( $ ,5 $ )  =  £  (\P, 9\P) drc1 A . . .  A dxn . (54)

The standard way to construct a scalar W -density of weight one is to take some 
twice covariant tensor £ fiV (\P, 5 $ ) (referred to as the Lagrange tensor) and define

£ ( $ ,ö $ )  =  y[\E\ = ^ |d e t [£ M1,($ ,ö $ ) ] | .  (55)

Indeed det {£flv) is the scalar density of weight two. Taking it absolute value one 
obtains the W -density of weight two. Taking a square root of it one obtains the 
required W -density of weight one. An alternative way is to take some differential 
one-form A ('P, 5 $ )  with values in some n-dimensional linear space V,  i.e., ana
lytically, when some basis in V  is fixed, an n-tuple of usual (R-valued) one-forms 
A"4 ('P, 5 $ ) locally represented as

\ A {V,dV)  = \ Afl{ V , d V ) d x fl, A  = l , . . . ,n . (56)

Then £  may be defined as

£ ( $ ,0 $ )  =  det [a^ J  . (57)

The corresponding n-form is given by

L ($ , 0 $ ) =  A1^ ,  0 $ ) A . . .  A An($ , 0 $ ) =  £ ($ ,  0 $ ) drc1 A . . .  A dxn. (58)

In specially-relativistic theories, or more generally in field theories in pseudo- 
Riemannian manifolds (M, g) with the metric tensor gflv fixed once for all as an 
absolute object, Lagrangians are factorized in the usual way

£ ( * , d ^ g , d g )  = \ (* ,d*- ,g ,dg)y / \g \  (59)

where A is a scalar function which sometimes is incorrectly referred to as a La
grangian (in specially-relativistic field theories £  and A numerically coincide when 
pseudo-Cartesian coordinates are used). The argument dg refers to the fact that the 
covariant derivatives of $ -fields may occur in £ , and the coefficients of the Levi- 
Civita connection depend (linearly) on dg. Perhaps it would be more concise to 
write

£[^-,g\ = (60)
The same structure is used in generally-relativistic theories when the gravitation 
is taken into account, i.e., g becomes dynamic on the equal footing with other 
fields. Simply, the “matter” Lagrangian is linearly combined with the Hilbert
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Lagrangian (32) for g and possibly with the cosmological term (33). The well- 
established viable models have just this multiplicative structure (60) with the scalar 
factor A built as simply as possible of its arguments (\P, 9 $ ). And the simplest 
models with the non-dynamical (absolute) metric g are just linear ones, when the 
scalar A(\P, 9 $ ) is quadratic in (\P, 9 $ ). To obtain realistic models with genuine 
interactions one introduces some perturbative non-quadratic terms in A just as de
scribed previously and these terms lead to non-linear corrections in field equations. 
When g is dynamical, i.e., relativistic gravitation is switched on, A(\P, 9 $ ; g, dg) 
contains the Hilbert term Ah (<?, dg) proportional to the scalar curvature R[g], and 
perhaps also the constant cosmological term. Ah is quadratic in the first deriva
tives dg with coefficients depending algebraically (more precisely, rationally) on 
g itself. The second derivatives d2g enter Ah in an artificial way, linearly with 
coefficients given by rational functions of g. They may be gathered into a total di
vergence term and do not influence the field equations. These equations are second 
order quasi-linear in g while the coefficients at d2g are rational functions of g. This 
is an essential non-perturbative nonlinearity following from the demand of general 
covariance (Diff(M)-invariance). In spite of that it is being well established by 
experimental data, the above factorization scheme (59), (60) looks somehow struc
turally artificial, even in spite of the essential nonlinearity of the Einstein-Hilbert 
gravitational sector. The metric g seems to be overestimated. Among all physical 
fields it is distinguished by its being a focus and at the same time a (claimly) nec
essary condition of the essential nonlinearity and general covariance. Moreover, it 
is also distinguished by its seemingly universal role in constructing scalar densities 
of weight one. The canonical prescription (55) for the scalar density of weight one 
together with the mentioned interesting features of the Bom-Infeld model suggest 
us, however, some alternative methodology: It is perhaps neither the Lagrangian 
C nor its scalar factor A that is to be “simple,” but rather the Lagrange tensor 
C.flv, i.e., the “square-root” of £.  And for Cflv “simple” is presumably a low-order 
polynomial tensor function of (\P, 9 $ ), probably, at most quadratic in 9 $ . This 
is certainly the simplest model within the class of ones written as in (55). So, we 
have two alternative “poles of simplicity”

i) The traditional models (59) with A being a second or first order polynomial of 
derivatives. In particular, when A is a second order polynomial of its dynam
ical arguments, the theory is linear and may be used, e.g., as a linear back
ground of perturbatively nonlinear models. And more generally, if A is qua
dratic in derivatives with coefficients algebraically built of the fields, the re
sulting theory is quasi-linear but in general its nonlinearity is non-perturbative.

ii) The modified Bom-Infeld models (55) with the Lagrange tensor £ flv being 
polynomial of at most second degree in derivatives 9 $ . Such models are al
ways essentially nonlinear and do not need any correction terms. Their physi
cal nonlinearity is geometrically unified with the very idea of Lagrangians as
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weight one W -densities. Roughly speaking, they are essentially nonlinear but 
at the same time structurally as similar to linear models as possible. Inciden
tally, let us remind in this connection that Maxwell and Born-Infeld models 
of electromagnetism are the only (exceptional) ones which are invariant under 
the extended duality (52), (53).

Obviously, the above models i) may be formally expressed like (55), and con
versely, ii) admits the representation (59). But the “improper” representations are 
completely artificial and obscure. If ii) is expressed in terms of (59), then A is not 
a polynomial of fields and their derivatives If i) is represented in the form (55), 
then Cflv is not a polynomial either. For example, for the gravitational Hilbert 
Lagrangian we obtain the following disaster

Lnpv = \R\2/ngßV = \j\R\g,iv (61)

in the academically general dimension n and in the physical one n =  4. In this 
way the distinction between the mentioned two “poles of simplicity” is obvious. 
Remark: More precisely, the Hilbert Lagrangian Cu is proportional to

sign J?^/|det [£H/̂ ]|- (62)

This is an additional example of the distinction between models i) and ii) above. 
There is a very interesting and delicate point concerning the charge-free Born
Infeld electrodynamics. Namely, one could try to think about simplifying (46) by 
removing the metric tensor completely and putting

£  = -  y^det [Fflv\ |. (63)

And indeed such a conjecture was formulated, although some strange features of 
the “model” are seen from the very beginning. Namely, the repulsive differential 
singularity occurs when de t[F^] =  0, i.e., when Ë  ■ B  = 0. So, it does not 
lead to the saturation of the field strength, but prevents the orthogonality of the 
electric vector E  and the magnetic pseudovector B.  This would be completely 
exotic, but there is something else completely unacceptable in (63) as a physical 
model. Namely, the resulting Euler-Lagrange equations are nothing else but the 
trivial identity 0 =  0 and do not impose any restrictions on the field F. The reason 
is that (63) may be represented as a total divergence

^/|det [Faß] \ = ( ^ A f lF , l v |det [Fajg] |)  (64)

where, obviously, n =  dim M  (physically, n =  4) and F  denotes the contravariant 
inverse of F

ipßxp CßA A Kl/ u l/' (65)
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Obviously, this “pathological” structure cannot be accidental. The point is that 
the “Lagrangian” (63) does not contain any absolute (or controlling) geometric 
objects, therefore, it is invariant under Diff(M) (generally-covariant) and so are the 
resulting “field equations.” Diff(M) is “parameterized” by n arbitrary functions of 
n variables (physically, n =  4), and therefore, among field quantities there are n 
purely gauge variables, which, roughly speaking, may be given any a priori given 
form by an appropriate choice of coordinates. But in electrodynamics there are 
just n field variables A fl, so from the point of view of Diff(M) they are all gauge 
variables in the “model” (63). Therefore, the theory is either trivial (all fields are 
solutions) or empty, intrinsically inconsistent (there are no solutions at all). In the 
case of (63) the first situation occurs. There is a natural temptation to construct 
the Bom-Infeld versions of other field theories. It turns out that because of certain 
geometric reasons electromagnetism is exceptional in that that it admits £ flv being 
first order polynomial of derivatives dflA v. For the real scalar field the only natural 
possibility is the second order £ fllf given by

=  bgflv +  dflA>dv^ .  (66)

The corresponding Lagrangian by analogy to (46) has the form

£  =  b2%J\g\ -  s j |det [£flv] |.

This is the “Born-Infeld’ization” of the linear d’Alembert model

(67)

(68)

= 0. (69)
It is perhaps surprising that in spite of the quadratic dependence of (66) on deriva
tives the corresponding stationary isotropic solutions in Minkowski space coincide 
with (47), namely,

/'(I +  x 4
with the same meaning of symbols. Let us remind that there are problems in op
tics (when polarization phenomena are non-essential), which are in a satisfactory 
way treatable within the framework of the scalar theory of light (68), (69). There
fore, the compatibility of (47) and (70) really confirms that (66) is the Bom-Infeld 
counterpart of (68). Incidentally, it is geometrically impossible to invent anything 
else. And in fact, the model (66), (67) was successfully used in certain problems of 
nonlinear optics. Once successfully appearing, expressions quadratic in derivatives 
may seem acceptable and sometimes just unavoidable terms of the Lagrange ten
sor £ flv. When discussing this idea one is faced with some interesting, not solved, 
even not yet touched, questions. The first of them concerns the matter-free elec
tromagnetism, just the domain of the original model. It is exceptional in admitting
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an affine dependence of Cpv on the field derivatives daAß (via Faß). The qua
dratic terms are not necessary, but are they admissible or not? The most natural 
hypothesis would be

= agßV +  ßFflv +  'yg^FftxFvx +  ög*pgXa Fx\FpfTgfll/ (71)

with a, ß,  7, S being real constants. The structure of the last two terms is not exotic 
as the symmetric energy-momentum tensor of the Maxwell electrodynamics is just 
their linear combination. The question: is (71) a viable model? It is evident that 
for weak fields (71) has correct Maxwell asymptotics as (46). It is interesting 
what are stationary isotropic solutions when they are bounded or not, and is their 
energy finite or not? As yet nobody tried to answer such questions. It is also 
unknown which canonical properties of the Bom-Inf eld model are lost by (71) and 
to which extent they are lost. Obviously, it would be rather too speculative to think 
about higher-order polynomial dependence of Cpv on Faß, although formally it is 
possible. Let us quote, e.g., the terms like

g , ^ ( F p) \ ,  Tr (P>) gflv

where p is natural number, F  is the mixed tensor

F aß := g n F , j

and F p is its p-th power. Analogy with linear, quasi-linear and linearly “back
grounded” models i) suggests us to stop at quadratic terms. There is no regulative 
idea, rather one is lost in jungle when going higher. And the qualitative essential 
nonlinearity is attained already at the stage of second order polynomials. The hy
pothetic model (71) has to do with the idea of Bom-Infeld Lagrangians for the 
gauge fields [3-5], Let G be a Lie group underlying some gauge field, g is its Lie 
algebra and A  is the gauge potential, i.e., g-valued differential one-form on M.  
The field strength will be denoted by F  which is represented by a g-valued differ
ential two-form on M.  Analytically, when some bases in g and coordinates in M  
are fixed, one uses the symbols A Kfl, F K pv, where

F V  =  dpAKv -  dvA Kp +  gCKRSA RpA s v (72)

g is the coupling constant and C K Rs  are the structure constants of g with respect 
to the fixed basis (geometrically G is a tensor in g, once contravariant and twice 
covariant-skew-symmetric). Let h denote the Killing tensor on g, analytically

hKL = C Rs k C s r l . (73)
If G is simple, then the natural counterpart of (71) is

F,lv =  agflv +  'yhRSF RllxF s 1/XgKX +  ShRSF R kXF s  PagKpgXa gßV (74)

with the same as previously provisos concerning the higher than second polynomial 
terms. There is no counterpart of the linear in F  ^-controlled term in (71). Such
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term would contradict the gauge invariance because in simple Lie algebras there 
are no Ad-invariant directions. If g is semi-simple, thus splits into a direct sum of 
N  simple ideals

0 =  ®£=i0(p) (75)
then A, F  are represented by N -tuples of gp-valued differential forms A ;p). F(p), 
there are N  coupling constants 0(p), N  systems of structure constants Cp and N  
Killing tensors hp in simple ideals 0(p). Then the second and third terms in (74) 
split into sums of N  terms with the corresponding coefficients 7(pj, 0(py  If g is a 
direct sum of the one-dimensional centre g ^  ~  R and the complementary semi
simple Lie algebra g, then one can introduce into (74) an additional term analogous 
to the linear /3-term in (71), namely,

where F(0), A(0) are the “components” of F  and A  in 0(O) C g, thus g(0j-valued 
(R-valued) differential forms. The gauge group of electroweak interactions U (l) x 
SU(2) has just this structure, thus, as expected, the traditional term linear in F  
may appear in Cflv. Finally, it turns out that Lagrange tensors quadratic in deriva
tives of the field variables may reconcile the Bom-Infeld electromagnetism with 
the “external” charged matter and to avoid the artificial and certainly non-useful 
model (51). First of all let us notice that the Bom-Infeld electrodynamics with 
massive photons, i.e., “Bom-Infeld’ization” of the Proca theory would be based 
on the Lagrange tensor

=  bgflv +  Fflv -  x A flA v (76)

i.e., on the Lagrangian

£  =  b2sj\g\ -  y^det [bgpv +  Ffll/ +  h 2A pA v}\. (77)

The constant x  here is proportional to the “photon mass” as seen from the weak 
field expansion of (77) around the “vacuum” A = 0 and one obtains then the usual 
Proca Lagrangian. The corresponding “scalar Bom-Infeld-Proca” electrodynam
ics, i.e., the massive version of (66), (67) is given by

=  bgpv +  d f ^ d ^  -  ^ 2^ 2g,lv (78)

£  =  b2y ^ g \ -  y/|det [£pi,]|. (79)

Its weak field expansion is just the Klein-Gordon Lagrangian

£  =  ( ^ g ßVdf̂ d ^  -  J\g\ .  (80)

Let us now consider the massive and complex scalar field, i.e., the quasi-classical 
description of the coherent quantum charged matter. Its quadratic Lagrangian is
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given by

£  =  ( g ^ d ^ W d ^  -  m 2¥ $ )  sf\g\ (81)

and reversing the above transition from (78), (79) to (80) we obtain the following 
“Bom-Infeld’ization” of (81)

£  = b2 +  d.^dv'® -  m 2'P % fM/ (82)

i.e.,
C,1V =  bgflv +  -  m 2'P % /w. (83)

The parameter m  plays the role of mass and in the limit of weak fields the essen
tially nonlinear model (83) asymptotically approaches that based on (81). Let us 
observe that £ flv is complex, nevertheless hermitian

£ fll/ —£ I/fi (84)

and, therefore, its determinant is real. Another possibility is to postulate 

=  bgflv +  d{fß d v)^  -  m 2'P % /w 

=  Re (bgflv +  d ^ d v^  -  m 2^ ^ g flv\  .
(85)

So, (83) and (85) are two alternative “Bom-Infeld’ization” of the linear Klein- 
Gordon model for the charged matter field. Unifying this expression with (46) we 
obtain the simplest Born-Infeld model of the mutually interacting charged scalar 
field (matter) and the electromagnetic field

£,iv = bgflv +  Fflv +  -  m 2'P % M1, (86)

with given by (14). Just as previously, we can use also another form, the real 
one

£ Slv =  bgflv +  Fflv +  D q̂ D ^  -  m 2^ ^ g flv. (87)

In the limit of weak fields this reduces asymptotically to

£  = ~ \ g ,iagvßFtl„FaßyÇ \  +  g ^ D ^ D ^ s f t g l  -  m 2¥ $  J\g~\. (88)

In analogy to (10) one can also introduce into (88) the quartic correction term 
—h  sf\g\ and the Born-Infeld form (86) is then corrected by

- x ( * v ) 29fU,. (89)

The field equations are now rational in fields and their derivatives, so there is 
no longer conflict between the Born Infeld electromagnetism and extra extended 
charges. Obviously, £ flv might be corrected by introducing into £ flv additional
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terms quadratic in F,  however we do not quote the corresponding explicit formula. 
It is obvious that the Lagrangian

with Cf!V given by (86) is compatible with the Horn In fold paradigm and unifies in 
a smooth way the electromagnetic field with external charged matter so as to result 
in rational field equations, which are gauge invariant under the local U(l)-group.

3. A General Covariance

We have stressed two particular mechanisms of the essential and geometrically- 
implied nonlinearity in field theory: the general covariance and the generalized 
Born-Infeld structure based on geometry of scalar densities. There is no automatic 
link between them and besides some conceptual gap between the General Relativ
ity and the traditional Born-Infeld model is obvious. However, some interesting 
relationship does exist. Before going into details let us express a few remarks con
cerning the general covariance. There is a popular and incorrect view that there is 
no general covariance without the Hilbert-Einstein metric channel. Nevertheless, 
there are also other fields which admit Diff(M)-invariant Lagrangians. And it turns 
out that these Lagrangians have generalized Born-Infeld structure and are free of 
the artificial universal splitting (59). As mentioned before, in an //-dimensional 
manifold M  only fields with N  > n components may admit generally-covariant 
Lagrangians free of controlling absolute quantities. Because of this (63) was bad. 
Similarly, the (n-component) contravariant vector density of weight one A 11 is not 
viable as an autonomous field although it admits a Diff(M)-invariant prescription 
for the scalar density of weight one built of the first derivatives. Indeed, it is a 
divergence

and nothing else does exist just because of the component number n. Histori
cally the twice covariant symmetric nonsingular tensor (and automatically its con
travariant inverse) was the first known object viable in this sense (cf. the Hilbert 
Lagrangian (32), (33)). This is an irreducible tensorial object. Obviously, the gen
eral twice covariant tensor (without defined symmetry properties) would be also 
good. These objects have respectively n(n  +  l) /2  and n2 independent compo
nents, much more than necessary to admit Diff(M) -invariant Lagrangians. Quite 
a natural question arises as to the existence of generally covariant Lagrangians for 
mixed second order tensors. The question is perhaps a little academic because as 
yet the mixed tensors did not find any applications as fundamental physical fields. 
Nevertheless it is an interesting question because of the geometric meaning of once 
contravariant and once covariant tensors. If X  is such a field, then for any p £ M

(90)

£  = (91)
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the tensor X p is a linear mapping of the tangent space TPM  into itself

X p e  TpM  ® T * M  ~  L(TpM).

They produce vectors from vectors (dually their conjugates produce covectors from 
covectors) just like twice covariant tensors produce covectors from vectors and 
twice contravariant tensors produce vectors from covectors. One can hope that 
second order mixed tensor fields may find applications in certain studies concern
ing gauge models of gravitation and other alternative treatments. Compare in this 
respect certain toy models of internal degrees of freedom discussed in our papers 
concerning affinely-rigid bodies [18-21,23,25-27]. A priori it might seem not very 
likely that the mixed second order tensor X  admits a Diff(M)-invariant variational 
principle, although having n2 > n components it satisfies the necessary condition. 
Nevertheless such a Lagrangian (does not matter if physically promising) really 
exists and its construction is based on the Nijenhuis torsion. Let us remind that 
the Nijenhuis torsion S (X ,  F ) assigned to the pair of mixed second order tensor 
fields X ,  Y  is defined as a once contravariant and twice covariant-antisymmetric 
tensor field given by [10]

S (X ,  Y)>\x := X pvdpY>\  +  Y pvdpX > \  -  X pxdpY>\ -  Y pxdpX>\
(92)

-  X % d „ Y pa -  Y % d „ X pa +  X ppdxY pv +  Y ppdxX pv.

It is obvious that S (X ,  F ) is skew-symmetric in the lower-case indices

S { X , Y Y vX = - S { X , Y Y Xv (93)

and symmetric in the tensors X ,  Y

S ( X , Y ) = S ( Y , X )  (94)

do not confuse these two symmetries. The formula (94) involves only the tensors 
X ,  Y  and their partial derivatives without using anything like affine connection, 
etc., and so, without appealing to some general theory it is quite not obvious that 
it really defines the tensor field. It is so however as the non-tensorial terms in the 
transformation rule mutually cancel. Let us remind also the coordinate-free defi
nition. Being a -type tensor, S (X ,  F ) may be identified with some prescription 
producing vectors from pairs of vectors. If A, B  are two vector fields, then the 
evaluation of S (X ,  F )  on the pair A, B,  locally

S (X ,Y ) ■ (A ,B ) =  S(X , Y ) ,lvXA vB x ̂  (95)

is given by

S(X ,  F ) • (A, B)  =  I A',4. YB)  +  [YA, XB]  +  A 'F|,4. B] +  FA'|,4. B]

-  X 1,4. YB] -  A '|F,4. B] -  Y  [A, XB]  -  F|A',4. B]
(96)
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where [A, B } denotes the Lie bracket, and locally

[A, B}11 = A xd \ B ß -  B xd \ A ß (97)

in which X Y  is the algebraic composition of linear mappings in the tangent spaces

( X Y ' f v = X > \ Y av. (98)

In (96) again the problem with derivatives appears, i.e., if S (X ,  F ) is to be a 
tensor, this expression must depend algebraically on A, B,  but it is seen that the 
first order derivatives of A, B  enter this formula. However, they mutually cancel 
and this is a fact that is not immediately seen unless one works within the frame
work of a wider theory. In particular, putting Y  = X  we can construct the quantity

S ( X )  := S ( X , X )  (99)

i.e., some 7 :J -type tensor field built algebraically of X  and its derivatives d X .  One 
can also consider the objects like

S k'l(X)  := S  (X k, X 1) = S Lk(X)  (100)

where k, l are naturals and the powers X k are meant as pointwise compositions 
of linear mappings (98). When X  is non-singular, the integer negative powers k, l 
may be also used. Obviously, the zeroth order power is simply

X ° =  Id, ( x ° y \  = S'% (101)

but of course
S 0,1(X)  = S 1,0(X)  = 0. (102)

Let us summarize: we have at our disposal a family of third order tensors S k,l(X)  , 
k > 0 ,1 > 0, built algebraically of X  and its first derivatives dX .  Their depen
dence on derivatives is linear. The simplest and most natural of them is S ( X )  := 
S (X ,X ) =  S 1,1(X). It is linear not only in d X  but also in X  itself. Being 
free of any absolute (controlling) object, the assignment X  ^  S ( X )  is generally 
covariant, i.e., for any diffeomorphism <p : M  —> M  the following holds

S ( V, X )  = V, S ( X )  (103)

i.e., the assignment is «^-transparent. Therefore, S ( X )  may be interpreted as in
variantly defined derivative of X  (just like the exterior derivative is an invariant 
differentiation of differential forms). Having first order derivatives one can wonder 
what would be generally-covariant Lagrangians built of X .  The only possibilities 
are based on the Born Infeld scheme (55). The simplest and most natural among 
them are those with the Lagrange tensor C{X, d X )  which is quadratic in S (X ) ,  
thus also quadratic in derivatives d X

£(X,  d X) flv = A S xtlKS \ x  +  B S xllXS \ „  +  C S ^ aS V (104)
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where A, B,  C  are real constants. As a matter of fact, the constant C  at the third, 
skew-symmetric term may be also purely imaginary, but then £  is hermitian and 
its determinant is real. The first two terms are symmetric, in particular, the first of 
them has the suggestive Killing structure

_ S~1 _ QA QK/ii/ — l/\• (105)

The tensor Gflv, or more generally the symmetric part of (104), certainly with 
the non-vanishing A  (which, e.g., by convention is put equal to one in appropri
ate units) might be perhaps physically interpreted as a kind of metric tensor. £ pv 
is homogeneous-quadratic in derivatives, thus the corresponding Lagrangian £  is 
homogeneous of degree n in derivatives. This resembles the Finsler structures cor
responding to the homogeneous variational formalism in mechanics (then n =  1, 
M  = R) [31]. Expression (104) is the simplest class of generally-covariant La- 
grangians for mixed second order tensors. One can try to complicate it by replacing 
the constants A, B,  C  by some scalars built of (X , dX) .  The simplest of them are 
built of X  alone in a purely algebraic way and may be expressed as functions of n 
basic invariants Ip,p  =  1, . . . ,  n

i p = T t ( x n (106)

Obviously, according to the Cayley-Hamilton theorem, for any k < 0 and any 
k > n, Tr may be expressed through (106). One can also use other systems 
of basic invariants, e.g., the coefficients ck(X)  of the eigenvalue equation

n

det (X -  AI) =  ckXk = 0 (107)
k=0

except of the standard coefficient at An, cn =  (—l)n. Another possibility are just 
the eigenvalues \ i ( X ) ,  taken, e.g., in an increasing order which is well-defined in 
the generic case of the simple spectrum. There are also invariants built of deriva
tives of X ,  i.e., of the tensor S (X ) .  For example, if G in (105) is nondegenerate, 
then using its contravariant inverse G>lv (GfiaGav =  5>lv) we can construct scalars 
built according to the “Wietzenböck scheme” [13,15,24] as follows

Ji = GfiaGvßGx- S % xS aßl  (108)

■h = G ^ S afiaS ßvß. (109)

Obviously, J2 will be trivial

j 3 =  G,lv S a flßS ß va = G,lvGpv = G,lvGvp = = n. (110)

Similarly one can construct more 5-factors and G-factors. But it is easy to see that 
ah of them are homogeneous of degree zero in 5, i.e., homogeneous of degree zero
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in dX.  The reason is that G is not “external,” but just built of S. All such scalars 
and their functions /  are generally covariant, i.e.,

f[<p*X] = <p*f[X\=f[X]°<p-1 (111)

for any <p e  DifF(M). One can show that any scalar first-jet function f [ X} =  
f {X,  dX)  built of X  in a generally-covariant way satisfy (111), depends on dX,  
thus also on the torsion S(X),  homogeneously of degree zero, i.e., for any A > 0

f i x ,  XdX) =  f { X,  A S(X)}  =  \ f ( X ,  dX)  =  A f { X ,  S(X)} .  (112)

This is one of the consequences of the Noether identity following from the general 
covariance. Let us observe that when we put coefficients A, B,  C  to be functions 
of the basic algebraic invariants (106), then they play the role of something like the 
potential energy in Maupertui variational principle of analytical mechanics [1,2], 
This example, although as yet academic, is very interesting in showing how the 
demand of general covariance just implies the Bom-Infeld structure. It is also in
teresting in that it is free of any introduced by hand geometry in the target space, 
i.e., in the bundle T f M  of mixed tensors over M.  In the last respect it is simi
lar to the General Relativity based on the bundle T§M,  or isomorphically TqM ,  
when one restricts (as necessary in the General Relativity) to non-degenerate ten
sors. However, the standard formulation of the General Relativity has nothing to 
do with the Bom-Infeld scheme. Nevertheless, the two paradigms seem to con
verge if one tries to use the formulation based on the bundle of affine connections 
over M.  Namely, many years ago Schrôdinger [17] tried to develop the theory 
where the gravitational field was to be described by the symmetric affine connec
tion Yxflv =  YxVfl without any use of the metric tensor. Namely, T gives rise to 
the curvature tensor Rxflvl and then to the Ricci tensor Rflv =  R xfl\ v. Unlike the 
curvature scalar, these are intrinsic purely affine objects which “do not know” the 
metric tensor. In particular, R[T}flI/ is a (symmetric) twice covariant tensor built 
in an affine (first order polynomial) way of derivatives dflYxv>i. Because of this 
Schrôdinger suggested the model (55) with the Lagrange tensor

£{T,dT), lv ~  R[T),1V. (113)

This was expected to be an alternative model of the gravitation. As shown recently 
[9] there is an interpretation based on the standard concepts of the General Rela
tivity. The metric tensor appears there as a quantity built of canonical momenta 
conjugated to T and automatically satisfies Einstein equations in virtue of Euler- 
Lagrange equations. But of course both theories may differ on the quantization 
level. It is well known that formulations of the same model based on different La- 
grangians may lead to non-equivalent quantum theories. Incidentally, it is quite not 
clear what would result from the attempts of analyzing (113) in terms of momenta 
conjugate to X flv. There is another open question: why not to try something like
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the Palatini scheme with a priori independent field variables gflv, Yxflv (metric and 
affine connections) and postulate something like, e.g.,

£(g; T, dY)flv = agflv +  ßR(T,  dT)flI/. (114)

And if so, why not to use the term with the scalar curvature, thus

£(g; T, dT)flI/ = agflv +  ßR(T,  dY)flv +  7R(g; T, dY)gflv. (115)

This does not violate the paradigm of the first order variational principles because 
now g, T are a priori independent dynamical variables

R(g;T,dT) = g ^  R{I \dT) , lv. (116)

Obviously, usual Lagrangians for the electromagnetic, Proca gauge and scalar 
(both real and complex) fields may be subject to the “Bom-Infeld’ization” pro
cedure (55) according to the prescriptions (46) or perhaps (71) -  (electromag
netism), (74) -  (gauge), (76) -  (Proca), (66), (78), (83) -  (scalars). Their mutually- 
interacting versions are given by expressions like (86), (87), (88) and similar ones. 
The suggested procedure of inserting all the fields into one Lagrange tensor £ fiV 
depending in at most second order polynomial way on derivatives leads to reason
ably looking and in principle analytically treatable models. For example, as men
tioned, one reconciliates then the Bom-Infeld scheme with external continuously 
distributed electric charges. The resulting field equations do not involve strange 
irrational terms as those appearing in a seemingly natural scheme (51). Neverthe
less, these generalized Bom-Infeld models are not generally covariant and contain 
a controlling (absolute) quantity, namely the metric tensor g. Schrödinger dy
namics (113) of the affine connection is generally covariant and has evidently the 
Born-Infeld structure. Nevertheless, its status is not clear. One obtains something 
relatively exotic when coupling Y xtlv with other physical fields and trying to in
terpret the Ricci tensor R flv as a kind of metric. When interpreting it according 
to Kijowski [9], where the metric tensor appears as a byproduct of canonical mo
menta conjugated to Y xflv, one recovers in principle the Einstein theory with its 
quasi-linear, although non-perturbatively nonlinear structure. The very hypothetic 
models (114) and (115) with their status of gflv, Y xtlv as a priori independent dy
namical variables (“Palatini-like” schemes) are generally-covariant and retain the 
usual concept of metric, nevertheless, it is completely unclear whether they may be 
physically interpretable. The model (104) with its further modifications is as yet 
rather academic, nevertheless, it unifies the general covariance and the Bom-Infeld 
structure in a very natural way, they both are simply implied by the very geometry 
of degrees of freedom (just as the Einstein theory with a possible cosmological 
terms is simply implied by geometry of metrical degrees of freedom gflv). The nat
ural question arises as to the possibility of reconciliation of the scalar Bom-Infeld



Geometrically Implied Nonlinearities in Mechanics and Field Theory 79

models, starting from the simplest one (66), (67) with the paradigm of general co
variance. The question is interesting and non-academic because as we saw there 
are some quite physical applications of (66), (67) in nonlinear scalar optics (for ex
ample, when discussing the interaction of laser beams with the matter) and in other 
problems of the electrodynamics of continuous media. Various models of scalar 
fields and their multiplets are also essential for the theory of fundamental interac
tions (various cr-models and Higgs sector of gauge theories). Obviously, generally 
covariant models of multiplets of N  real scalar fields (some or all of them may 
be real and imaginary parts of complex scalar fields) exist only if N  > n, i.e., if 
there are more real dependent variables than non-dependent ones (as we always 
stress, although in well-established field theory n =  4, it is more convenient to 
admit formally the general n). Let us discuss this framework in more details. We 
begin with traditional models involving fixed metric tensor gflv. So, let (M , g) be a 
physical (pseudo-)Riemannian space-time, or more generally, some //-dimensional 
manifold M  endowed with the metric tensor g considered as an absolute (control
ling) element of the theory. Besides we are given the target space (W , g), where W  
is a differentiable manifold of the real dimension N  (in a moment it needs not be 
confined by the condition N  > n) endowed with some internal geometry usually 
given by some twice covariant tensor field g on W.  As a rule, this tensor will be 
symmetric or hermitian (in the case of a complex W),  but more general situations 
are also possible, e.g., symplectic target geometry. Having the “arena” (M , g) 
and the “target” (W , rj) we can consider dynamical variables given by mappings 
4> : M  —> W.  If x fl, yA denote respectively local coordinates in M , W ,  the map
pings 4> are analytically represented by the functions yA =  4>A(xfl). The simplest 
possible Lagrangians have the form

Here exceptionally the dependence on x  is carefully inserted for the sake of full 
clarity. Apparently (117) has the “d’Alembert” structure, however this concerns 
only the quadratic dependence on d<p. If W  is a manifold and g is a general tensor 
field, then, as a rule, the algebraic dependence of £  on <p is irreducible and field 
equations are in general nonlinear, although quasi-linear. More realistic are the 
models involving some “potential” term U : W  —> R, then

gABd,,4>Adv(j)Bgflv J \g \  -  U{4>)\[\g\. (118)

As a rule, the possibility of constructing U is based on some additional structures. 
If, e.g., W  is a linear space as it is often in realistic models and g is “flat” in
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the sense of being constant in linear coordinates, one can consider, e.g., multi
component Klein-Gordon models

£  = \-nABd,,(t)Adv(t)Bg,lv^J\g\ -  r̂ - g ABß Aß B ̂ \ ü\ (119)

or more general [/-models

£  =  ^r]ABdß(t)Adv(t)Bgtlvsj\g\ -  U (</>) sj\g\ (120)

with U (4>) given by

U(4>) = f  (Va b 4>A4>B) (121)
and where /  is some real-valued function on R, e.g.,

f ( x ) = -f(x ) =  a (x  ~  A)2 (122)

and so on, that covers the Klein-Gordon models, quartically perturbed Klein-Gor
don models and mass-generating Higgs terms. Obviously, in the above formulas 
4> is real and ^-symmetric (and as a rule positively definite). For multiplets of 
complex fields one must use Hermitian sesquilinear target metrics

9 a b  — 9ba (123)

and then

£  = \>iÄBdi ^ Ad^ B9>lI/M̂ \g\ -  ^-VAB<t>A(t>B (124)
or

u (4>) = f  ( v a b 4>a 4>b )  ■ (125)

Let us observe that (119), (120) and (121) are invariant under isometries (M ,g ) 
(e.g., Poincare group when (M, g) is Minkowskian) and under the group of in
ternal symmetries O(W, g) (^-orthogonal groups). In the complex case (124), 
(125) the internal symmetry group becomes unitary (or perhaps pseudo-unitary) 
one U(W, g). It is clear that the “Bom-Infeld’ization” of the above models is 
given by the Lagrangians

Cflv := agilv +  ßgABdfl(j)Adv(j)B +  ggAB(pA(t)Bgflv (126)

L ilv := agflv +  ßgÄBdß4> dvß  +  ggABß <p gflv (127)

respectively for the real and complex scalar multiplets in which a, ß, 7 are real
constants. It is clear that in the limit of weak fields $  one obtains as an asymp
totics the quadratic expressions (119), (124). If W  is a general manifold endowed 
only with the tensor field g but no additional structure like, e.g., linear space with 
translationally invariant g (more precisely with the constant g e  W* ® W*), then 
it is impossible to introduce any non-arbitrary potential term U, in particular, the
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7 -controlled “mass” term. But the first two terms obviously continue to be well- 
defined, because geometrically dfl4>A are nothing else but the matrix elements of 
tangent mappings

T4>p : TpM  —> Tm  W, Tcf>p G L (:TpM , Tm  w )

and their matrix elements are meant in the sense of local coordinates x fl, yA in 
some neighbourhoods of p G M , <p(p) G W. Therefore, in the “/3-term” we are 
dealing just with the well-defined ^-pull-back of g locally represented as

(4>* ■ v)flv = dfj.4>Adv4>BT)AB (128)
or, in absolute terms

(4>* ■ v)p  ( “ > *0 =  V ( t 4>(p) • “ > T m  ■ v )  0 2 9 )

for any vectors u ,v  G TpM  attached at p.
Remark: In principle, in both (119), (124) and (126), (127) we could used two 
different “g-s,” let us say g and x  which are both twice covariant tensor fields on 
W .  This would mean that the mass term would be based on some “tensor of mass” 
and we would be dealing with some spectrum of masses for various modes (scalar 
invariants of the pair (g, *c)). But such details here are evidently outside our main 
scope. What is essential here is that the above Bom-Infeld models (126), (127) are 
“imperfect” in that the space-time metric tensor gflv is an absolute quantity “taken 
from the sky” and non-subject to the variational procedure, just as it was in the 
traditional Bom-Infeld electrodynamics (46). But now this is no longer necessary. 
Namely, we can simply assume that it is just the pull-back (128) that will play the 
role of the spatio-temporal metric tensor

=  dtl(j)Adv(j)Br]AB. (130)
By its very construction it is symmetric. Obviously, it may be non-degenerate only 
if N  > n. It will be normal-hyperbolic only if g itself is hyperbolic and one 
restricts ourselves to such <j>-s that at the pull-back procedure T<p reproduces the
(-1--------- ) or (----------h) system of signs. One can interpret this procedure in the
following “philosophical” terms: (W, rj) is a proper, ideal “world” endowed with 
the fixed prescribed metric r\. And the “real” world of our experience is just the 
“membrane” 4>(M) c  W  endowed with the restricted metric g\\4>(M). Both the 
“membrane” and its induced metric are dynamical, non-fixed. If W  has no other 
geometry than that given by rj, then practically the only possible Lagrange tensor 

is just g[4>)flv itself
£ [0 W  =  al4>U- ( i3 i )

Geometrically this means that when some region ft c  M is  chosen and bound
ary conditions are fixed, then in W  we consider all possible //-dimensional 
membranes <̂ >(fi) spanned on the fixed (n — 1)-dimensional boundary d(4>(Q)) =



82 Jan Jerzy Stawianowski

4>(dfl). The action of (p over O equals then the (pseudo-)Riemannian ^-volume of 
4>(fl) and the variational principle consists in that this volume

I[4>, O] =  Voln(j)(Q) (132)

has a stationary value in the class of all possible membranes spanned on the fixed 
4>(dfl). If t) was a positively-definite Riemannian metric, the resulting <p(fl) are 
simply the minimal surfaces limited by 4>(dQ) =  d(4>(Q)). Obviously, everything 
is based on the assumption that <p is an injection, and therefore, locally

rank =  n. (133)

Using a toy example one deals with “soap films” arising on the “wire loops” when 
put into a proper soap solvent. From the point of view of M  the prescription 
producing the Lagrange tensor C[<p)fll, from <p is generally-covariant, and the model 
based on the Lagrangian

£[4>] = ^/|det {£[<p)flv\ \ =  \J\àet [g[<p)tlv\\ (134)

is Diff(M)-invariant. It is also invariant under the isometry group Diff(W, rj) c  
DifF(IU), i.e., under transformations of W  preserving the target metric rj. There
fore, the total symmetry group is Diff(M) x Diff(W, rj). If we do not demand the 
internal symmetry Diff(W, rj) or restrict it to some proper subgroup, then the class 
of admissible Lagrangians may be extended by introducing some potential terms, 
e-g-,

£[4>] = K (4>)\J|det [g[4>)flv]I =  \JF (<t>) \det[g[4>}llh,}\ = ^/|det [U(4>)g[4>}llh,}\.
(135)

These are of course various ways of writing the same and the scalar quantities K,  
F, U built algebraically of <p play the role of some potentials, just like in mechan
ical Jacobi-Maupertuis principle. Obviously, formally one could claim that there 
is no essential distinction between (134) and (135) and that everything is just the 
definition of rj. Nevertheless, one can realize situations when rj is somehow phys
ically fixed and K , F, U are extra introduced additional self-interaction models. 
The general covariance in M  is simply the freedom of reparameterization of of 
4>(M) as a “surface” in W. The Lagrangians (134) and (135) are homogeneous of 
degree n in derivatives d<p, just like the one corresponding to (104) for the mixed 
tensor field X .  This is an n-dimensional counterpart of the Finsler geometry and 
homogeneous variational principles in mechanics (where n =  1). If W  is a linear 
space and ^-constant in Cartesian coordinates, rj e  W* ® W*, then again we have 
at disposal the class of scalars built of the rj-norm of <p

f{4>) =  h ( \\4>\\2)  =  h ( t]a b 4>A4>B) ■ (136)
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They may be used as the above “potentials” K , F, U. In this special case one can 
also use another quite natural representation of the Lagrange tensor, namely,

L flv =  ujr)ABdtl<pAdv<pB +  (137)

where uj, x  are scalar functions of ||</>|| and

= ^ d ß \\4>\\2 = r}AB4>Adß4>B. (138)

Obviously, this again might be identified with (134) in which the original g is 
replaced by

VAB ■= ur]AB +  nrjACrjBD( f ’4>° = ujgAB +  >ctpA(pB (139)

the moving of capital indices meant in the sense of g. However, just as previously 
one can reasonably admit situations where both terms have some well-defined 
physical individualities and both uj, h  encode some interaction. One might also 
think about admitting some more general corrections like, e.g.,

Vab  '■= urjAB +  \ A =  vAB><pD■ (140)

However in such models the original O(U, rj) internal symmetry would be broken. 
It is an important and interesting fact that there exists some relationship between 
the generally-covariant minimal surface Lagrangian (134), the usual metric-con
trolled d’Alembert Lagrangian (117) and the Palatini procedure generalizing the 
one from the General Relativity. Namely, let us consider the field system with 
degrees of freedom given by two a priori independent things: the metric tensor 
Gflv in M  and the multiplet of (real, let us assume) scalar fields 4>A on M ,  so our 
field quantity is the pair (G, <p). And now let us consider the dynamical model 
based on the following Lagrangian

C[G, </>] = ^G^dp<l>Adv<l>BriABy/\G\ +  C\J\G\ (141)

with the obvious meaning of s/\G\. Variational procedure is performed with re
spect to both G^  and <j>A just like in the Palatini principle in the General Relativ
ity, so C  is something like the “cosmological constant.” And just like in Palatini 
principle G enters C[G, <p\ in a purely algebraic way, derivatives dKGflv do not oc
cur. It turns out that for n ^  2, in particular for the realistic space-time dimension 
n =  4, the variation with respect to the metric Gfll/ implies that

9 H  2 — 71 2 — 71
G,1V = G,1V = -^-g[4>],iV = -7-j-d,i4>Adv(j)BT]AB (142)

where the upper-case indices refer to the contravariant inverses of Gflv, gflv

G,iaGav = Flv , g ^ g av = 5%. (143)
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In particular, g,lv, G,1V are not meant respectively as

G ^ G vßgaß, g>iagvßGaß (144)

instead, the G-subsystem (142) of the Euler-Lagrange equations implies that

gfiagvßGaß = ^ ^ G ' “'.

Thus, the two things coincide only for two special values of C

(145)

c-( H (146)

and in particular
G =  ±1 (147)

for the physical value of dimension n =  4. Substituting (142) into the «^-subsystem 
of the Euler-Lagrange equations one obtains exactly the Euler-Lagrange equations 
following from (134). For the “pathological” dimension n =  2 the G-subsystem 
of the Euler-Lagrange equations is inconsistent for non-vanishing values of G. So, 
we put G =  0 and then one obtains that

GW =  / f i# W  =  f d ß4>Adv4>Br]AB (148)

where /  is an arbitrary (nowhere vanishing) function, thus the metrics g[<p), G 
are conformal to each other. This resembles the well-known peculiarities of the 
two-dimensional real manifolds, somehow related to the properties of complex 
analytic functions. Substituting (148) to the variational derivatives of (141) with 
respect to <p we nevertheless again obtain the Euler-Lagrange equations follow
ing from (134). The above reasoning seems to suggest that in some cases there 
is no essential physical distinction between quadratic in derivatives Lagrangians 
and their Horn Infeld “mutations.” There are nevertheless some subtle points on 
the quantization level. Namely, classically equivalent Lagrangians may lead to 
non-equivalent quantum theories with numerically different predictions. The dif
ference may be particularly drastic when one uses different configuration spaces, 
even with different numbers of degrees of freedom, just as above, when either <p it
self or the pair (G, 4>) were systems of generalized coordinates. Let us mention that 
the “pathological” model with n = 2 is just interesting in string models, when M  
is R2 or some strip in R2, and Minkowski space (W , rj) is used as a target manifold 
(in “usual” field theories it occurs as a manifold of “independent variables”). The 
configurations <f> are then assumed to be such that the induced metric g[4>) =  cjf ■ r\ 
is (normal-) hyperbolic. Physically this corresponds to the “world tube” of the 
string. It is know that in quantum theory the above models are non-equivalent 
(like the ones investigated by Polyakov). To explain the essence of the relationship 
between traditional Horn Infeld pattern and the general covariance and internal
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symmetry we quote some facts concerning the Euler-Lagrange equations follow
ing from (134). After some calculations it turns out that if W  is a real manifold 
and ï] is a symmetric non-degenerate tensor field on W ,  then the field equations 
may be written in the following concise form

g[4>),lvV [9[0]]/iV[9[0]jv4>a =  0, A  =  1, . . . ,  N  (149)

where V ^ j ]  denotes the covariant differentiation in the sense of the Levi-Civita 
affine connection built of g[<p). This is formally similar to the system of d’Alembert 
equations

Gllvy {G ] ,y {G ] ^ A =  0, A = 1 , . . . , N  (150)

following from the Lagrangian

m  = \ G ilvd ^ Ad A Br]AB ^ \  (151)

with the fixed non-dynamical metric G on M  and (W , rj). Let us observe how
ever that these equations are structurally completely different. Equations (150) 
are linear and mutually independent for different values of A. Unlike this equa
tions (149) form a (strongly) coupled system of essential nonlinear second order 
equations. The reason is that the metric g[4>], the corresponding Levi-Civita con
nection and covariant differentiation depend themselves on the total multiplet <j>. 
The system (149) is not even quasi-linear because the coefficients g{<p),lv at the 
second (thus highest) derivatives dtldv<pA of field variables are not algebraically 
built of 4> itself alone. Instead they are rational functions of <p and its first order 
derivatives d<p. Expression (149) has a geometric concise form. When explicitly 
written in terms of partial derivatives it becomes

g ^ d fldv(t>A +  dv<t>A ( ^ g ^ g aß -  )  dtlgaß =  0 (152)

where for brevity we write g instead of g[<p). In this form the term with highest 
(second) derivatives is explicitly pointed out. Geometrically the equations (149) 
and (152) express the fact that the submanifold 4>(M) c  W  has the vanishing mean 
curvature in the (pseudo-)Riemannian space (W , rj) that we consider the general 
situation N  >  n, not necessarily the hypersurface case n =  N  — 1. Therefore, 
the second curvature form at any p e  4>(M) is a symmetric bilinear mapping JCP 
defined on the tangent space TP4>(M) c  TPW  and taking values in its ^-orthogonal 
complement T^(j)(M) c  TPW

ICP : Tp4>(M) x Tp4>(M) T ^ ( M ) .

Analytically, when 4>(M) is parameterized by coordinates x fl on M ,  and er, r =  
n +  1 , . . . ,  N  is a fixed system of mutually orthonormal and orthogonal to 4>(M)
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vector fields defined on K p is represented by the system of (N  — n) twice
covariant symmetric tensors KJp : T*(j>(M) ® T*(j>(M) with coordinates {]Crp

ICP = KTperp (153)

when p runs over the submanifold 4>(M) , one obtains the system of (N  — n) tensor 
fields K7.  The pull-back by <p identifies JCr with tensor fields

TC = 4>*JCr . (154)

We use also the symbols K.r [<p), K r [<p) to denote explicitly the dependence of K ,  
fC on the injection <j>. Obviously, K r [<p] are built algebraically on <p and its first and 
second order derivatives

K r [4>] = K r (</>, d(j>, ö2</>) . (155)

The tensor fields K r [<p] depend on the choice of basic orthonormal vectors, nev
ertheless they characterize the intrinsic geometric object K[<p). Their system is 
usually referred to as the vector of second quadratic forms of the injection <p. Hav
ing the pairs of twice covariant tensors g[<p), K r [<p) one can construct their systems 
of invariants, according to the general prescription. The system of mean curvatures 
is given by

H r [4>] := g[4>]ßVK r [4>}pv, r = n + l , . . . , N .  (156)
These are the only invariants built linearly of the second quadratic form K[<p). 
Their collection is called the mean curvature vector in It is an
valued field on M  or 4>(M) c  W. Using more geometric terms one can introduce 
the quantity

H[4>\ := H r [4>\er . (157)
It does not depend on the choice of the system of vectors er, r =  n +  1 , . . . ,  N.  
As a geometric object H[4>] is a field defined on 4>(M) (equivalently on M )  which 
assigns to any point p e  4>(M) some vector H[<p)p orthogonal (in the sense of g[<p]) 
to Tp4>(M). It is obvious how to interpret H[4>] as a cross-section of an appropriate 
vector bundle over 4>(M) -  the fibre over p is just the (N  — n)-dimensional linear 
space Tjj~(j)(M) c  TP4>(M). Equations (149) mean exactly that 4>(M) has the 
vanishing mean curvature

H[4>] = 0. (158)
Therefore any solution over some domain O with the fixed boundary conditions 
4>(dQ) =  d(4>(Q)) minimizes, or, to be more precise, “stationarizes” the n-dimen- 
sional surface-volume

J [$ ,n ]  =  J  y/|det [g[^]flv]I d x 1 A . . .  A d x n ( 159)

among the class of all possible maps $  : fl —» W  with the boundary values

*|n  =  4> In- (160)
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If our Lagrangian contains some potential like in (135), this is no longer the case, 
nevertheless it becomes true for the modified metric tensor

gu[4>} :=U(4>)g[4>}. (161)

This is just the idea of the mechanical Jacobi-Maupertuis variational principle 
which encodes the potential in an appropriately modified geodetic model. It is 
clear that analytically (158) is a system of (N  — n) equations on the N -tuple of 
field variables 4>A. This over-determinacy is just due to the general covariance of 
the Lagrangian and the resulting field equations. Among N  fields <ftA there are 
n purely gauge ones corresponding to the n arbitrary functions labelling the ele
ments of the group Diff(M). To obtain an effective system one should eliminate 
them by imposing n purely non-tensorial conditions and then separate the system 
of (N  — n) equations for (N  — n) gauge-free variables labelling the physical de
grees of freedom. It is seen from (152) that the most natural way is to fix such a 
system of coordinates x fl in which the second term does vanish and this is a correct 
procedure because this non-tensorial expression is independent on highest-order 
(second) derivatives. So, one assumes coordinates in which

l ^ gaß _  dfi9aß = a  (l62)

It is seen that due to the scheme of contraction these coordinate conditions resem
ble the transversal Lorentz conditions like GllvdflA v =  0, dflG>lv =  0, and so on, 
known from electrodynamics and the General Relativity. With this type of gauging 
the field equations reduce to

g l ^ r d , ^  =  0, A = 1 , . . . , N .  (163)

These equations are still redundant unless one eliminates from them n quantities 
with the help of the n-th conditions (162). This may be done very easily locally and 
the procedure is also correct globally unless the topology of M  and W  creates some 
obstacles. Namely, one can identify the first n-tuple of fields 4>A with coordinates 
in M

x ,l =  <}91, ß  =  1, . . . ,  n.

It is easily seen that then (162) becomes an identity. The gauge-free fields, i.e., true
degrees of freedom are then represented by the ( N —n)-tuple <pr, r =  n + 1 ,---- N.
and have to satisfy the equations

g[4>Ylvd ,ß v(t)r =  0, r = n +  1, . . . ,  N  (164)

whereas the first n-tuple of (152), (163) is an identity as well. In this way one 
obtains an effective system of (N  — n) second order differential equations for 
(N  — n) field variables 4>r, r = n + 1 , . . . ,  N .  The system (164) is still strongly 
nonlinear and mutually coupled because of the way the quantities <pr, dß4>r enter in
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the pull-back metric gflv. The effective Lagrange tensor for (164) is identical 
with the pull-back metric g[cj))flv with the above coordinate conditions substituted

£■% =  rjßI/ +  gr, ß ß r +  gvß fß r +  grsdfß r d ^ 3 (165)

i.e., if one takes into account the symmetry of g

£■% = +  2 gr(,ßv)4>r +  grsdfß r dv4>3. (166)

Let us remind that the summation over r, s is extended over the “gauge-fixed” 
range r  =  n +  1 , . . . ,  N .  If W  is linear and g is constant, g e  Sym (W * ® W*), 
then one can always chose such a basis in W  that g reduces to the block form and 
grfl =  0 while the term linear in derivatives is then absent in (165) and (166). But 
even then it may happen that the block structure is not always the most convenient 
one and that it is better to admit expressions linear in d<p. Let us now compare (165) 
and (166) with the expressions like (46), (66), (71), (74), (78), (126), (127), etc. It 
is seen that the simplest Born Infeld scalar models are just implied by the demand 
of general covariance and their particular structure is shaped by some assumptions 
concerning internal symmetry (target space transformations). Roughly speaking, 
the traditional Bom-Infeld structure with the external spatio-temporal metric in 
the space-time M  (either absolute or Generally Relativistic one) is a byproduct 
of general covariant of square-root models without such metrics but with higher
dimensional target spaces W. As mentioned before, when the target space (W, g) 
is flat and the block representation is used for g e  W* ® W*, then the effective 
Lagrangian is given by

£ eff =  y^det [gflv +  d ^ d u ^ g r s W  (167)

where the summation convention over r, s is restricted to the range r  =  n +  1, 
. . . ,  N .  Therefore, in the fixed-gauge description the originally internal target met
ric g a b  plays a double role. First, the system {gflv}, n, v  =  1 , . . . ,  n, acts as 
an effective space-time metric, and, second, [grs], r ,s  =  n + 1 , . . .  ,N ,  repre
sents the effective internal geometry of gauge-free state variables. And in this way 
one comes back to the starting point of our Bom-Infeld’ization programme (126), 
(127). The scalar Born-Infeld optics (66), (67) may be interpreted in generally- 
covariant terms as the dynamics of a four-dimensional membrane-minimal hyper
surface living in a five-dimensional target universe (n =  4, N  =  5) with the 
pseudo-Euclidean geometry of the normal-hyperbolic signature

[g,ß = diag(l, - 1 ,  -1 ,  -1 ) ,  »755 = g >  0, g,^ = g5fl = 0.

It is evident that the Euler-Lagrange equations implied by (167) have particular 
solutions given by affine injections

<f =  C rflß  +  C r (168)
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where C rfl, Cr are constants, thus

gtiv =  r)flv +  t]rsCr y.Csv. (169)

If 4>r are to be physical fields, they must satisfy appropriate boundary conditions at 
infinity. If <f> occurs in the Lagrangian only through its derivatives d<p, that means 
that at infinity <p must be asymptotically constant, thus

C rfl =  0, <f =  Cr. (170)

Let us consider small perturbations of the “vacuum” (170)

<f =  C r +  f ,  f  «  0.

Performing the linearization procedure we find that up to higher-order terms f  
satisfy the variational Jacobi equations

i lvdtldvf  =  0, r n — I........iV (171)

i.e., just the usual d’Alembert equations following from the Lagrangian

£  = \ d , J rdvf snrsSj^ \ .  (172)

Let us finish this multiscalar topic with a few examples, some of them with mutu
ally overlapping:

i) n =  1, N  is arbitrary. We put M  =  R, while ( W , rj) is taken to be a (pseudo-) 
Riemannian manifold. The “space-time” is one-dimensional and just plays 
the role of the structureless parameters. Minimal or rather stationary one
dimensional “surfaces” are geodetic curves, e.g., world lines of relativistic 
particles.

ii) n =  1, N  is arbitrary, M  =  R. (just parameters again), (W , rj) is Riemannian 
and we take (135) with F  =  2(E  — V), where E  denotes a fixed energy value 
and V  : W  —> M. is a potential energy function on the configuration space W. 
The corresponding scheme is nothing else but the Jacobi-Maupertuis varia
tional principle in mechanics.

iii) n =  1, N  =  4 and (W , rj) being the Minkowski space. This is the special case 
of i), and

with the obvious meaning of symbols is just the “non-relativistically written” 
Lagrangian of the freely moving relativistic particle. Let us remind that just 
this Lagrangian with its “saturation effect” was one of the motivations for the 
Horn In fold electrodynamics.
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iv) n = 2, N  = 3 with (W, rf) the usual Euclidean space. Here one stucks on 
the effects like soap films, rubber films, and so on, spanned, e.g., on the wire 
loop. Other possibility: “deformed minimal surfaces” described by (135), the 
“potentials” K , F, U representing, e.g., the effect of “wind.”

v) n =  2, N  =  4, M  =  R2 or S 1 x R =  U(l)  x R, and (W, i]) being the 
Minkowski space. If we restrict ourselves to such 4> : M  —> W  so that 4>*r) is 
normal-hyperbolic, the resulting objects a re ’t Hooft-Polyakov strings.

For multiplets of scalars it is necessary to use some absolute geometry in the tar
get space. This may look perhaps disappointing from the point of view of the 
amorphous philosophy. Nevertheless such models are evidently related to realistic 
physical theories via concepts like strings, p-branes, etc. At the same time they 
contain a good deal of geometry like the theory of minimal surfaces. In this re
spect the academic model (104) and the other ones based on it have a completely 
different status. As yet there is no evidence for their practical utility. But there is a 
very interesting convolution of convincing geometric ideas in such models:

i) They are generally covariant in M ,  just like the above scalar multiplet models.
ii) They do not assume any metric or any kind of absolute geometry in the target 

space W  =  T±M  either. This is something completely new in comparison 
with the scalar models. The only used geometry of W  is the intrinsic one, 
namely that of the corresponding fibre bundle over M .  Incidentally, this in
duces us to admit only the cross-sections of T f M  over M  as field configura
tions, not the general injections of M  into W  =  T11M  (nevertheless, there are 
good reasons to check the usefulness of general injections in some hypothetic 
theory of structured continuous media).

iii) When one has at disposal only the i f  M-degrees of freedom, then the general 
covariance exactly implies the Born Infeld-lype dynamics as the only possi
bility. In this respect it is so like in the scalar multiplet models, however now 
there is no extra introduced target space metric.

In spite of the above mentioned doubtful or at least non-clear perspectives of phys
ical applications of the model one can try to speculate about what might seem to be 
expected. Element of the set i f M  are linear mappings of linear spaces TPM  into 
themselves. These are degrees of freedom of affine bodies [18-22,24-27], So, 
if M  is a four-dimensional space-time manifold, one can think about something 
like the relativistic micromorphic continuum which somehow unifies gravitational 
field with the “cosmic substratum.” If M  is the three-dimensional space, one ob
tains something like equilibrium problems for this kind of continua, description of 
internal (residual) stresses, etc. Physically these are rather speculative ideas. But 
even on the purely mathematical level nothing is known about solutions of (104). 
The main and intriguing curiosity of (104) is that it is the simplest scheme where
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the general covariance just implies the Horn In fold type nonlinearity and no in
ternal geometry is to be introduced by hand. With scalar multiplets the first was 
true but the second evidently false. It seems that the second (no necessity of extra 
introduced target metric) may be possible only for fields having some “external” 
spatio-temporal indices. They are usually cross-sections of some vector bundles 
over M  with fibres T PM  over p e l  containing factors like TpM  and T*M.  In 
the model (104) we have

and the fibres are purely M -tensorial. However, as we shall see, there are other 
interesting examples where T PM  is the tensor product of TPM  or T *M  with some 
auxiliary internal space V  geometrically independent of M. Physically interesting 
are models where V  is a real linear space of dimension n =  dim M ,  and T PM  =  
TpM  ® V* or V  ® T*M.  Field components are then labelled respectively as efl a , 
eAp and if det [e>1 a\ #  0, one assumes that

i.e., one deals with the mutually dual fields of frames (tetrads) and co-frames (co
tetrads). Models based on such degrees of freedom are used in mechanics of struc
tured continua, both non-relativistic and relativistic. More precisely, one deals 
then with the continuum of infinitesimal affine bodies, i.e., homogeneously de
formable gyroscopes. Internal degrees of freedom are represented just by “legs” 
ga or “co-legs” eA of the frame or co-frame [24], This is a phenomenological 
mechanical model. On the level of fundamental physics one deals with the so- 
caled tetrad models of the gravitation. There are both similarities and differences 
between models with kinematics based on the bundles LM  and F*M  (or F M )  
with fibres L(TpM )  ~  TpM  ® T*M  and F*M  = L(TpM, V)  ~  V  ® T *M  (or 
FPM  =  TpM  ® V  ~  L(V, TpM)). The fibres in both bundles have dimension 
n 2 and consist of linear mappings from TpM  into (onto) something n-dimensional 
and linear, respectively TpM  and V. In the second case this “something” is fixed 
and independent of V  but we can simply put R” after some choice of basis in 
V. However, in the case of LM  all generally covariant models have automati
cally the Horn Infeld structure. It is perfectly based on the local paradigm and 
there is nothing like the fixed target metric. When we deal with F M  there is 
no direct implication as general covariance Horn Infeld. And indeed in the 
tetrad models of gravitation there exists an infinity of models with Lagrangians 
quadratic in derivatives de. All they, being generally covariant lead to essentially 
nonlinear, nevertheless quasi-linear field equations. And they must assume some 
internal metric in V, r/ e  V* ® V*. And they have the internal symmetry group 
0(V, rf) c  G L(F), the ^-orthogonal subgroup of GL(F). In tetrad models of 
gravitation dim F  =  d im M  =  4 and rj is normal-hyperbolic (Minkowskian).

TpM  = U T pM ) ~  TpM  ®  TpM
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There are also linear conformal models invariant under the Weyl group R+ 0(F , rj) 
preserving rj up to a constant linear factor. However, as shown in [24] there are 
maximally amorphous generally covariant models free of anything like rj and in
variant under GL(F). And just those ones with maximal available symmetries 
(thus maximally amorphous) automatically have the Bom-Infeld structure and the 
resulting field equations are essentially nonlinear and even non quasi-linear.

4. Natural Examples

The above discussion of essentially nonlinear (non-perturbatively nonlinear) field- 
theoretic models showed the existence of some relationship between general co
variance, Bom-Infeld type nonlinearity and “large” groups of internal symmetries. 
It was seen that purely scalar models may be generally covariant only within the 
Born-Infeld scheme and that some target metric or other target structure (hermit- 
ian, symplectic etc.) had to be assumed there as something absolute. The (as 
yet academic) 7 j1 M  =  L(M ) -model is also distinguished by the property that its 
general covariance is intimately connected with the Bom-Infeld nonlinearity, but 
moreover, the theory is completely amorphous. No internal geometry for field val
ues was assumed additionally. And finally, “tetrad” models with fibres V  ® T*M  
(or TpM  ® V*) may be generally covariant (thus essentially nonlinear) without 
having necessarily the Bom-Infeld structure, but then, just as with scalar models, 
the internal metric in V  was necessary. However, the demand of higher GL(F)- 
intemal symmetry again implies the Bom-Infeld structure. The status of bundles 
with fibres V  ® T*M  where the dimension of V  is general (but higher than one) 
is not yet clear in this respect. In any case, the necessity of using in some models 
things like fixed internal geometries, or absolute elements, without a deeper mo
tivation is rather dissatisfying. Thus the natural question arises about the possible 
target spaces with intrinsic geometries somehow motivated by more fundamental 
structures. Let us quote some natural examples, applicable ones.

1) Self-dual linear spaces. These are linear spaces of the form

where U is a linear space and U* is its dual. W  by its very structure is 
endowed with the natural bilinear pairing 9 given by

It is evidently degenerate, however its symmetric and skew-symmetric parts 
are non-singular. Let us denote

W  := U  xU *

Ö ((q i,P i) , (92,7*2)) := (7*1,92)- (174)

V ( ( 9 l , 7 * l ) , ( 92, 7*2) )  : =  (7*1,92) +  ( 7*2 ,9 l )  

r  ( ( 91, 7*1) ,  ( 92, 7*2) )  : =  (7*1 , 92) -  (7*2, 9 l ) .

(175)
(176)



Geometrically Implied Nonlinearities in Mechanics and Field Theory 93

Obviously 20 = rj + T. If U is linear over reals, then the symmetric scalar 
product j] : W  x W  —> M. has the neutral pseudo-Euclidean signature 
(m +, m —), where obviously m  =  dim U. So, if (W, rf) is used as a tar
get space, then images of injections 4> : M  —> W  a priori may have various 
signatures, depending on the dimension of M .  Obviously, T is a symplectic 
form on W. We did not investigate scalar multiplets with the skew-symmetric 
scalar product in the target space. It seems, rather few if anything is known 
about such models mathematically, the more physically. So, <p may be con
sidered as a pair of scalar multiplets

Q : M  > (/. P : = M  ^  U*

4> =  (Q, P). Using dual bases ( . . . ,  ea, ■ ■ •), (• • •, ea , • • •) in U, U* we can 
represent <p as follows

4>=(Qaea,Paea).

Then, analytically

g[4>U = % Q advPa +  9l/QadßPa (177)
7 [4>u ■= (4>*r ) ^  =  dflQ advPa -  dvQadflPa. (178)

Both might be candidates for C[<p)tlv but the second, skew-symmetric one 
is rather exotic. There is a natural monomorphism of the full linear group 
GL((7) into the ^-orthogonal group O(W, rf), namely, for any A  e  GL(U) 
we define Ä  e  O (W, rf) as follows

M m ,p ) ■= [ M ,P °  -4_1) • (179)

À  preserves also the symplectic form T (it is an extended point transforma
tion of ( W , T) being a special kind of canonical transformations). Obviously, 
Ä  preserves also the form 9 and as a matter of fact, these are the most general 
linear transformations preserving 6.

2) Linear spaces of endomorphisms. Again let U be an arbitrary linear space 
and take W  := L (U) ~  U ® U*, the space of linear mappings of U into 
itself. There is a natural class of scalar products, i.e., bilinear forms, on L((7)

r}(X,Y) = \ T ï ( X Y )  + f i T ï X T ï Y  (180)

where A, ß  are constants. Obviously, we cannot put A =  0 without the
catastrophic destruction of the non-singularity of rj as the matrix underlying 
the ^i-term has the rank one. Therefore, the second term is a mere auxiliary 
correction. If U is real, then rj is pseudo-Euclidean and has the signature

f l  . , 1 , , \
( — m (m  — 1) — , —m (m  +  1)+ I .
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Obviously, L(U) is canonically identical with gl(u), the Lie algebra of 
GL([/). The special choice A =  2m, fi =  — 2 corresponds just to its Killing 
form

(X |F ) := T r(adxady) (181)
where ady : W  —» W  is given as usual by the rule

adx -A := [ X ,A ] .  (182)

Obviously, (181) is degenerate because GL(U) is not semisimple and the 
singularity due to dilatations. However, (181) is non-degenerate onsl(n), i.e., 
on the subspace of L(U) consisting of traceless mappings (the Lie algebra of 
SL((/)). Just as previously, the group GL((7) is mapped monomorphically 
into the group O(W, rj) in the sense

GL (U) 3 B ^  Adß e  GL(IU), Adß X  := B X B ~ l . (183)

But now this is not a monomorphism because the kernel consists of dilata
tions. For any (A, n) such that X//J, ß  — m  (thus for any but a measure-zero 
closed subset), (180) is non-degenerate. This is true in particular for fi =  0, 
i.e., for the main term. It is obvious that

=  A Tr (ßß4>dv4>) +  ß  Tr dß4> Tr dv<$>
A R  A R  (184)

=  Xdfl(j)A Bdv(j)B a +  ßdfl(j)A Adv4>B b

where, obviously, 4>AB (x) are matrix elements of 4>(x) e  L (U).
3) For many reasons the example above is of particular interest of us, neverthe

less sl(u) is but the special case of the situation when W  is a semisimple Lie 
algebra. Then it is a Killing metric rj

rj(A,B) =  Tr ( ad^ adß ) , ad^Af := [A, X}. (185)

And again the transformations Ads are isometries of (W, rj) for any group el
ement g, whereas their “logarithms” ad^ are infinitesimal isometries. Using 
some base in W  we have obviously

1]rs =  C irC zs =  1]sr (186)

where C tzs are structure constants with respect to the given basis. Then

fi# W  =  dß4>rdv4>sr]rs. (187)

The above examples were motivated mainly by models where the target space was 
a real manifold endowed with some pseudo-Riemannian metric, and usually just 
the pseudo-Euclidean vector space. However, and it was briefly mentioned, in ap
plications one deals very often with complex linear spaces endowed with hermitian 
internal metrics, i.e., with (pseudo-)unitary geometry. Let us do some comments 
concerning scalar multiplets with such targets. So W  is a complex vector space
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and h : W  x W  —» C) is a sesquilinear form with the convention: half-linear 
(“antilinear”) in the first argument, and so, analytically

r](w,z) = gÄBwAz B. (188)

As mentioned, in applications it is usually hermitian

ï](w , z) = g(z, w), ï]â b  = gBA. (189)

The configuration mapping <p : M  —» W  enables one to perform the pull-back

Q# ]  =  4>* ■ ï], = 9,4>Ad A Br]ÄB- (190)
There are however some subtle points. Namely, the tangent mappings T<f>x : 
TXM  —» W  are linear over the real field R with respect to their arguments. One 
can extend them to the complexified tangent spaces CTXM  =  C ® TXM  (tensor 
product performed over reals). However, one does not need this in usual field the
ory, and because of this the usual real space notation will be used, i.e., gflv, not g-pv 
(bar over g  omitted). For any x  e  M , gx is an R-bilinear machine which produces 
complex numbers gx (u, v) e  C from real vectors u, v e  TXM .  This prescription 
is hermitian, and the corresponding coefficient matrix is a analytically hermitian

gx (u, v) = gx (v, u), g,lv = gVfl. (191)

But one must be aware, it is not quite clear what a prescription is to be used for 
constructing the Lagrangian. First of all, because the matrix [g[<p)llv) is hermit
ian, its determinant is real (and if g is positively definite, this determinant is also 
positive). Therefore, the Lagrange tensor may be defined as

m  := g[4>}. (192)

Some “potential” terms are also possible like in (135). But one can also think in 
the following way: g[<p) itself is not the space-time metric. Indeed, the “squared 
norm” g(u, u) and “interval” ds2 =  gflv dxfl dxv feel only the symmetric, i.e., 
autonomically real part of g[<p)

Re 9i-ii/ — 2 ißt11' 9/ivj — 2 (di-iv T- 9vß) — 9(fiv) ■ (193)

Imaginary part is skew-symmetric

Im 5 p  (̂ 9hi/ 9 fiv (194)

And it is just

G[4>U = (195)
which is a good candidate for the metric-like tensor ^-induced from (W, g). So, 
perhaps one should rather expect that

m  ■■= g w (196)



96 Jan Jerzy Stawianowski

And by the way -  why not the exotic skew-symmetric tensor

£[4>U ■= öM h ? (197)

These are open questions to be considered carefully. Within the complex-hermitian 
framework there are some counterparts of (177) and (178).

4) We assume here again that there is an auxiliary linear space U, this time over 
the complex field C, and the target space W  is its byproduct of some specific 
structure resulting in the existence of a distinguished hermitian metric rj. The 
space U gives rise to the quadrupole of complex linear spaces of the same 
dimension built on U itself, its complex conjugate U, dual U* and anti-dual 
U =  U*. Obviously, U* consists of C-valued C-linear functions on U, 
the anti-dual U consists of antilinear (half-linear) functions on U, and the 
complex conjugation U consists of antilinear functions on the dual U*. These 
definitions apply only to finite dimensional spaces, just as the identifications 
between U and U* (similar to the finite dimensional identification of U** 
and U). Now the most natural analogue of the real self-dual space is the 
following target model

W  := U  x W  = U  x T f ' .

We would also use something like W  =  U x U* and so on, obviously, 
there is noting essentially new in such modifications (the net of canonical 
isomorphisms). In analogy to (174) W  is endowed with the sesquilinear form 
9 : W  x W  C which is degenerate and neither hermitian nor antihermitian,

0 (q2,P2)) = Pi(q2)- (198)

We can decompose it into hermitian and anti-hermitian parts respectively rj/2 
and T/2, where

rj((qi,Pi) ,(Q2,P2)) ■= Pi(q2) + P2(qi) (199)

T ((q i,P i) , (q2,P2)) ■= Pi(q2) ~  P2(qi) (200)

thus,

If

» =  l(>; +  r )  =  l > 7 + ^ , n  := —iT.

. ,s„___) and {----- s"___ ) are mutually dual bases in U, U* and
( . . . ,  e“ , . . .  ) is the corresponding anti-dual basis in U*, 6s  (e&) =  Sab, then 
with respect to the basis

( • • • )  -, (201)



Geometrically Implied Nonlinearities in Mechanics and Field Theory 97

the sesquilinear hermitian forms 9, h  have the following representation via 
the 2m  x 2m matrices

0  r r 1 ' 0  r ' 0  - I '

i  0 .
, [Hfs\ = 1

. - J 0 _
> [ T r s ]  = J  0 .

where obviously 0, I  are respectively zero and identity m  x m  matrices. 
Concerning the notation used in (201) let us remind that for any /  e  U*, 
f  e U* is defined as follows

/ ( “ ) :=  / ( “ ) =  (/>“ )• (203)

Both hermitian tensors rj and x  on W  have the same neutral signature (m +,
m—). Representing </> : M  —> W  in terms of two mappings Q : M  —> U,
P  : M  —» U*, we have the following expressions for the metric-Lagrange 
tensors

g[4>, r]}ßv = dflQ advPa +  dvQadflPa (204)

g[4>, =  - i dßQadvPa +  idvQadflP&. (205)

Any of them may be used and both have the neutral signature. Therefore, 
both the elliptic (equilibrium) and hyperbolic (evolution-type, relativistic) 
applications are possible. It is interesting to mention about some very special 
and at the same time very important special case of intrinsic target structures. 
It has to do with spinors and bispinors in the four-dimensional space-time. 
Namely, let U be a two-dimensional complex linear space. According to 
the Finkelstein-Penrose-Weizsäcker philosophy dimension “two” is not ac
cidental -  it is just the linear shell of the two-element set corresponding to 
the elementary yes-no dichotomy of quantum measurements. The very com
plex dimension two implies some intrinsic structures. Namely, A2U and 
A2U* are one-dimensional, so U carries the canonical, unique, conformal- 
symplectic structure (based on some bilinear skew-symmetric, not sesquilin
ear anti-hermitian form -  as an essential difference). And similarly, linear 
spaces of scalar densities and skew-symmetric twice contravariant and twice 
covariant tensor densities (of any integer weight) are one-dimensional, thus 
conformally-unique. Physical interpretation: U is the space of the Weyl 
spinors (antineutrino), U is the space of the anti-Weyl spinors (neutrino) 
and W  =  U x U* represents the Dirac bispinors (massive fermions) -  all 
of them exist in the four-dimensional space-time of course. Then rj is used 
for constructing the Dirac conjugation and the mass term in the Dirac La- 
grangian. In commonly used representations the matrix of rj coincides nu
merically with that of 7 0 , but of course it is a total mistake to confuse rj 
and 7 0 . The latter, as any 7^ is a linear mapping of W  into itself, not a 
sesquilinear form on W. The numerical coincidence of their matrices is
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an accidental property of certain choices of bases in W .  Raising the first 
index of x  with the help of rj one obtains the operator 75 e  L(W)  in 
the Dirac theory. And similarly all 7^ e  L(W7) are 7-hermitian (but their 
matrices are not literally hermitian). Another peculiarity of dim U =  2 
is that the space Herrn( u  ® (/] of hermitian tensors in U, and automati

cally also Herm^U* ® U* ĵ is endowed with the canonical symmetric scalar 
product of the normal hyperbolic signature. More precisely, it is unique up 
to normalization. The complex conformal-symplectic structure A2U gen
erates the Lorentz-conformal structure of Herrn( u  ® [ /) . Therefore, being

four-dimensional over R, Herrn( u  ® [/) is Minkowskian and appears as a 
model space of the physical space-time. The above mentioned conformal- 
Minkowskian structure has to do with the target geometry of the gravita
tional (co-)tetrad. In this way, according to Finkelstein-Penrose-Weizsäcker 
approach the fundamental quantum ideas imply the normal-hyperbolic struc
ture of the space-time (no doubt, the hermitian forms on U, i.e., elements of 
Herm^U* ® [/) are close to quantum ideas). The above target spaces were 
linear. There are also other differentiable manifolds with intrinsic target met
rics implied by some more fundamental geometry.

5) Lie groups as target spaces. It is convenient to use the language of linear 
groups to avoid the crowd of artificially sophisticated symbols. Inciden
tally, the only non-linear groups one is faced with in the physical studies
are G L(F), SL(F), the universal covering groups of G L(F), SL(V'), where 
V  is a real vector space. So let U be an auxiliary linear space, GL (U) its 
linear group and G e  GL (U) some Lie subgroup. More precisely, the tar
get space W  may be not the group itself, but its group space, which can be 
viewed as a homogeneous space with trivial isotropy groups. Also more gen
eral homogeneous spaces are of interest, however here we concentrate simply 
on the special case W  =  GL(U). Being a group, G possesses a large group 
of target transformations, e.g.,

A X B - 1 = (La o R b -  1 ) (X ) = (R B- 1 o L Ä) (X )  (206)

where A , B  6 G and taking the inverse B  1 is obviously non-essential. 
The point is only that the assignment G x G 3 (A, B) L A ° R ß 1 is a 
homomorphism of G x G into the group of transformations of G. Obviously, 
this homomorphism in general is not a monomorphism, for example,

L a 0 -RU-1 =  M g (207)
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if A  is an element of the centre of G. This holds for dilatations if G = 
GL([/). An important subgroup of (206) consists of inner automorphisms

Int^  := L a ° R a ~ 1 =  R-a - 1 ° Ra , X  i—» A X  A -1 . (208)

If G is not semisimple, then its automorphism group A utG is wider than In tG 
and it is reasonable then to admit the total group generated by L gR g and 
A utG. It is natural to expect that particulary interesting for applications will 
be the target metrics rj that are invariant under appropriate subgroups of the 
above transformations groups. The most natural candidates are the metrics 
that are invariant under left, or right, or both regular translations, L g , R g > 
LgR g - To obtain them one should take some algebraic metrics N  on the Lie 
algebra g =  TeG (e denoting the identity element of G), N  E g* ® g*, and 
then extend them respectively with the use of left or right regular translations 
to metric tensor fields rj defined all over the manifold G. Let us explain this 
in more detail. We construct differential form fl, O on GL(U) with values in 
the commutator Lie algebra L(U) ~  gl(u)

n  := dL L - 1, O := L 1 dL = L ' i l l .  (209)

They are respectively right- and left-invariant in the sense of regular transla
tions. And under the left and right translations (206) they obey to the follow
ing adjoint rules

Q (-> .4(1.4 Ù (-> B Ü ß - 1.

If G c  GL(bL) is a non-trivial submanifold, then 0 , 0  are restricted to 
points y E G and vectors u e  TgG c  L(W )  tangent to G. Therefore, we use 
0-valued one-forms

Üg :=Ü\\G, Og : = 0 | | G .  (210)

Nevertheless, to avoid the crowd of symbols, we continue to denote them 
simply by 0 , O, if there is no danger of confusion. If ( . . . ,  er , • • • ) and 
( . . . ,  er , . . .  ) are dual bases in g, g*, we expand

0  =  f lrer , n  = n rer (211)

Qr =  (er , Q ) , i f  ( s ’ . i l ) .

Then, we can express the mentioned Lie-algebraic metric in terms of the 
basis

N  =  N rser ® es, N rs =  (er ®s, N ) . (212)
Then the most general left- and right-invariant metrics on W  = G are given 
respectively by the tensor fields on G

rji[N] =  N rsn r ®  0 s rjr [N] =  Nrsn r ®  0 s. (213)
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Particularly interesting is the special case when the target metric on G is 
simultaneously left- and right-invariant. This happens of course when G is 
Abelian (thus 0  =  0 ) and in the quite opposite case, when G is semisimple 
and the Killing metric is used, i.e.,

N rs = C Ztr & zs = N sr (214)

where C  are the structure constants

[sr ,Ss} = etc trs. (215)

Obviously, then
m [N] = Vr[N] = V[N], (216)

If G is the total GL([/), then, choosing mutually dual bases (. , . , e A, . . . )
and Ç . . ,  eA, . . .  J in U and U* and the corresponding basis ( . . . ,  er , ■ ■ ■ ) =  

. . ,  eA ® e ß j , we can write analytically

m[N] = N AB c Dt t AB ® ÜCD, Vr[N] = N AB c Dt t AB ® (217)

where
O =  OAb ^B ® eA, O =  OAb ^B ® eA.

For the doubly-invariant model we have

rj = AQKl ® OBk  +  iJO ^^O ^f, =  AÜ k l ® OBk  +  (218)

These expressions were used in our papers concerning systems with affine 
degrees of freedom [18-21,25-27], It was also mentioned there about two 
interesting metrics rji, r)T, namely differing from (218) by additional terms 
given respectively by

ISk m Sl n Ûk l Ûmn , IÔKM6LNÜKLÜMN . (219)

Obviously, in (218), (219) A, B, I  are constants. It is clear that left and 
right regular translations in W  =  GL([/), Tgl(£/) > R gl{u) are isometries 
in (GL(U), rf) with rj given by (218). On the other hand, corrections (219) 
and the corresponding total expressions for rji, rjr are invariant respectively 
under the groups L Gh{u)R 0 { m  and L 0 { m R Gh{u), no longer under the 
total T)ql((7)7?GL(t/) (unless J  =  0, of course). Here 0(U, rj) denotes the 
subgroup of GL (U) preserving rj, the ^-orthogonal group. Let us write down 
explicitly the expression for the induced metric tensors g[<p, rj\ =  4>*r]. It is 
convenient to introduce the auxiliary g-valued differential one-forms on M ,  
just the pull-backs of O, O

fi[0] =  4>*n = n[4>]rer .fi[0] =  4>*n = n[4>]rer , (220)
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Using local coordinate expressions

Q[4>] =  n ^ L d x '1 =  Ü[4>}r ßer  ® dx '1
^ Ä (221)

Ü[4>] =  Q[4>\ß d xß =  Q[4>]r ßer  ® d.xß

0,[4>]fl = d ^ t t r 1, (222)

Then (213) lead to the formulas

gi[4>, N}ßV = N zsÜzfß % ,  gr [4>, N}ßV = N zsÜz,ß % .  (223)

In particular, when N  is the Killing metric on g

g[4>, N],lv = N zsÜzfß %  = N zsÜzßÜ%. (224)

If G =  GL (U) , then (218) becomes

g[4>]nv = A  Tr +  B  Tr ü ß Tr Qv
x 7 (225)

=  A  Tr (O^Oj,) — B  Tr f lß Tr Q,v.

Analytically, the auxiliary terms based on (219) have the forms

J  Tr ( f Ç f t )  , I  Tr (ß tlÜv) . (226)

All these expressions were used in our papers on mechanics of affine bodies 
[18-21,25-27], The corresponding scalar multiplet models resemble those 
described by (104) which are based on the bundle L(M)  =  T±M  and the 
Horn In fold models based on V  ® T*M.  In all cited models one deals with 
fields which have internal degrees of freedom ruled by the linear group, i.e., 
with continua of infinitesimal homogeneously deformable gyroscopes. Ob
viously, if G  is non-Abelian, the above metrics g[<p,N) have non-vanishing 
curvature tensors.
R em ark : When the target space W  has the structure of G  c  GL([/), then 
we are in the position to construct scalar functions on W  in a completely 
invariant way. This is particularly suggestive, e.g., when G  =  GL(U ) or 
G  =  SL((/). The corresponding basic scalars invariant under (208) have the 
form

IP(X ) = T r p f P ) .  (227)
Functions on G  built analytically of these Ip-invariants may be used as po
tentials K(4>), F(4>), U(4>) in (135) with values of 4> substituted as X  and 
with g[4>] defined as above, e.g., (225).

6) Manifolds of scalar products as target spaces. Analytically, these are also 
manifolds of matrices, however, their geometrical meaning is completely 
different. The starting point is again some auxiliary linear space U. In 
the previous class of examples W  was defined as some Lie subgroup G  
of GL((/), i.e., a manifold of mixed second order tensors in U  (compare
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the situation with the fibre bundle L M  =  T±M  consisting of mixed ten
sors in M ,  i.e., elements of TPM  ® T*M). One can wonder what would 
be a natural geometry in manifold of non-mixed second order tensors, i.e., 
in submanifold of W* ® W* and W  ® W  (compare with the fibre bun
dles T§ M  and Tq M  consisting respectively of elements of T*M  ® T*M  
and TpM  ® TpM  and the General Relativity with its symmetric second or
der nondegenerate tensors belongs here). The simplest situation is when 
U is a real vector space of dimension m  and W  is either the manifold of 
non-degenerate twice covariant symmetric tensors or the manifold of non
degenerate twice contravariant symmetric tensors. In this way W  is an open 
submanifold of Sym (U* ® U*) or Sym (U ® U). Their complements to the 
total linear spaces Sym (U* ® [/*), Sym (U ® U) consist of degenerate ten
sors and are closed subsets. Strictly speaking, the subsets of non-degenerate 
tensors are not connected as their connected submanifolds differ in signature. 
Any choice of the dual bases ( . . . ,  ca, • • • ) and ( . . . ,  eA, . . .  ) in U and U* 
gives rise to the bases ( . . . ,  ca ® eB , e A ® eB, . . .  ) respectively in 
U* ® U* and U ® U. In subspaces Sym (U* ® U*), Sym (U ® U) we have 
then the bases composed respectively of eA ® eB, ,4 < B .(  ,\ x  eg, A  < B, 
or more convenient redundant “bases”

e(A ® eB) = -  (eA ® eB +  eB ® eA)
(228)

The metrics g e  Sym (U* ® U*), g e  Sym([7 ® U) are analytically ex
pressed as

U* ® U* 3 g = gÄßeA ® eB = gÄße{A ® eB) (229)

U ® U  3 g = gABeA ® eB = gABe^A ® eB) (230)

where

q a b  = qbaj gAB = gBA- (231)

Obviously, independent coordinates are given by g a b -, gAB -, A  < B  (or with 
the reversed sign). It is clear that there exists a canonical diffeomorphism of 
non-singular Sym (U* ® U*) onto non-singular Sym (U ® U), it is analyti
cally given by the reciprocal matrix formula

AB[gAß] ^  5' r.AC r. __  zA9 9c b  —  à B (232)
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Metric tensors on Sym (U* ® U*) and Sym (U ® U) are analytically repre
sented as

V = r]ABCD{g) d cg a b  ® d gCD (233)

n = nABCD(g) dgAB ® dgCD (234)

where
ABCD _  CDAB _  BACD _  ABDC (235)

f]ABCD =  f]CDAB =  f]BACD =  f]ABDC (236)

(symmetry within the first and second bi-index and symmetry with respect 
to the mutual exchange of bi-indices). The structure of submanifolds of non
singular tensors distinguishes the two parameter class of metrics on any con
nected component of W

v ABCD = \ y c aBD +  ± S BCSAD + p.sABs CD

A A Aß rjn
g A BCD = t;9a c 9bd  +  t;9b c 9ad  +  9-9 9 '

(237)

(238)

where A, g, are constants. Some formal similarity of (233), (237) and (234), 
(238) to (218) is obvious, nevertheless also misleading. The apparently 
“Killing” structure in (237), (238) is something else than that in group mani
folds. One should stress that above geometry in the manifolds of symmetric 
real scalar products is interesting in itself and to the best of our knowledge not 
yet understood. This is still an open problem in geometry. Let us stress that 
the metrics (237), (241) are by their very definition defined only on the (non
connected) manifold of non-singular tensors. And up to the arbitrariness of 
A, g  they are completely intrinsic. Obviously, the A-term is the dominant one 
and must be non-vanishing, e.g., it can put equal to one by convention. On 
the other hand, the ^x-term is an auxiliary correction, rather qualitatively non
essential. The corresponding pull-back metrics in M  are obviously given by 
the following expressions

=  gABCD i4>)dfi4>ABdv4>cD (239)

9 =  gABCD(4>)dß(l)AB dv(j)BD (240)

g[4>}aß =  A 4>AC4>BDda4>ABdß4>cD +  g4>AB4,CDda4>ABdß4>cD (241)

g[4>]aß = A 4>Ac4>BDda4>ABdß4>CD +  g4>AB4>cDda4>ABdß4>CD (242)

respectively for (233), (234), (237), (238). Obviously, the group GL(U) acts 
on the target variables g according to the rule

L G GL(U) : g i—>• L*g (243)
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where

(L*g)AB = g cD L -l c AL - 1DB, (L*g)AB = L Ac L BDgCD (244)

are the respective actions on the targets Sym (U* ® (/*), Sym (U ® U) and 
as a matter of fact for the total tensors spaces U* ® U * ,U  ® (/. It is clear 
that they preserve the signature, therefore, every connected component of 
the target W  is separately invariant under (244). And it is obvious that the 
transformations (244) are isometries of the internal metrics (237), (238). And 
conversely, (237), (238) are the only metrics on the manifolds of (/-metrics 
W  invariant under (243), (244). Because of this they are symmetries of the 
generally covariant Lagrangians

An interesting difference between targets G c  GL(U) and Sym (U* ® (/*), 
Sym ( U ® U) (or rather their open subsets consisting of non-degenerate sym
metric tensors) is that without any fixed absolute object in U, there is no 
possibility to construct something like scalars built of the target variables g. 
Therefore, it is also impossible to introduce to (245) “potentials” like K(4>), 
F(4>), U(4>) in (135). In this respect the U ® U- and U* ® U*-targets are 
different than GL(U)- or TpM  ® T * M -type targets, although all of these 
targets consist of some second order tensors in something. And also, in this 
sense the targets Sym (U ® U), Sym (U* ® (/*) are similar to the targets 
Sym (t *M  ® TpM^j, Sym (TPM  ® TPM )  used in the General Relativity 
(more precisely, again the open submanifolds of non-degenerate symmet
ric tensors). The above scheme of contravariant or covariant second order 
tensors in some U may be easily modified and some more complicated but 
nevertheless (at least geometrically) interesting models may be constructed. 
There are a few natural lines of such modifications. First of all, instead spaces 
of symmetric scalar products Sym((7* ® (/*), Sym((7 ® U) (or rather man
ifolds of the corresponding non-degenerate tensors) we can admit the total 
manifolds of non-degenerate elements of U* ® U* ,U  ® U as target spaces 
W. The general scheme is like in (233), (234), (237), (238), however for 
such general targets there are fewer symmetry demands for rj and more ad
missible terms in (237), (238). So, if rj is to be a pseudo-Riemannian metric 
on U* ® U*,U  ® U, then only the symmetry with respect to transpositions 
of bi-indices survives

(245)

A B C D = V,CDAB f]ABCD = VCDAB- (246)



Geometrically Implied Nonlinearities in Mechanics and Field Theory 105

And instead, e.g., (237) we have

T)A B C D  =  a g A B g CD  +  gA C g B D  +  g C A g D B j

+  ßgADgCB +  I  (gADgBC +  gDAgCB) (247)

+  7g g +  ~^{g g + g g )

and similarly instead (238) with the lower-case indices instead the upper-case 
ones. Obviously, a, ß, 7 , S, e, <p are constants. Substituting the fields <pAB 
instead g AB one obtain as usual the Lagrange tensor

£[</>W =  g A B C D { ß ) d tlß A B d v ß c D -

Another modifications of this target geometry is to take the anti-symmetric 
tensor manifolds Asym (U* ® [/*) =  U* AU* and Asym (U ® U) =  U AU, 
or anti-symmetric g, etc. There are also intrinsic metrics of some geometric 
and perhaps physical interest on the target spaces like W  = U x (U* ® [/*). 
For example, if we use some fixed bases in U and the corresponding coor
dinates uA, g a b  on U x  Sym (U* ® (/*) we can use the following class of 
intrinsic metrics g on W

r](u,g) =  v g A B  dUA  ® du B  +  Ag A K g B L  dg A b  ® dq k l

A B  K L  j  ,  (248>+  g.g g àga b  ® dq k l -

One can develop further such models as it was previously suggested by re
placing again Sym (U* ® [/*), Sym([7® U) by the general U* ® C/*,U  ® [/', 
or to replace the manifolds of metrics by the manifolds of symplectic struc
tures U* A U* ,U  A U. Another class of interesting models may have to do 
with nonlinearity ideas in quantum mechanics. Namely, one can use some 
complex linear space U as an auxiliary tool. Then it is natural to construct the 
target space consisting, e.g., of twice covariant hermitian tensors on U, thus 
W  := Herrn (u*  ® U*^j, or rather the manifold of non-degenerate scalar 
products on U. Let us represent analytically the scalar products h e  W  by 
their hermitian matrices h ^ B (h^B =  hBA)

h (u , V) =  hABüAv B, U =  UA€a , v =  vAeA-

Without going into too much details we easily see that for the scalar multi
plets of the type

4>:=M  -» Herrn (u*  ® [/*)
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with non-degenerate values the analogue of (241) reads

g[4>}aß=^4>AÖ4>DBda4>ßAdß4>cD +  n4>AB4>Döda4>BAdß4>cD
(249)

+A 4>AC4>DBda4>BAdß4>cD +  fMf>AB4>Döda4>BAdß4>cD 
and analogously for scalar mulitplets of the type

O : M  ' Herrn ( u  fâU'J.

In these multiplets simply the upper-case and lower-case indices are mutually 
interchanged. By the way, let us remind that contravariant upper case indices 
are meant in the sense

4>a0 4>cb = Sa b , 4>äc4>cb = $ä b - 
In analogy to (248) one also consider target spaces of the form

W  = U x  Herrn ( jT  <g> [/*) (250)

and the corresponding fields of the form

4> =  (\P,G), $  : M  -» W, G : M  -» Herrn (u*  <g> [/*) . (251)

Analytically we are dealing with the complex scalar multiplets consisting of 
C-valued fields '$A, G AB. The target W  is endowed with the natural her- 
mitian (but non-flat) metric analogous to (248). The corresponding metric- 
Lagrangian tensor induced on M  by $  : M  —> W  is given by

g[4>U = BGÄBdaWAd ß ^ B +  A GAÖGDBdaG BAdßGÖD 

+  ß GABG D0daGBAdßGÖD.

Let us mention that models of this kind may be somehow related to hypothetic non
linearities in quantum mechanics. Namely, when dim M  =  1, i.e., M  is just the 
time axis, we can consider a pair of time-dependent quantities, ^ A(t), GAB(t)J, 
the “state vector” $  of the N -level quantum system and the dynamical “scalar 
product” G. This scalar product is not fixed once for all, but, in analogy with the 
General Relativity, taken together with the wave function $ , it satisfies a closed 
system of equations, so there is a mutual interaction between $  and G. The evo
lution of the total system <p =  ($ , G) is nonlinear and must be so if its equations 
are to be derivable from some reasonable variational principle. There is no place 
here for going into more details, but let us mentioned that there are Lagrangians for 
(tp(t ), G(t)) which are structurally similar to (252). The same may be done for the 
“usual” quantum-mechanical system, when $  (t) is a usual, perhaps multicompo
nent wave function on some configuration space Q, so that the index A  becomes a 
pair (a, q) in which one has a discrete index and continuous classical configuration. 
So, we are dealing then with 'Pa(t, q) instead of ^ A(t). The summation over A
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becomes the summation over a and integration over q. The scalar product matrix is 
modified in a similar way. The corresponding effective nonlinearity with respect to 
the total pair (4/, G)  might perhaps have to do with the well-known quantum dif
ficulties like the reduction, decoherence, measurement and the dualism of “micro” 
(quantum) and “macro” (classical).

5. Final Remarks

We have discussed above essentially nonlinear models for fields which had only 
spatio-temporal indices, i.e., they were cross-sections of some tensor bundles over 
M ,  and essentially non-linear models for scalar multiplets in M ,  i.e., cross-sections 
of some trivial bundles M  x W  over M .  We witnessed some link between general 
covariance and Horn Infeld type nonlinearity. In the case of mixed tensor bundles 
LM  =  7 j1 M  and trivial bundles the Horn Infeld structure was just implied by 
the general covariance. And some interesting similarities and differences between 
LM  = T ^ M -models and M  x W  ~  M  x GL (U) ~  M  x GL(n, R) models 
were observed (dim W  =  n2 =  (dim M )2). Both this models describe systems 
with affine degrees of freedom attached to space-time points. We must finish with 
tensor objects having both spatio-temporal and scalar-multiplet indices, first of all 
with

F * M  =  (J  F * M  C  (J  (T * M f  ~  (J  (Tx M ) n D F M
x£M x£M x£M

i.e., with (co-)frame ((co-)tetrad when n =  4) fields where the corresponding 
analytical symbols traditionally used for <p are eAfl, eflA- This is just the phys
ically most convincing model of “micromorphic continuum,” i.e., system with 
internal affine degrees of freedom. Models of this kind were used in “infinitely 
many” tetrad models of gravitation [13,15,24], Obviously, the fibres in bundles 
L M ,  M  x GL(n, R), F * M  ~  F M  are all n2-dimensional and have kinematics 
ruled by the //-dimensional real linear group. And obviously, any cross-section 
of F * M  ~  F M ,  i.e., any field of (co-)frames establishes uniquely some diffeo- 
morphisms between L M  and M  x GL (U) ~  M  x GL(n,R).  Analytically the 
diffeomorphism given by the field of (co-)frames is given by

= eflA4>ABeBv, 4>a b  = eAß4>ßvevB- (253)

It enables one to translate any (in particular any generally-covariant) Lagrangian 
on L M  onto one on M  x GL( U)  and conversely, however, just for the price of 
using an additional field e with its own Lagrangian. So, quite independently of any 
tetrad-gravitational motivation, Lagrangians for the field of linear (co-)frames are 
of particular interest, the more so the bundle F * M  ( F M )  is the principal bundle 
underlying the theory of all linear geometric objects in M  (they are cross-sections
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of the corresponding associate bundles). In the principal bundles F*M, (F M ), 
the full linear group G L (n, R) acts in the standard way

F*M  3 e =  ( . . . ,  ê 4, . . . ) ! —»• eL  =  , eBL Ba , ■ ■ ■ J (254)

and dually

F M  3 è  = ( . . . ,  eA, . . .  ) ^  ËL = ( . . . ,  L ~ 1ABeB , . . .  ) . (255)

E ssential re m a rk : This is just the action of the group G L (n, R), not G L(TXM ) 
identified with G L (n, R) by some choice of a fixed reference frame. Models with 
F* M / F M -degrees of freedom were intensively studied in other papers [21,24, 
29]. Here we will concentrate on the link between the general covariance and the 
Born-Infeld structure. The first step towards constructing generally-covariant La- 
grangians for the field e, i.e., for the cross-section of the principal fibre bundle 
F*M, or equivalently F M  is to define its invariant first order derivative. The gen
eral covariance, i.e., invariance of the Lagrangian C[e) =  C (e, de) under the group 
DifF(M ) consisting of elements labelled by n arbitrary functions of n variables

C [ip*e} = ip*C[e) (256)

implies certain identities, the so-called generalized Bianchi identities. This is a 
consequence of the Noether theorem. At the stage when the Lagrangian is not yet 
explicitly defined, these identities may be looked upon as certain conditions, as 
a matter of fact differential equations imposed on the Lagrangian. As shown in 
some of our earlier papers (see [24] and references therein), these identities have 
the form

H A,1V +  H Avtl = 0 (257)

— = o (258)

f A -  (i%  -  H B^ d x eBfJ)  efla = 0 (259)

where the meaning of symbols is as follows
dC

H a "  -  deA
(260)

:= HAKVdfleAH -  C5Vfl = H x™exAdfleA„ -  C5Vfl (261)
„ dC

j  A ' deAv '
(262)

Using the familiar qualitative terms:

• H a are field momenta, from the point of view of electromagnetic analogy, 
H a form the multiplet of (D , if)-fields, deA form the multiplet of (Ë , i n 
fields, whereas eA themselves form the multiplect of covector potentials
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• tvfl is the canonical “energy-momentum complex” (not the tensor, neither 
the tensor density, of course)

• Cv a are components of the Euler-Lagrange variational derivative SI/5eAv 
with I  denoting the action

I  = J  £[$] da:1 A . . .  A dren

• D /D x v is the total derivative of quantities depending on x, e(x), de(x), 
with respect to the variable x v

•  j va , the multiplet of contravariant vector densities of weight one, is a sys
tem of self-interaction currents.

The simplest identity (257) is just the statement of the fact that C depends on de 
through the exterior differentials deA, analytically

(deA),iv = (263)

This was in any case a priori evident in a bare manifold. When dealing with the 
L M  =  T±M  bundle we used the tensorial object S[x}xllt, (99), (102) containing 
the information about d X  via some expression built algebraically of both d X  and 
X .  Incomparably simpler this may be done for the e-object, namely we take the 
tensor

S[e)xtlv := exa (dveA fl -  . (264)

Just like in (102) it is linear in derivatives dX .  The prescription e i-» S[e] is 
generally covariant in M

ip e  Diff(M) : 5  [ip*e} = yj*5[e]. (265)

No external objects are involved. The prescription has also another suggestive 
property, namely is invariant under the target group GL(n, R)

S[eA] = S[e\, A  e  GL(n,R).  (266)

By the way, as Rn carries the plenty of “parasite” structures which may be mislead
ing, it is more reasonable to replace it by the auxiliary “target” space U, just linear 
space without any additional structure. Then the group GL(U ) is the only natural 
candidate for internal symmetry. And the frames ex e  F * M ,  êx e  F XM  are sim
ply replaced by linear isomorphism ex e LI(TXM, U ) ,ê x =  e“ 1 e  LI(U ,T XM ). 
Then the former expressions are obtained by simply introducing some bases in U, 
but are independent on the choice of basis and globally GL([/)-invariant. 
R em ark : There is no local GL(U ) invariance, i.e., the A  in (266) cannot be re
dependent as it is always rigidly fixed all over M , not a field .4 : M  ' GL(U ) like 
in gauge treatments. Now the geometric interpretation of S[e] is much simpler that 
of the Nijenhuis objects in L M . Namely, S[e] is the torsion of the teleparallelism
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connection T [e] built of e. This connection is uniquely defined by the demand that 
e is parallel under the corresponding covariant differentiation

Ve^ =  0, i.e., Ve"1 =  0. (267)

It is obvious also that
r[e] V  = eXAdveAfl. (268)

The parallel T[e]-transport of any tensor is path-independent and just consists in 
taking at another point the object with the same non-holonomic e-coordinates like 
at the original point. The curvature of T [e] evidently vanishes and the torsion (264) 
of (268) is algebraically e-equivalent to the non-holonomy object £lABC,[e] ° f e- 
Let us mention that unifying with the use of e the multiplet of currents j A into a 
mixed second order tensor density

f v := 3,lAeAv (269)

we can easily understand the structure of the non-tensorial character of the com
plex t

f v  = t>\ +  (270)
Perhaps j  is a better candidate for the “energy-momentum” than t  itself (we re
member that the concept of the energy-momentum in generally covariant models 
is delicate if not doubtful). The general covariance implies the following “Bianchi 
identities”

- ^ 7  {eAvD 1 -  £}lAdveAsl =  0. (271)

We have also strong conservation laws

2 k  { t \  +  e \ D ‘ A) =  0 (272)

and “improper” weak conservation laws
D

=  0 (273)Dxf*
which, unlike the strong ones, assume that the field equations are satisfied. Obvi
ously, (273) is equivalent to the “continuity equation” for the current j A

5 ^ *  “  ° ' <274)
Obviously, it would be to try to find the general solution of (257)-(262) as a 
system of differential equations for the Lagrangian £  as a function of eAfl and 
£,Afn, =  dveAfl. One should rather use some direct methods. The simplest models 
are known from the tetrad models of gravitation. Those models preassumed some 
pseudo-Euclidean target metric rj e  Sym (U* ® U*) in U. In the usual gravitation 
theory in realistic four-dimensional space-time, rj is normally hyperbolic with sig
nature (-1---------) (or (— +  + + ) depending on the individual taste). Obviously, this
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is the target geometry, g has directly nothing to do with the spatio-temporal metric 
of special relativity. However, any (co-)frame field e given rise to some metric 
tensor g[e, g) on M

g[e, g\x =  e* • g, g[e, g\ßV = gABeAfieBv . (275)

It is automatically normal-hyperbolic, although in general curved, unless e is holo
nomie, i.e., deA = 0, A  =  1 , . . . ,  n, or equivalently S[e] =  0. As all schemes 
with different hyperbolic metrics g in U are essentially identical, the only absolute 
element here is just the signature itself. Let us observe that unlike the prescription 
e i-» S[e], the prescription e i-» g[e,g) is invariant under the orthogonal internal 
subgroup 0(U, rj) C GL(U), not under the total GL([7)

g [eA, rj\ = g[e, g\ iff A  e  0(U, rj), A* ■ g = g (276)

i.e., analytically
VcdA c k A d l = gKL. (277)

But, as the relationship (275) is purely algebraic, the invariance (276) is valid lo
cally. i.e., for a:-dependent A

.4 : M  * 0(U,g).

There are three basic scalars which may be built of g, S  in a way quadratic in 
S, thus, quadratic in the derivatives de. These are the so-called Weitzenböck 
invariants [24]

Ji = gßagvßgxSS ^ S aßS, J 2 =  gß, S aßßS ßav, J 3 =  gßVS aaßS ßßv. (278)

Therefore, the most general Diff(M)-invariant Lagrangian quadratic in derivatives 
dg (but with ^-dependent coefficients) has the form

L — ci L I +  C2L 2 +  C3L3 — (c iJ i +  C2J 2 +  C3J3) y  \g\. (279)

The resulting field equations are quasi-linear, i.e., linear in the highest (second) 
derivatives with coefficients algebraically depending on g. They are Diff(M)- 
invariant in the space-time manifold and O(U, g)- (Lorentz-) invariant in the in
ternal space U (let us stress again: one has not to confuse the target Minkowski an 
metric in U with non-existing one in M). There are some rather delicate points 
concerning the status of the Einstein General Relativity and the Hilbert Lagrangian. 
Namely, the latter one (32) may be written down as follows

R[g] \f\g\ = (Ji + 2J 2 -  4J3) y ^ i  +  4V m ( s aaß9ß^ \

— (Ji +  2J 2 -  4J3) %J\g\ +  Adfl ^ S aaßgßßiJ\g\Sj
(280)

where V denotes the covariant differentiation in the sense of Levi-Civita connec
tion assigned to g[e, g). And, as well-known, the covariant divergence of any
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contravariant vector density of weight one with respect to any symmetric affine 
connection, is identical with the usual divergence in the partial-derivative sense. 
Therefore, when one uses the (co-)frames ((co-)tetrads) as field quantities, then the 
Hilbert Lagrangian (279) may be equivalently replaced with the coefficients which 
are related as follows

ci : C2 : C3 =  1 : 2 : —4 (281)

(obviously, up to subtle points concerning fixing derivatives de on the bound
ary). The resulting equations are just the usual Einstein equations with g expressed 
through e like in (275). But once e is used as a fundamental field quantity, then 
at least formally we can manipulate the constants ci, C2, C3. It turns out that in 
some range of their ratios the resulting field equations are compatible with the ex
periment provided that the Einstein-Hilbert ratio (281) is fulfilled. In this way the 
frame (“tetrad”) model of degrees of freedom offers more possibilities for the field 
dynamics than the metric g itself. And one can wonder whether some models non
quadratic in S  (in derivatives) could not be useful. In fact such general models 
were studied, e.g., by Plebanski, Möller, Pellegrini and others [13,15], The La
grangian is then expressed as a density-valued function of the tensors S  and g, e.g., 
in the following form

L[e\ = l (S[e},g[e, g}) \]\g[e,g)\ (282)

I being some scalar function built of tensors S[e] , g[e, g). For example, I may be 
some function of the Weitzenböck invariants

l(S,e) = f ( J 1, J 2, J z). (283)

Obviously, when /  is linear, we go back to the original teleparallelism models (281) 
with quadratic in the derivatives de Lagrangian and quasi-linear second order dif
ferential equations. The idea of /  nonlinear in J-s, i.e., /  non-quadratic in S  (in 
the derivatives de) was motivated by attempts of avoiding singularities appearing 
in General Relativity and its simple generalizations. This motivation, at least in its 
present form, is rather old-fashionable because it is just typical that some interest
ing physics may be deduced from black holes theory. What is important now is 
that nothing qualitatively new may be obtained with the simple manipulations with 
the shape of /  in (283), in particular, with ones replacing linearity in J  by higher
order polynomials or rational functions. And there is yet no link between general 
covariance and the promising (but at the same time mysterious) Born Infeld-type 
nonlinearity. This might seem a little bit disappointing, because this link was 
so “canonical” and convincing in theory of scalar multiplets and in the bundle 
LM  =  7 j1 M.  But just now the symmetry idea enables one to get even more. The 
proper hint is just our above mentioned dissatisfaction with absolute target metrics.
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If we once admit the non-Einsteinian ratio ci : : C3 in (279), then the infinite
dimensional group of internal symmetries (276) with 2:-dependent Lorentz trans
formations A  becomes drastically reduced to the n(n — 1)/2-dimensional (phys
ically six-dimensional) group of global, x -independent Lorentz transformations 
in the target space U. But whereas the local Lorentz symmetry is physically inter
pretable (it is g that is fundamental field and e is an auxiliary tool, reference frame), 
the global one is rather obscure and non-motivated. If global (x-independent) in
ternal symmetries are once admitted, it is a tempting idea to try removing anything 
like the metric g from U. And if U is to be amorphous, it is natural to seek models 
with Lagrangians as amorphous as possible, i.e., not only Diff(M)-invariant in M ,  
but also GL(C/)-invariant (analytically GL(n, R)-invariant) in internal degrees of 
freedom. This is impossible with scalar multiplets, but turns out to be possible 
with F*M  (F M ) degrees of freedom. Namely, the Lagrangian must be built alge
braically of S. And the simplest possibility is just one suggested by (104), i.e., the 
Lagrangian tensor

C[e](lv =  A S xflKS \ x +  B S xflXS \ K +  C S xxXS " fll/ (284)

where A, B,  C  are constants. This Lagrange tensor is very nicely quadratic in 
derivatives (quadratic in S ). The Lagrangian itself is homogeneous of degree n in S  
(in derivatives). In F *M  (FM )  models the total symmetry group DifFM x GL (U) 
(general covariance in space-time M  and affine invariance in the target U) just 
implies the Born Infeld nonlinearity. This is similar to implying the Born Infeld 
structure by the general covariance of L M  =  T/M-models. Because there is no 
counterpart of the global target U independent of x  e  M ,  in this case there is even 
no possibility of discussing in L M  something like the target symmetry. The nice 
Killing structure of

Gflv = S xflKS * vX = GVfl (285)
suggests it to be a candidate for the metric tensor of M.  It is important that G[e) 
unlike g[e, g) is built of e in a non-algebraic, namely, the first order differential 
way. This enables one to avoid the use of the target metric g. Moreover, a priori 
even the signature of G[e) is not fixed. And in general the frame g need not be 
g-orthonormal

G[e)llvë lAevb  #  Va b  = g[e, g\liVefl Aev B . (286)

Another, a little more general, candidate for the metric tensor is the symmetric part 
o f (284)

£ \e \lv =  A S xlutS * v x +  B S xfiXS * Vii. (287)
But obviously the Killing term is a dominant one and the i?-term is merely some 
correction. Just like in the L M  (T /M ) model one can introduce some kind of 
“potentials” into the Lagrangian. There is a difference, however, namely in LM -  
models they might be “true” potentials built algebraically of X  alone (although the
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dependence on derivatives d X  was also possible). Now, in F * M  (F M ) models 
there is no possibility to built scalars in an intrinsic way without the use of deriva
tives. There is no place here for a more detailed discussion but let us mention only 
two possible prescription for scalars. Namely, if the tensor G[e) is non-degenerate, 
we can construct something similar to Weitzenböck invariants

G s ~ i i l K s ~ i  Q C x . q 8  f O Q Q \c t ß \ o  pi/& ( z m )

O iaS a,iaS ßvß (289)

where G,iaGai, =  ëflv. Let us notice however that there is nothing like the “second 
Weitzenböck invariant’’ because by definition it is a constant

G>w S aflßS ßva = n = dim M.  (290)

By a similar procedure one can construct more complicated scalars. All of them 
are homogeneous functions of degree zero in S  (in derivatives). One can introduce 
some derivative-dependant ’’potentials,” e.g., by putting A, B,  C  to be some func
tions of the basic scalars. Obviously, the resulting C[e)flv, L[e) loose then their 
“Born Infeld beauty,” become terribly complicated and non-useful, probably also 
non-physical. It does not matter what scalars are used as the resulting Lagrangians 
L[e) =  L(e, de) are always homogeneous of degree n in S,  i.e., in velocities. This 
is some kind of “multivector Finsler geometry.” The homogeneity of degree n is a 
direct consequence of the Diff(M) x GL(n, R)-invariant. For any Lagrangian L  
satisfying

L  [ip*eA} = <p*L[eA], ip £ Diff(M), A £ GL(U) (291)

the identities following from Noether theorems just imply
8L

s V a s ~  = nL' (292)

Because of its very nature as a “double quantity” with indices in TXM  and U ~  
R , eAfl, the (co-)frame e intermediates between the two affine models of targets, 
GL(TXM )  and GL(U), i.e., between the bundles

L M  = T { M y M  x GL(W)  

in the sense of obvious formulas

X f%(x) = ë 1 a (x )4>a B(x)eB v(x) (293)

and conversely
4>Ab (x ) =  eA fl(x)X>lv(x)ev B(x). (294)

It would be interesting to investigate in some details the kinship between these 
three n 2-component fields, relationships between their Born Infeld nonlinearities 
and their hypothetic physical applications.
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6. Suggesting Bom-Infeld Version of Willmore, Polyakov-Kleinert 
and Helfrich Functionals

We have discussed above the Horn Infeld-type Lagrangians (134) for multiplets 
of scalar fields. Geometrically their extremals (stationary points) are minimal n- 
dimensional surfaces in N -dimensional (pseudo-)Riemannian manifolds (TV, rf). 
Physically they have to do with alternative gravitation theories, cr-models, strings, 
membranes, shells, etc. There are also interesting models with some “potential” 
terms introduced to C[<p)flv. Being minimal surfaces in (TV, rf) they have vanishing 
mean curvature. What about models which would possess (among other ones) so
lutions of constant, not necessarily vanishing curvature? Such models do exist in 
fact and have their origin in the so-called Willmore functional [7,33]. This func
tional and certain modifications developed later on are useful in some mechanical
engineering problems and in biophysics, e.g., in the theory of cell membranes. 
Obviously, in such applications (TV, rf) is the usual three-dimensional Euclidean 
space, and the parameter manifold M  is either an open subset of R2 or the two
dimensional unit sphere 5 2(0 ,1). Incidentally, depending on the assumed topology 
of considered surfaces in TV, one can use also some other models of the “material 
space” M ,  e.g., the n-dimensional torus T n =  (<S1(0, l ) ) n, sphere with “handles,” 
etc. Without any changes everything remains literally valid for the general (TV, rf), 
N  =  dim TV, and the hypersurface situation n =  N  — 1. Natural generalizations 
for other values of n, when one deals with the mean curvature vector, also may be 
easily formulated, however, they need some additional comments. Let us concen
trate on the simplest hypersurface case. The original Willmore functional is given 
by [7,33]

W =  [  H 2 dA = [  H 2J\det[g[4>]}\dx1 . . . d x n (295)
J m  J m  v

where H[4>\ =  H  (4>, d(j>, d24>) is the field of the mean curvature of 4>(M) c  N  
(we identify objects on 4>(M) with their pull-backs to M). H  depends linearly on 
second derivatives of <p, therefore the Lagrangian itself

m  = H 2J \ g (296)

is a nonlinear (quadratic) function of d24> and the resulting Euler-Lagrange equa
tions

A H  +  2 ( i f 2 -  i f )  H  = 0 (297)

are fourth-order partial differential equations, just like in the theory of elastic 
beams and shells (by the way, similarity is non-accidental). In (297) A denotes the 
Laplace-Beltrami operator on 4>(M) (on M  in the sense of the metric g[<p) =  4>*g), 
and K  is the Gauss curvature of 4>(M). Combining additively (134) and (296) one
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obtains the Polyakov-Kleinert string action based on the Lagrangian

C =  (aH 2 +  b) y f e ] (298)

where a, b are constants. Obviously, for b =  0 one obtains (296) and choosing 
a = 0 (134) results. The Helfrich functional of the bending energy of vesicle 
membrane is based on the Lagrangian [7,33]

where again a, b are constants and K  is the Gaussian curvature. All the above 
models are very strongly nonlinear. And again the natural temptation appears to 
construct their Bom-Infeld counterparts without the artificial scalar-density factor
ization of L. A priori the most natural candidates for the Lagrange tensor are ones 
of the form

£[4>]tlv =  £[4>} (</>, dcj), d24>) =  agflv +  bHflv +  cgaßHfiaH ßl/ (300)

where a, b, c are constants or, more generally, some simple functions of the mean 
curvature and Ricci curvature. It is seen that for week fields one can obtain (298), 
(299) as asymptotically equivalent to Lagrangians based on Lagrange tensors (300) 
with appropriately chosen scalars a, b, c. It is not clear yet if the models based 
on (300), especially the simplest ones with c =  0, may offer something physically 
new, computationally simple and geometrically interesting. This is one of the open 
questions, formulation of which was one of the purposes of this treatise.
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