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Abstract, This is an overview of classical and recent results on die geom­
etry of isothermic surfaces and conformally flat hypersurfaces in conformal 
geometry and their relation with curved flats, a particularly simple type of 
integrable system.

1. Introduction

This text is an account of a series of five lectures given by the author at the 8th 
International Conference on Geometry, Integrability and Quantization in Varna, 
Bulgaria. Many of the discussed results are not new and a very wide range of 
results is covered, in the form of an overview. They are, or in some cases will be, 
published elsewhere (some of the material has already been known to the classical 
geometers) in greater detail and references are included for the interested reader, 
to facilitate further work. In fact, most of the discussed material is elaborated in 
the author’s book [13], where also more pointers to the relevant literature can be 
found. Thus this text should be understood as an introduction and advertisement 
for the discussed problems and methods and, as such, is kept in a rather informal 
and colloquial style.
One of the main ideas, besides providing appropriate background material, was to 
show how curved flats, a particularly simple type of integrable system, appears in 
conformal (Möbius) geometry. Here the term “integrable system” is understood in 
the sense that the set of partial differential equations describing the geometry can be 
formulated as a zero curvature condition on a loop of connections by introducing a 
(spectral) parameter. As a consequence, known techniques from integrable systems 
theory, such as the finite gap integration scheme, can be applied [9], However, 
the author’s interest is rather in the associated geometry and more exactly in the 
geometric interpretation of the obtained spectral family and the relation with other 
(Bäcklund or Darboux type) transformations of the described geometric objects.
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12 Udo Hertrich-Jeromin

Besides background material on Möbius geometry covered in Section 1 and Sec­
tion 3, two main topics are discussed: isothermic surfaces and conformally flat 
hypersurfaces, both of which allow a description in terms of curved flats. The the­
ory of isothermic surfaces is, after a 15 year period of intensive recent research 
(and rediscovery of a wealth of classical results) rather well developed and their 
transformation theory, in many aspects intimately related to the theory of curved 
flats in the symmetric space of point pairs in the conformal three-sphere, is well 
understood. Some core aspects of the theory are discussed in Section 2 and Sec­
tion 4. The theory of conformally flat hypersurfaces, on the other hand, is less 
well developed and more work will be necessary to understand the implications of 
their relations with curved flats better. It is the author’s hope that the aspects of the 
theory discussed in Section 5 will raise interest and promote further work in the 
field.

2. The Classical Model

In this section we shall discuss the projective model of Möbius geometry. This 
model provides a slick approach to many calculations and arguments in Möbius 
geometry and can be considered as the heart of Möbius geometry as the other 
models or formalisms in Möbius geometry are derived from it.
After introducing the basic ideas of how to view Möbius geometry as a subgeom­
etry of projective geometry we shall discuss sphere pencils and sphere complexes, 
which will help to formulate some arguments in the discussion of the group of 
Möbius transformations. Then we shall see how the space form geometries appear 
as subgeometries of Möbius geometry. In the last section we will discuss the no­
tions of sphere congruence and envelope, providing the tools to define the central 
sphere congruence (or, conformal Gauss map) of a hypersurface in the conformal 
n-sphere. This notion plays, for example, a central role in the theory of Willmore 
surfaces (which are classically called “conformally minimal surfaces’’).
We shall sketch the basic facts and some of the proofs but for more details the 
reader is referred to either [1] or to [13, Chapter 1],

2,1, Motivation

We wish to study the conformal geometry of submanifolds M m C S n. Thus we 
think of S n not as the round sphere S n C R.n+1 equipped with its induced metric 
but rather equipped with just a method of “angle measurement” given by the round 
metric on S n, that is, with the conformal class of the standard round metric. Or, 
otherwise said, we are interested in those geometric properties of a submanifold 
that are invariant under conformal changes of the ambient metric, that is, under 
multiplication of the standard round metric of S n by any positive function.
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One possible approach is to study the transformation behaviour of the usual geo­
metric invariants of a submanifold in a Riemannian manifold -  such as its covariant 
derivative, second fundamental form and its normal connection. This allows to de­
termine conformal invariants for the submanifold such as, for example, the Weyl 
curvature tensor of its induced covariant derivative, its traceless second fundamen­
tal form or its normal curvature -  the geometry of which can then be studied. This 
is a common approach when coming from a Riemannian geometry background 
or when studying the conformal geometry of submanifolds in arbitrary conformal 
manifolds.
More specifically, if M m c  (N n, g) is a submanifold in a Riemannian manifold 
with induced metric I , induced covariant derivative V, (normal bundle valued) sec­
ond fundamental form I I ,  shape operator S  and normal connection V 1- then these 
geometric invariants of the submanifold transform as follows when the ambient 
metric is replaced by a conformally equivalent metric g := e2ug, u e  C °°(N n), 
and

V vw = V vw +  du(v) w +  du(îü) v — I(v , w)

Vy-n =  VyU  +  d'u(u) n 

I I (v , w) = II (v , w) — I(v , w) ( y ( Nn,9^u)-L 

Snv = A nv — d'u(n) v.

From these a variety of conformal invariants for submanifolds can be defined but 
-  unlike, for example, in the case of surfaces in Euclidean ambient space -  until 
now there seems to be no common agreement over which to use as a complete set 
of conformal invariants that determine (and describe!) a submanifold in conformal 
geometry, cf. [13, Section P.6]. The formulation of Bonnet-type theorems for sub­
manifolds in conformal or, more specifically, Möbius geometry is a topic of active 
research (see, for example, [3, 17]) and an ultimate formulation, without the usual 
non-degeneracy restrictions, has recently been developed [4],
For submanifolds in Möbius geometry, that is, submanifolds in the n-sphere S n 
equipped with its standard conformal structure, there is another more direct ap­
proach considering the ambient Möbius geometry as a subgeometry of projective 
geometry, following the ideas of F. Klein in his Erlanger Program [15]. As a moti­
vation of this approach, which we will discuss in more detail below, consider

S n c  Rn+1 =  {1} x Rn+1 c  R"+2

where we equip R”+2 with the Minkowski scalar product (the index one refers to
the signature of the metric on R.n+2) given by

\y\ — ~Vo +  Vi h------ 1- Vn+i-
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Thus the round //-sphere becomes

5 ” =  { y e R Ï +2; |y|2 =  0, y0 =  1}.

Now observe that, for any function u e C 00(Sn), we have

|d(e“y)|2 =  |e“ (ydiz +  dy)|2 =  e2“ (|y |2du2 +  2du(y,dy) +  |dy|2) =  e2“ |dy|2

since y lives in the light cone so that y± y , dy. Thus a conformal change of metric 
can be modelled by a rescaling and any section of the null line bundle L n+1 —» S n 
over the n-sphere S n, where

L n+1 =  {y G R”+2 ; \y\ =  0}

represents a choice of metric in the conformal class of the round metric of S n. Or, 
otherwise said, we can consider the projective light cone

L n+1f  R “  S n C  RJPn+1

as the conformal n-sphere, with any choice of homogeneous coordinates in the 
light cone providing a choice of Riemannian metric in the standard conformal class 
of metrics.
In the remainder of this sections we shall investigate this approach further.

2.2. The Projective Model

As discussed above, we consider the projective light cone MJPn+1 D L n+1 / R. =  
S n as the conformal n-sphere S n, equipped with the conformal structure of the 
standard round metric. Any choice of homogeneous coordinates (section of the 
null line bundle L n+1 —» S n) provides a choice of metric in the conformal class. 
Besides the points of S n, which can be considered as the first type of “elements” 
in Möbius geometry, the hyperspheres of S n form a second type of “elements” -  
just as points and hyperplanes (or, lines) are the “elements” of projective geometry. 
Note that the notion of a “hypersphere”, that is, of a totally umbilic hypersurface in 
S n, is a Möbius geometric notion and using, for example, the above transformation 
formula for the second fundamental form, it becomes apparent that the notion of an 
umbilic is conformally invariant since a conformal change of the ambient metric 
does not affect the traceless part of the second fundamental form (the vanishing of 
which characterizes umbilics).
Thinking of S n C  R.n+1 c  RJPn+1, a hypersphere in S n can be considered as the 
intersection of a hyperplane in RJPn+1 with S n as an absolute quadric. Identify­
ing a hyperplane that intersects S n transversally with its pole (with respect to S n 
as absolute quadric) in the “outer space” MJPq+1 of S n -  the part of RPn+1 that 
consists of points of (real) tangent lines to S n -  we obtain an identification of the 
hyperspheres in S n with the points of RJPn+1 “outside” S n [13, Section 1.1].
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On the level of homogeneous coordinates, polarity is expressed by orthogonality 
in R”+2 as the absolute quadric S n is the projective light cone of the Minkowski 
product on R”+2. Thus a hypersphere in S n is represented by the spacelike line in 
R.y+2 that is orthogonal to the hyperplane of the hypersphere.
For example, suppose that a hypersphere is given by its center m  e  S n C Rn+1 
and its radius r  e  (0, tt). Then the (spacelike) orthogonal complement of the 
hyperplane of this sphere is spanned by the vector (l, ^ 7 )  G {1} x Rn+1. Nor­
malizing we obtain a representative

s -  ü ib (cosr’m) e *ST ' 1 := {y e Rï +2; |y|2 =  1}
of the hypersphere in the Lorentz sphere 5 ” ' 1. Namely, x  G S n c  Rn+1 is a point 
of this hypersphere iff

x -  m  = cos r  O  <(l,a:), (1, ^ ) )  =  0.

Note how the first obtained formula fails for great hyperspheres in S n, where the 
radius becomes |  and the point of the outside of S n c  RPn+1 lies in the hyper­
plane at infinity of RPn+1.
Using the same line of argument one derives a formula for a hypersphere given in 
terms of its center m  g  Rn and radius r  g  (0, oo) in Rn c  S n, where Rn U{oo}
S n via stereographic projection

Rn U{oo} 3 x  g S ” c  RPn+1.

Here,

\x — ml =  r  o , x .
l-W

-)■(
l + ( M 2- r 2) m  l - ( N | 2- r 2)

))  = »
so that I  ~r ) ; k z i t i - z L i  j  g 5 ”+1 is a normalized representative of
the hypersphere in Rn.
In the same way as the incidence of a hypersphere and a point is given by polarity 
(orthogonality of their homogeneous coordinates), the intersection angle of two 
hyperspheres is given by the Minkowski scalar product. Consider a point x  g 
5 i n  52 C  Rn in the intersection of two hyperspheres Si c  Rn given in terms of 
their centers rrii and their radii n  as above and then

(S i ,S 2) r2+ r f —|ro!—ro2|2 
2r!r2

(x — 7 7 — 77%2)
n r  2 cos a

where a  is the intersection angle of the two hyperspheres. In particular, the two 
hyperspheres intersect orthogonally iff the two corresponding spacelike lines in 
Minkowski space are orthogonal.
At this point, we have a basic description of the elements of Möbius geometry 
and their relations in terms of the classical (projective) model of Möbius geom­
etry. However, in order to complete the description of the model, we will need
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to describe the Möbius group, that is, the group of conformal or (equivalently) 
hypersphere preserving transformations of S n in that model.

2.3. Sphere Pencils and Complexes

Lines and hyperplanes are basic objects in projective geometry. Having described 
the points and hyperspheres in the conformal //-sphere S n as points in projective 
(n +  l)-space RJPn+1, it seems natural to investigate the hypersphere configura­
tions given by lines and hyperplanes in this projective space [13, Section 1.2]. We 
discuss these two hypersphere configurations in turn.

Definition. A configuration o f hyperspheres in S n whose representatives form a 
line in the projective space MPn+1 is called a hypersphere pencil.

Sphere pencils come in three flavours, depending on whether the corresponding 
line does not intersect S n (“elliptic sphere pencil”), touches S n in one point (“par­
abolic sphere pencil”), or intersects S n transversally (“hyperbolic sphere pencil”). 
An elliptic sphere pencil can be thought of as being given by two orthogonally in­
tersecting hyperspheres: we may choose an orthonormal basis for the (spacelike) 
two-plane corresponding to the line in projective space RJPn+1. Clearly, these two 
hyperspheres intersect in a codimension two sphere in S n. Now, the homogeneous 
coordinate vector of any point in this codimension two sphere is orthogonal to both 
hyperspheres (incidence of a point and a hypersphere) and, hence, is orthogonal to 
any hypersphere of the pencil. Thus all the hyperspheres of the pencil intersect in 
this codimension two sphere, which can be identified with the pencil. So, elliptic 
sphere pencils can be identified with codimension two spheres in S n. A  suitable 
stereographic projection into R” gives a one-parameter family of hyperplanes in­
tersecting in an (n — 2)-plane.
A parabolic sphere pencil contains exactly one “point sphere”, given by the inter­
section point of the line in projective space with S n c  RJPn+1. As the correspond­
ing two-plane in the space of homogeneous coordinates is tangent to the light cone, 
the corresponding light line in the two-plane is orthogonal to all vectors in the two- 
plane (the induced metric on the two-plane is degenerate) and, consequently, this 
point is contained in all spheres of the pencil. Choosing homogeneous coordinates 
of this point and of one of the hyperspheres of the pencil as a basis for this degen­
erate two-plane we realize that a hypersphere that intersects this base hypersphere 
in the base point orthogonally will intersect all the hyperspheres of the pencil or­
thogonally. As a consequence, all the hyperspheres of the pencil touch (have first 
order contact) in the point sphere of the pencil. So, parabolic sphere pencils can 
be identified with contact elements in S n, that is, with a one-parameter family of 
hyperspheres that touch in the point sphere of the pencil. A suitable stereographic
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projection into R” gives a one-parameter family of parallel hyperplanes (which 
touch in the point at infinity).
A hyperbolic sphere pencil contains two “point spheres”, given by the intersection 
of the line in projective space with S n. Choosing homogeneous coordinates of 
these two points as a basis for the (Minkowski) two-plane in R”+2 corresponding 
to the line in projective space we learn that any hypersphere that contains the two 
points (whose representative is orthogonal to the basis vectors of the plane) inter­
sects every hypersphere of the pencil orthogonally. Thus a suitable stereographic 
projection yields a one-parameter family of concentric hyperspheres in Rn with 
their common center and the point at infinity being the two point spheres of the 
pencil. Now we turn to the second topic of this section.

Definition. A configuration o f hyperspheres in S n whose representatives form a 
hyperplane in projective space RPn+1 is called a hypersphere complex.

In terms of homogeneous coordinates, a hypersphere complex is given by a non­
zero vector in Ai e  R”+2 \  {0}

{S  e  <S”+1 ; (S,IC) = 0}.

Again, sphere complexes come in three different flavours, depending on whether 
the hyperplane of spheres intersects S n (“elliptic sphere complex”, |Ai|2 > 0), the 
hyperplane touches S n (“parabolic sphere complex”, |Ai|2 =  0), or the hyperplane 
does not meet S n (“hyperbolic sphere pencil”, |/C|2 < 0).
In the case of an elliptic sphere complex, we can interpret Ai as a hypersphere. 
Thus the hyperspheres of the elliptic sphere complex consists of all hyperspheres 
intersecting a given hypersphere orthogonally. Interpreting this hypersphere fC ~  
d H n as the boundary at infinity of a hyperbolic space, the hyperspheres of the 
complex become the hyperplanes of this hyperbolic space (and the complementary 
hyperbolic space obtained by inverting H n in Ai ~  d H n).
In the case of a parabolic sphere complex Ai becomes isotropic and can therefore 
be interpreted as a point in S n. Thinking of this point as the point at infinity of 
Rn c  gn  we characterize the hyperspheres of the complex as the hyperspheres 
containing the point at infinity of Rn, that is, as the hyperplanes of Rn.
In the case of a hyperbolic sphere pencil, |Ai|2 < 0, we can go back to our original 
construction and think of Ai =  (1,0) e  R”+2. Now, the hyperplanes of hyper­
spheres orthogonal to Ai all contain Ai, the “center” of S n c  Rn+1. Thus, in this 
case, we see that our hyperspheres become great spheres in S n, that is, hyperplanes 
in the round S n.
Thus, in all three cases, we can interpret the hyperspheres of a sphere complex 
as hyperplanes in a suitably chosen space form geometry. We shall see later how 
this relates to the “metric subgeometries” of Möbius geometry -  the space form
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geometries are all subgeometries of Möbius geometry, as one might expect as any 
motion in a space form is, in particular, also a conformal transformation and as 
a l  the space form geometries are (locally) conformally equivalent (via suitable 
stereographic projections).

2.4. Möbius Transformations

Clearly, since umbilics are invariant under conformal changes of the ambient met­
ric, any conformal transformation of S n maps hyperspheres to hyperspheres. In 
fact, every conformal transformation of S n does induce a transformation on the 
space S”+1 of hyperspheres in S n.

Definition. A hypersphere preserving diffeomorphism o f S n is called a Möbius 
transformation o f S n.

Thus, every conformal transformation of S n is a Möbius transformation.
In order to see the converse, one shows that Möbius transformations come from 
Lorentz transformations of R”+2, which immediately implies that they are confor­
mal.
Also, it is clear that any Lorentz transformation of R”+2 descends to a projective 
transformation of RPn+1 preserving S n as the absolute quadric. These, in turn, 
give rise to Möbius transformations as they preserve hyperplanes and polarity.
To see that any Möbius transformation gives rise to a Lorentz transformation of 
R”+2, one first convinces oneself that Möbius transformations preserve sphere pen­
cils of each type. Elliptic and parabolic sphere pencils can be characterized entirely 
in terms of incidence and contact and are hence preserved by Möbius transforma­
tions, hyperbolic sphere pencils are seen to be preserved as soon as one knows that 
orthogonal intersection is preserved, which can be proved using an interpretation 
of a parabolic sphere pencil as the tangent line of a curve intersecting the spheres 
of the pencil orthogonally. Next, one shows that Möbius transformations preserve 
sphere complexes. With these two facts at hand one can argue that any Möbius 
transformation of S n extends (in a unique way) to a projective transformation of 
the ambient RPn+1 that preserves S n C  RPn+1 as absolute quadric (see [13, Sec­
tion 1.3]). Now, the fundamental theorem of projective geometry takes care of 
the rest of the proof: every Möbius transformation extends to a projective trans­
formation of RPn+1 preserving S n that, in turn, can then be lifted to a Lorentz 
transformation of R”+2.
In fact, the Lorentz group Oi (n +  2) is a (trivial) double cover of the group of 
Möbius transformations of S n, Möb(n) =  0 \( n  +  2 )/ ±  1.
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In particular, inversions in hyperspheres extend to polar reflections in projective 
space which, in turn, lift to ordinary (Lorentz) reflections in R”+2

L n+1 3 » • •• r 2(v, S )S  e L n+1

where S  e  S ”+1 is a unit spacelike vector representing the hypersphere of inver­
sion.

2.5. Quadrics of Constant Curvature

Above we have discussed that the hyperspheres of a sphere complex, given by a 
non-zero vector JC e R”+2, can be thought of as the hyperplanes in a space form 
geometry. We shall now put that interpretation of a linear complex into context 
(see [13, Section 1.4]). First note that, given a fixed vector K. e R”+2 \  {0}, the 
hyperplane section

Q - : = { y E L n+1; (y,JC) = - 1}, k := -\1C\2 

of the light cone L n+1, has constant sectional curvature k . If k /  0 then Q” is, up 
to a Lorentz transformation, a standard model of S n C Rn+1 (if k > 0) or

of (two copies of) H n (^7= )  C R”+1 (if k < 0) and if k =  0 then observe that

R " 9 IW  e Q J c R x R " x R  = R”+2

is an isometry.
Again, we can argue that the hyperspheres of the linear complex defined by fC 
provide the hyperplanes of the space form geometry of Q” . In the cases k ^  0 the 
orthogonal hyperplane S L c  R”+2 of a hypersphere S±JC in the linear complex 
contains the point which takes the role of the origin when thinking of Q” as a 
standard model of a space form in the affine space {y ; (JC, y) =  —1}, and for the 
case re =  Owe just stick with our previous argument that the hyperplanes in Q” 
are just the hyperspheres that contain the point at infinity (given by 1C).
However, more can be said: the (mean) curvature i f  of a hypersphere S  e  S”+1 
in Q” is given by

H  = —(S, 1C).

In this setup, the classical stereographic projection S n —» Rn just becomes a cen­
tral projection from one hyperplane section of the light cone onto another

So ^
l+|;r|2 1— ];r]2

2 ’ 2 T + W ’ h w )  e  Ö1 \  {(!>0, -1 )}

where the respective light cones are Qo = {y E L n+1 ; (y, (1,0, —1)) =  —1} and
Qi = {y £ L n+1 ; {y, (1,0,0)) =  —1}.
More generally, one can consider the central projection from any hyperplane sec­
tion of the light cone to another as a stereographic projection (the points on the
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light cone generators that are parallel to either of the two hyperplanes need to be 
removed for these projections). Clearly these maps are conformal and hence can 
qualify as “stereographic projections.”
To obtain the group of motions of one of these space form geometries observe 
that it must be a subgroup of the Möbius group and, therefore, must come from 
a Lorentz transformation of R”+2 (in the case k <  Owe only consider motions 
that extend smoothly through the infinity boundary, separating the two hyperbolic 
spaces). Obviously, all Lorentz transformations that fix fC provide isometries of 
Q” and hence motions of the space form geometry. Again, an argument using the 
standard models of the space forms proves the converse.

2.6. Sphere Congruences and Their Envelopes

One of the most central notion in Möbius differential geometry is that of a (hy- 
per)sphere congruence and its envelopes. For example, in the geometry of surfaces 
in three-dimensional Möbius geometry the “conformal Gauss map,” which takes 
the role of the ordinary Gauss map of surfaces in Euclidean space, is a certain 
sphere congruence enveloped by the surface.

Definition. A sphere congruence is a smooth map S  : M m —» S”+1 into the space 
o f hyperspheres in S n. We say that an immersion f  : M m —> S n envelops a sphere 
congruence S  : M m ^  S ^ +1 if for all p G M m, f (p)  G S(p) anddpf ( T pM)  C 
Tf(p)S(p)> is> submanifold touches the spheres in corresponding points.

As we already discussed above, the incidence of f (p)  and S(p)  can, analytically, 
be expressed as

0 =( f (p) ,S (p) ) .
The touching condition means that the points of f ( M m) that are “infinitely close” 
to f (p)  also lie on that sphere, that is,

0 =  (f(p)  +  d Pf ,S(p) )  =  (dp/ ,  S(p)) o  0 =  ( f (p) ,dpS).

Thus, an enveloped sphere congruence can be interpreted as a unit normal vector 
field (Gauss map) of / ,  or conversely, an envelope of a sphere congruence S  can 
be viewed as an isotropic normal field of S.  Both of these viewpoints are useful at 
times.
Also note that, if /  envelops a sphere congruence S , then it envelops any sphere 
congruence S  +  a / ,  where a : M m —> M. is an arbitrary function. In the hyper­
surface case, m  =  n — 1, any two enveloped sphere congruences are related in 
this way: at each point p G M !l 1 the sphere must lie in the parabolic sphere pen­
cil given by the point f (p)  and the sphere S(p)  of the original sphere congruence 
enveloped by / .
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As an example consider an immersion g : M n_1 —» S n C Rn+1 with unit normal 
field n : M n_1 —> S n. Then T  := (0, n) is the tangent plane congruence of 
/  =  (fi, g) in the round sphere S n which is, clearly, enveloped by / .  Note that 
S  =  k f  + T  yields a curvature sphere of /  at p e  M n_1 when

dvS(p) = dvk(p) f (p)  +  (0, dvn +  kdvg)(p) || f (p)

for some v e  TpM n~1. This shows that the curvature directions v and the curva­
ture spheres of /  at a point p e  M n_1 are Möbius invariant.

Definition. Let g : M n_1 —» S n C Rn+1 be an immersion with unit normal field 
n : M n_1 —> S n. Then the sphere congruence

Z  := H  f  + T  = ( H , H g  + n)

where H  is the mean curvature o f / ,  is called the central sphere congruence o f f .

The central sphere congruence is connected to the hypersurface in a conformally 
invariant way. This is most easily seen by considering the second fundamental 
form of /  with respect to S  as a unit normal field

- ( d Z , d f )  = - ( d n  + Hdg) - dg

is the unique choice of sphere congruence for which the second fundamental form 
becomes trace free -  remember from the introduction that the trace free second 
fundamental form is conformally invariant.
In the case n =  3, the central sphere congruence is also called the conformal Gauss 
map of / .  The conformal Gauss map is, away from umbilics, the unique sphere 
congruence that induces a conformally equivalent metric on M 2. This provides 
another argument for the conformal invariance of the central sphere congruence in 
the surface case.

3. Curved Flats

In this section we shall consider a classical problem discussed in Blaschke’s [1] 
book: when do the two envelopes of a sphere congruence in the conformal three- 
sphere induce conformally equivalent metrics? Neglecting the case of dual Will- 
more surfaces, which also appear as a solution of this problem, we shall see how 
we arrive at a very simple type integrable system, at “curved flats,” cf. [9]. In this 
context we will also discover a close relationship with Christoffel’s problem, which 
is a similar problem as Blaschke’s problem but in Euclidean ambient geometry.
A more in-depth discussion of the material in this section can be found in [1] or 
in [13, Chapter 3],
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3.1. Blaschke’s Problem

We consider the following situation: let S  : M 2 —» S 4 be a congruence of two- 
spheres in the conformal S 3 so that its induced metric I  =  |dS |2 is positive 
definite. Then, since dS_LS, the normal bundle of S  has signature (1,1) and, 
consequently, S  has two isotropic normal fields / ,  /  : M 2 —» L 4. We think of 
/ ,  /  : M 2 —» S3 =  L 4/M. as the two envelopes of S.

Now we consider the following problem: when do the two envelopes /  and /  of 
the sphere congruence S  induce conformally equivalent metrics |d / |2 and |d / |2 
on M 2, that is, when is the map f (p)  ^  f (p)  assigning to each point of /  the 
corresponding point on the other envelope f  of S  conformal?
Thinking of /  as an (isotropic) normal field to S  we can consider the shape operator 
A  := —dS -1 o d f T of S  with respect to / ,  where (.)r  denotes the projection onto 
the tangent plane of S.  Note that, since f  AS,  dS, / ,  we learn that d f  AS,  f  so that

d /  =  d f T mod /  => \ d j f  = \d fT \2 = I ( A , A)  = I ( A 2.,.).

Similarly |d / |2 =  I  (A2. , .) with the shape operator of S  with respect to /  as a 
normal field. Hence, conformality of the induced metrics of /  and /  amounts to

Â2|d / |2 =  A2|d / |2 o  A2^ 2 =  A2i 2

O  Â2(tr A A  -  det A  id) =  A2(tr Â Â  -  det Â  id)

where we use Cayley-Hamilton’s formula for the last equivalence.
Thus, we have two cases:

1) A, A  and id are linearly independent -  then we must have tr  A  =  tr  A  =  0, 
or

2) A, A  and id are linearly dependent -  then we have [A, A] =  0, that is, A  
and A  simultaneously diagonalize so that we obtain two subcases (oj and âi 
denote the eigenvalues of A  and A,  respectively)

2a) Aai =  Aâi and Aci2 =  AÔ2 with A > 0, or 
2b) Aai =  Aâi and Aa2 =  —AÔ2 with A, A > 0.

The case 1) leads to dual pairs of Willmore (conformally minimal) surfaces, which 
are the envelopes of a minimal sphere congruence in S 4, that is, a sphere congru­
ence that is a minimal surface in the Lorentz sphere.
Here we shall concern ourselves with the case 2), which will lead us to Darboux 
pairs of isothermic surfaces and to curved flats in the (symmetric) space of point 
pairs in the conformal three-sphere. (For the simplicity of the discussion we shall 
neglect mixing cases.)
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3.2. Ribaueour Sphere Congruences

To facilitate computations in this section we normalize /  and /  so that ( /, / )  =  1 
(here we use again that the normal bundle of S  has signature (1,1) so that the two 
envelopes /  and /  of S  are distinct at all points).
With this normalization we write the normal connection of S  as

V Lf  = u f ,  V Lf  = - u f

with the one-form u =  (d/ ,  / ) .  Now, since d/  =  d / r  + u f  and d/  =  d / r  — 2/ / ,  
the normal curvature of S  computes from a Ricci type equation

du = ( d / A d / )  =  ( d / r A d / r ) -  W U / =  J([^ , i ] . , .).
=0

Thus the normal curvature of S  vanishes if and only the shape operators with re­
spect to the two isotropic normal fields commute.
Note that, as a consequence, the sphere congruences S  in the above cases 2a) and 
2b) have flat normal bundle.
In order to interpret this condition geometrically, we now switch viewpoint and 
think of 5  as a unit normal field of /  rather than of /  as an isotropic normal 
field of S.  For this purpose we shall assume that /  is an immersion, that is, its 
induced metric |d / |2 =  I  (A2.,.) is positive definite. As a consequence, A  is 
regular (det A  /  0) and, since

- ( d S , d f ) = I ( A . , . )  = I ( A 2 o A - 1.,.)

A-1 is the shape operator of /  with respect to 5  as a normal field. Hence the 
eigendirections of A  are the curvature directions of /  as an immersion into S3.
A similar statement holds for / :  the eigendirections of A  are the curvature direc­
tions of /  : M 2 —» S3 as soon as /  is an immersion. From this we conclude that 
when / ,  /  : M 2 —» S3 are immersions then their curvature directions correspond 
if and only if the normal bundle of S,  spanned by /  and / ,  is flat.
In this way, we make contact with the classical notion of a “Ribaueour sphere con­
gruence.’’ Classically, a sphere congruence S  is called Ribaueour if the curvature 
lines on its two envelopes do correspond (under the map f (p)  ^  f(p)  that maps a 
point of contact with a sphere S(p)  on one envelope to the point of contact with the 
same sphere on the other envelope). Our equivalent formulation is slightly more 
general (cf. [13, Section 3.1]).

Definition. A sphere congruence S  : M 2 S f  is called a Ribaueour sphere
congruence i f  the rank two vector bundle span{/, /}  spanned by its two envelopes 
is flat.
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Thus: the sphere congruences in our cases 2a) and 2b) above are Ribaucour sphere 
congruences.

3.3. Symmetry Breaking

We shall now consider case 2a). As the sphere congruence S  is Ribaucour, as 
discussed above, we may normalize / ,  /  : M 2 —» L 4 so that {/, / )  =  1 (as before) 
and, additionally, u = 0. That is, we choose /  and /  to be parallel sections of the 
flat normal bundle of S.
Now we set k := 2 j  (we have A > 0) so that, with df T =  d/  and df T =  d/  

i  =  § A &  0 =  f  d f T -  d f T = f  d /  -  d f.

Employing the Codazzi equations d2/  =  d2/  =  0 we then get

0 =  d ( f d f  -  d f )  = | d « A d f

so that d/c =  0 since /  is an immersion. That is, k is a constant and we learn that

1C ■= f  /  -  /

is a constant vector with (/, K.) = —1. The immersion /  : M 2 Q | takes values 
in the quadric

Q l = { y e L 4 ;(y,lC) = - 1} 
of constant curvature k =  — \1C\2.
Moreover, S(p)_UC for all p e M 2 so that the spheres of the congruence are the 
tangent planes of /  in its ambient constant curvature geometry. Also note that 
(unless k =  0 in which case /  =  —K.)

; = § / - / c  =  § ( / - 2 ^ / c )

is Möbius equivalent to /  -  in fact, /  is obtained as a polar reflection of /  in 
the vector fC defining the ambient quadric of constant curvature: hence /  is the 
antipodal to /  in the case k > 0 and it is obtained by reflection at the infinity 
boundary of hyperbolic space in case k < 0.

3.4. Darboux Pairs

Now we consider case 2b). As before, we normalize /  and /  to be parallel sections 
of the normal bundle of S  with (/, / )  =  1 as S  has flat normal bundle.
Using the Codazzi equations for /  and /  combined with the equations from 2b) it 
can then be shown that /  and /  have common conformal curvature line coordinates 
[13, §3.2.1], Thus both envelopes, /  and / ,  of S  are isothermic surfaces.
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Definition. A surface is called isothermic if it has {locally, away from umbilics) 
conformal curvature line coordinates.

And, the two surfaces /  and /  are what is classically called Darboux transforms 
of each other.

Definition. In the situation o f case 2b), where the isothermic surfaces f  and f  
are conformal Ribaucour transforms o f each other, we say that f  and f  form a 
Darboux pair o f isothermic surfaces.

We shall see later how to construct a Darboux partner /  for a given isothermic 
surface, given an isothermic /  there are oo1+3 Darboux transforms /  of / .
For now, we are interested in a different aspect of Darboux pairs of isothermic 
surfaces: writing the second fundamental form of S  : M 2 —» R | in terms of the 
extended normal frame S, f  and /

I I (v ,  w) = —I(v,  w) S  +  I (Av,  w) f  + I (Âv,  w) f

we obtain

0 =  K  — ( I I (e i, ei), I I ( e 2,62)) = K  — {1 +  aiâ2 +  0102} =  K  — 1

as the Gauss equation of S,  where (e\ , 62) denotes an orthonormal principal frame. 
Thus, the extended tangent bundle span{S, dS} =  { /, f } j~ of S  is flat (note 
that the other components of the curvature tensor vanish trivially, R(y, w )S  =  
dvdwS  — dwdvS  — =  0). On the other hand, we already know that the
normal bundle span{/, /}  of S  is flat since S  is Ribaucour. Consequently, the 
extended Gauss map

7 : ' o(3?x(o 1(2) » P h-> 7 (p) := span{/(p), /(p)}

of S  into the symmetric space o f point pairs in S 3 is a curved flat [9].

Definition. Let 7  : M m —> G /K  a map into a symmetric space. Consider the 
symmetric decomposition

0 =  e®p,  [ M ] c e ,  [ e , p ]cp ,  [ p , p ] c e

o f the Lie algebra o f G, where t is the isotropy algebra, and write the correspond­
ing decomposition o f the connection form  F -1 d F  =  $  =  # |  +  $ p o /a  lift (frame) 
F  : G 0/7. Then 7 is called a curved flat if

[$p A $ p] =  0.

In the case at hand, of Darboux pairs of isothermic surfaces, it is straightforward 
to see that this definition is equivalent to the flatness of the two complementary 
sub-bundles span{/, /}  and { /, f } L of the trivial M|-bundle over the surface as 
discussed above.
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Also note that, in general, the notion of a curved flat does not depend on a choice 
of lift F  for the map 7. If F  =  F H , H  : M 2 —» K , denotes another lift for the 
same map into the symmetric space then

I  =  Ad ( i f 1)#  +  f l - h l H  and l p =  Kà( H~ 1) ^ v 
e  t

because 6 and p are A d (if_1)-stable, so that

[ïp A Ï P] =  A d C if1) ^  A $ p] 

showing that the curved flat condition is gauge invariant.
Now contemplate the integrability condition for the connection form of a curved 
flat

0 =  d$  +  §[$ A $] =  d $ e +  | [ $ e A $ e] +  | [ $ p A $ p] +  d $ p +  [$e A $ p]

ee ep

together with the curved flat condition [$p A $ p] =  0. Because of the indicated 
splitting of the Maurer-Cartan equation into 6- and p-parts we can introduce a 
(spectral) parameter fi to encode integrability and the curved flat condition as the 
integrability of a loop of connection forms

fj, 1—► := +  /i$p.

Namely,

0 =  d $ M +  | [ $ M A =  d $ e +  | [ $ e A $ e] +  pt{d$p +  [$e A $p]} +  ^  [$p A $ p]

splits into three equations for the coefficients of the ^-powers, giving that is 
integrable for all fi if and only if $1 =  =  $  is the connection form of a
lift of a curved flat. In this way, a curved flat gives rise to a one-parameter family 
of curved flats in the symmetric space G / K .
In the case at hand, this curved flat family gives rise to a one-parameter family of 
Darboux pairs { f fl, f fl}, fi e  R. We shall see later that the f fl can actually be de­
fined without reference to a Darboux transform /  of /  and that the family /j, ^  f fl 
is actually given by the classical T-transformation (or “Calapso transformation”). 
Equivalently, it arises from the conformal deformation studied by Cart an [7],

3.5. Christoffel Pairs

The curved flat family becomes singular for n  =  0. Here $0 =  takes values 
in the isotropy algebra and the corresponding curved flat becomes constant, that 
is, the two isothermic surfaces degenerate to two (distinct) points in S 3. However, 
by appropriately rescaling one or the other surface (using a ^-dependent gauge
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transformation) or by using Sym’s formula the two points can be “blown up” to 
discover two surfaces

U=0, / M=0 : M 2 l 3 =  TfoS z = TfoS 3.

These two limiting surfaces will also be isothermic and will be a solution to a 
problem in Euclidean space, Christoffel’s problem, very similar to the Blaschke’s 
problem in conformal geometry [8] or [13, Section 3.3]: “When do two surfaces 
/ ,  f*  : M 2 —» R3 have parallel tangent planes and induce conformally equivalent 
metrics?”
The solutions to this problem are, in a very analogous way to the solutions of 
Blaschke’s problem (again, as for Blaschke’s problem, we neglect any mixing of
the cases)

1) the curvature directions on the surfaces are not parallel -  then we find pairs 
of minimal surfaces whose differentials are “holomorphically related”

2) the curvature directions on the surfaces are parallel -  in that case we get two
subcases:

2a) pairs of similar surfaces (equivalent via a homothety and a translation) 
2b) Christoffel pairs of isothermic surfaces.

As in the Darboux pair case the properties of the solutions in 2b) can serve as a 
definition for the notion of a Chrsitoffel pair.

Definition. In the case 2b), where the isothermic surfaces f  and f*  have parallel 
principal directions and induce conformally equivalent metrics, we say that they 
form a Christoffel pair o f isothermic surfaces.

As discussed above, Christoffel pairs of isothermic surfaces appear as a limiting 
case in the associated family of Darboux pairs of isothermic surfaces, /  =  f fl=Q 
and /*  =  ffi=Q. The converse is also true -  any Christoffel pair arises in this way. 
In fact, a Christoffel pair gives rise to a family of Darboux pairs so that it arises as 
the limit of the family as p, —» 0 [13, §3.3.9].
As with the Darboux and Calapso transformations we shall see later how to con­
struct a Christoffel transform from a given isothermic surface in Euclidean space 
(in contrast to the other two transformations, the Euclidean ambient geometry plays 
a role for the Christoffel transformation, as the definition of a Christoffel pair sug­
gests).

4. A Quaternionic Formalism

In this section we learn about another approach to Möbius geometry. Just as in the 
two-dimensional case, Möbius transformations of the (conformal) three- or four- 
sphere can be described by linear fractional transformations, using quaternions.
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This approach provides a rather compact formalism, especially well suited to treat 
surface theory in the conformal three-sphere. A similar approach, using Vahlen 
matrices, can be used to study submanifolds in //-dimensional Möbius geometry -  
however, this latter approach lacks the possibility of a subversive but useful mixing 
of the complex structure on a conformal surface and the ambient algebraic struc­
ture. More details about the material discussed in this section can be found in [16] 
or in [13, Chapter 4],

4.1. The Idea

It is a well known fact that (orientation preserving) Möbius transformations of the 
two-sphere can be written as fractional linear transformations of the (compacti- 
fied) complex plane C U {oo} =  S 2. Or, otherwise said, they are the projective 
transformations of the complex projective line CP1 =  S 2

PGL(C2) x CP1 9 {A,Cv) ^  C{Av)  e  CP1.

Our goal here will be to see that the same ideas can be used to describe the Möbius 
transformations of the four-sphere or the three-sphere using quaternions. Identi­
fying H =  R4 we find that HP1 =  R4 U {oo} =  S 4 as in the complex case. 
However, here we have the first encounter of the problems arising from the quater­
nions not being commutative and we have to decide whether scalar multiplication 
on the space H2 of homogeneous coordinates is from the right or from the left. In 
order to keep the formalism as “normal looking” as possible, we will consider H2 
as a right vector space so that

HP1 =  { u H ; « e  H 2}

and GL(H2) acts by left multiplication of quatemionic 2 x 2-matrices on the co­
ordinate vectors,

PGL(H2) x HP1 9 (A,uH) ^  (Au)H e  HP1.

The kernel of this action is the real line as real multiples of A  get absorbed into the 
quatemionic line but general quatemionic multiples will result in a different lin­
ear fractional transformation because of the non-commutativity of the quaternions. 
Thus “PGL” refers to the group projectivized over the reals.
With this idea in mind we wish to:

1. show that this gives indeed a model for four- and three-dimensional Möbius
geometry, that is, PGL(H2) acts on HP1 =  S 4 (equipped with the confor­
mal structure inherited from the identification H =  R4) by Möbius trans­
formations, and

2. describe (hyper-)spheres and other Möbius geometric objects or configura­
tions in a convenient way in this model.
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The main idea to achieve these two goals is to link the quatemionic setup to the 
classical projective model that we discussed above. In order to do so there are two 
different ansatzes:

• identify spheres with Möbius involutions, i.e., take a group theoretic ap­
proach -  here the difficulty is that inversions in hyperspheres are orientation 
reversing and hence will not be described by fractional linear transforma­
tions; we will, however, later see that this is a very valuable idea in order to 
describe three-dimensional Möbius geometry (cf. [13, Section 4.8])

• use the six-dimensional real vector space of quatemionic Hermitian forms 
on H2 to model the underlying Minkowski space Rf of the classical projec­
tive model -  this will be our first approach (cf. [13, Section 4.3]).

4.2. Quatemionic Hermitian Forms

We look at the space 7i(H2) of quatemionic Hermitian on H2, that is, of maps 
S  : H2 x H2 —» H satisfying

i) S(y, w ) =  S(w,  v ) for any v, w e  H2
ii) S(v,  wX + w) = S(v,  w)X +  S(v,  w) for A e  H and v, w, w e  H 2.

Writing such a Hermitian form in terms of a quatemionic 2 x 2-matrix

we learn that the quatemionic matrix S  has to satisfy S 1 = S  so that it is instantly 
clear that the space of quatemionic Hermitian forms 7i(H2) is a real 6-dimensional 
vector space,

Polarization then yields a Minkowski scalar product on 7i(H2) =  Rf.
Note that, in general, there is no sensible notion of determinant for quatemionic 
2 x 2-matrices because of the quaternions being non-commutative. However, using 
the map

End(H2) .3 ,4 • • A1 A c  H{H2) 
one can introduce an order four map, the Study determinant 

[.] : End(H2) —» R, A ^  [A] := det (ÄtA)

which shares some useful properties with the determinant, caused by the fact that 
the Study determinant of a quatemionic 2 x 2-matrix is the usual determinant of

i 2 x i 2 3 (v, w) vtSw  e  H

Now we equip 7i(H2) with — det as a quadratic form: we let
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the complex 4 x 4-matrix corresponding to the quaternionic 2 x 2-matrix under the 
identification

C ® Cj =  H 9 a +  6j <-► (^_ | ^  e End(C2).

In particular,

• A e  End(H2) is invertible if and only if [A] /  0, i.e.,
GL(H2) =  {A  e End(H2) ; [A] #  0}

•  [AB] = [A] [B] for A, B  e End(H2), and
• \AlS A \2 =  [A] |5 |2 for A  e End(H2) and 5  e H (H 2).

The last property shows that the 15-dimensional group

SL(H2) := {A  e End(H2) ; [A] =  1}

acts by isometries on Rf =  7i(H2) via

SL(H2) x H (H2) 9 (A,S) ^  A ■ S  := A ^ S A ”1 e H (H2).

Thus we obtain a group homomorphism r  : SL(H2) —» Oi(6). In fact, SL(H2) 
is the universal cover of the identity component of the Lorentz group Oi (6) as is 
seen by showing that its differential at the identity,

e : st(H2) Oi(6), e ( X ) S  = - S X  -  x fs
is a Lie algebra isomorphism.
At this point we have a full description of four-dimensional Möbius geometry in 
terms of quaternionic 2 x 2-matrices available to us by rewriting the projective 
model discussed above in terms of quaternions. However, we still need to make 
contact with the identification of the conformal four-sphere with the quaternionic 
projective line HP1.
Thus, to show that HP1 =  I 5/ i  c  PH(H.2) consider the map

HP1 3 t i l =  U ^ R S v : = r (  T"1,? )  e PH(  H2).
\V2J \-V2Vx | n | -  J

Note that this map is well defined since quaternionic multiples of v result in real 
multiples of Sv. Moreover, |5„|2 =  0 so that it takes values in the projective light 
cone. In order to see that every light line in H(M2) is the image of a point in HP1 
note that v spans the light cone of Sv

vlSvv =  0 and wlSvw =  0 =>• w || v.

To verify the second statement write Sv = ^ | ^ . l f s  =  0 then also h =  0 since 
0 =  IStj2 =  \h\2 — s t and, without loss of generality, t  =  1 so that v =  (J) ;  if
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s /  0, without loss of generality, s = 1 and Sv =  ̂|  ^2 ) so that v = ( ^ ) ,  then

(ß, 1) 0  ^ 2 )  ( j )  =  \x +  h\2 =  0 O  x  = - h .

Consequently, the inverse of the above map assigns to a light line in 7d(H2), 
spanned by a non-zero vector S  e L 5 c  7d(H2), the (unique) light line of S  
in H2. Note also that, as a consequence, the action

GL(H2) x HP1 9 (A, vU) i-> (Av)U e HP1

of PGL(H2) on HP1 is compatible with the action

SL(H2) x H( H2) 9 (A  5) ^  Ä ^ S A - 1 e H (H2)

of SL(H2) on Rf because the actions preserve the light cone relation between 
quaternionic Herrn it ian forms and points in HP1 since

(A ■ S)(Av,  Av) = ’Ä v { Ä =̂ S A ~ 1)Av = vlSv  = S(v,  v).

Finally we would like to establish the incidence relation for a point in HP1 and a 
(hyper-)sphere S  e c  7ï(H2). Again we write S  = and consider two
cases:

• if s =  0, then S  =  _°fl 2d ) suitable n e S 3 c i  and d e  R. Also, 
for r ( f  )

(.S , Sv) = — I S(v,  v) = x  ■ n — d

so that S  describes a plane with normal n and distance d from the origin in
H4 =  R4

• if 8 ß  0, then S  = ^  ̂ |TOj2^r2 ) with some m e  H and r  e  R, and now 
for r ( f  )

{S, Sv) = S(v,  v) = ~ ^ { \ x  -  m |2 -  r 2}

so that the light cone of S  becomes a sphere with center m  e R4 and 
radius r.

In any case, (S , Sv) =  0 iff S(v,  v) =  0 so that incidence translates into isotropy 
-  a point uH e HP1 is on the hypersphere described by S  e <Sf c  7d(H2) if and 
only if S(v,  v) =  0, that is, if and only if it is a light line with respect to S  as an 
inner product o n ! 2.
At this point it becomes entirely straightforward to reformulate the descriptions for 
geometric configurations discussed in the classical context into the quaternionic 
setup. For example, the notion of an envelope as we have to remember that an
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immersion /  : M m —» S 4 envelopes a sphere congruence S  : M m —» Sf if and 
only if

f ± S , d S  o  S ( f , f )  =  0, d S ( f , f )  =  0

where /  on the left side is interpreted as a lift of the immersion into S 4 = L 5/ R  
into the light cone L 5 c  R.f whereas, on the right side, it is interpreted as a lift 
from S 4 = HP1 into the space H2 of homogeneous coordinates of HP1.

4.3. Möbius Involutions

From the projective model of Möbius geometry we know how to describe two- 
spheres in S 4 in terms of elliptic (hyper-)sphere pencils. Choosing two base points 
for the line in Sf ,  we may describe it as the orthogonal intersection of two hyper­
spheres. Thinking of a hypersphere as the fixed point set of the inversion in this 
hypersphere, we may identify a two-sphere with the Möbius involution obtained 
by two consecutive inversions in orthogonal hyperspheres intersecting in the two- 
sphere. Note that the resulting Möbius involution does neither depend on the order 
of the inversions (the inversions commute since the hyperspheres intersect orthog­
onally) nor on the choice of orthogonal hyperspheres. If S i , 52 G Sf denote two 
orthogonal hyperspheres and

S\  =  cos a  S\  +  sin a  S 2 , S 2 =  — sin a  Si  +  cos a  S 2

then the composition of the two inversions in Si  and S 2 is given by

v ^  v -  2(v, S i )S i  -  2(v, § 2 ) § 2  = v -  2(v, S i )S i  -  2(v, 5'2)5,2.

As a composition of two inversions the resulting Möbius transformation is orien­
tation preserving and can therefore be written as a fractional linear transformation 
J  e  SL(H2) of HP1. And, as J  is an involution we have J 2 =  ±1. It turns out 
[13, §4.8.1] that the space of two-spheres in S 4 can be identified with the space

<S(H2) := {J  e  End(H2) ; J 2 =  -1 }

of almost complex structures on H2 so that incidence is given as a fixed point 
relation: a point uH e  HP1 is on the two-sphere given by J  e  <S(H2) if and only 
if (Jn)H  =  nH. Otherwise said, we must have Jv  =  vX with some A e  H when 
nH is on the two-sphere J . Then, since J 2 =  —1, we learn that A2 =  — 1 so that 
A 6 5 2 c  ImH. This last observation is the core of a proof that <S(H2) is indeed 
the space of two-spheres in S 4 =  HP1.
To make contact with the hyperspheres of the elliptic pencil describing the two- 
sphere J  observe the following: if S  e  7i(H2) and J  is symmetric with respect to 
S  then

0 =  S(Jv ,  Jv)  — S(v,  J 2v) =  (1 -)- |A|2) S(v,  v)
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as soon as Jv  =  vX so that the two-sphere J  is contained in the hypersphere S.  
In this case, a second hypersphere containing the two-sphere J  and intersecting S  
orthogonally can be defined by

S  := SJ,  i.e., S(v,  w) := S(v,  Jw).

The converse of the above statement is also true: a two-sphere J  e  <S(H2) is 
contained in a three-sphere S  E 77 (H2) if and only if J  is symmetric with respect 
to 5  [13, §4.8.6],
We are especially interested in the two-spheres in a fixed S 3 c  S 4 in order to study 
the geometry of surfaces in codimension one. For this it is convenient to take

S 3 := f  J J'j so that 0 =  (x, 1)S3 o  x E I m l

that is, S 3 =  I m l U  {oo}. Now, using the above description of hyperspheres and 
hyperplanes and apply our formula S  =  S J  with S  =  S 3, we obtain

J  = n 2d 
0 —n or J  =  è

m
1

\m\ — r 
—m

with ii C. S'2 C I inl l  or m  E R3 =  I m B  and r E R. for hyperplanes and 
hyperspheres in R3: note that the above J ’s are symmetric with respect to 5 3, i.e., 
S 3J  =  ß S 3. With these J  the fixed point set is, as expected, the plane orthogonal 
to n with distance d from the origin in R3 =  Im H

n 2 d \ fx  
0 - n )  l l A =  — n, nx  +  xn  +  2d =  0

and the sphere with center m  and radius r  in R3 =  Im H
_2\m  \m\ — r 

1 —m X X = j.{x -  m), i i2 2\x — ml =  r .

It does not come as a surprise that the above matrix representations for two-spheres 
in S 3 are very similar to those given in terms of Vahlen matrices in Rn, cf. [13, 
Section 7.1].

5. Isothermic Surfaces

In this section we come back to isothermic surfaces, which we have already dis­
cussed in Section 2 above. The class of isothermic surfaces is a very rich class 
of surfaces, containing so diverse surfaces like surfaces of revolution, cones and 
cylinders, quadrics, surfaces of constant mean curvature in any space form. A par­
ticularly interesting feature of isothermic surfaces is their very rich transformation 
theory (which gives rise to, for example, Bianchi’s Bäcklund type transformation 
for surfaces of constant mean curvature), which we briefly touched upon earlier in
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Section 2. The quatemionic formalism is rather well suited to discuss the transfor­
mation theory of isothermic surfaces in an efficient way. This will be the subject 
of the present section. More details about the material discussed in this section as 
well as many references to the original literature can be found in [13, Chapter 5].

5,1, The Christoffel Transformation

Recall that a surface /  : M 2 —» R3 =  Im H is called isothermic if it has (locally) 
conformal curvature line parameters (x, y). Using quaternions we can formulate 
this as

i) conformality: |f x \2 =  \fy \2 and f x± f y o  f f f ÿ 1 +  / y / ” 1 =  0 (here (.)_1 
denotes quatemionic inverse)

ii) conjugate net: f xy =  a f x +  bfy with suitable real functions a, b.

Now, given an isothermic surface /  in terms of conformal curvature line parameters 
(x, y) we consider the Revalued one-form

d/*  := f ^ d x  -  /"M y .

This is a well defined differential since

d ( J ^ d x  -  f y 1dy) = ( a f ÿ 1 +  fr/“ 1) ^ / “ 1 +  f y f x 1) dx A dy = 0.

Moreover, the surface /*  such defined is isothermic (with the same choice of con­
formal curvature line parameters)

i) conformality: /M /y  +  f ÿ 1f x =  f f f ÿ 1 +  f y f x 1 =  0, and

ii) conjugate net: { f x 1)y = - f ^ f x y f x 1 = - a f x 1 +  b f ÿ 1.
Note that the surface /*  so defined and the original surface /  have parallel cur­
vature directions and induce conformally equivalent metrics. In other words, they 
form a Christoffel pair in the sense of Section 2 and we obtain the promised recipe 
for cooking up a Christoffel partner to any given isothermic surface, by integrating 
the above differential d/*.
Observe that

d / A d f* = - ( j x f ÿ 1 + f y f x 1) dx A d y = 0.

As a consequence we find that

d/*  =  e(dn  + H d f )

where n is a unit normal field of / ,  H  denotes the mean curvature of /  and q is an 
integrating factor for the one-form dn + H d f .  Clearly this integrating factor q can 
be chosen to be constant when the mean curvature H  = const is constant so that

r  = e(n + H f )  = f + ^ n
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up to scaling and translation. Thus f*  becomes the parallel constant mean curva­
ture surface of /  (or, the Gauss map n of /  if /  is minimal, H  =  0).

5.2. The Goursat Transformation

The Christoffel transform /*  of an isothermic surface depends on the Euclidean 
ambient geometry of the surface whereas the notion of an isothermic surface is a 
conformal notion. Using this interplay between the two geometries we can define 
another transformation:

Definition. Suppose f  : M 2 —> R3 is isothermic and A  G Möb(3) is a Möbius 
transformation. Then the isothermic surface ( A f *)* is called a Goursat transform

This generalizes the classical Goursat transformation for minimal surfaces in which 
the action of a complex orthogonal transformation on the holomorphic null curve in 
the Weierstrass representation of a minimal surface is equivalent to a Möbius trans­
formation of its Gauss map. Note that, in order to reconstruct a minimal surface 
from its (totally umbilic) Gauss map, we have to specify further information such 
as a “curvature line net’’ for the Gauss map or a holomorphic quadratic (“Hopf”) 
differential.
If the Möbius transformation A  used in the Goursat transformation is a Euclidean 
motion then the resulting Goursat transform of an isothermic surface will just be 
similar to the original surface. If, however, we make use of an essential Möbius 
transformation then the resulting Goursat transform will in general be a new sur­
face. So, when we take A : x  t—> (x — m )-1 we find that

d(A/) = - ( / - m ) " 1d / ( / - m ) - 1 => d ( i / r  =  - ( / - m ) d f ( / - m )

because we must have d( Af )  A d(Af )*  =  0. Hence, for the differential of a 
Goursat transform of / ,  we find

then we can extract the differential of the Christoffel transform of A f  from r  by 
taking a suitable “off diagonal’’ element (in terms of a changed basis)

off-

d ( A f Y  = - i f * - m ) d f  ( f * - m )

(note how we could absorb m  into a constant of the integration of /*). 
Another point of view is the following. If we define
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Since dr =  0 we can integrate r  into the algebra sl(H 2) to obtain a “master 
Christoffel transform” F*, dF* =  r ,  of / ,  i.e., a matrix valued surface from which 
we can extract the Christoffel transforms of all possible Möbius transforms of / .  
Note that these surfaces are all Goursat transforms of each other.
This “retraction form” r  will play a central role in the transformation theory of 
isothermic surfaces.
An example of particular interest is the (local) classical Weierstrass representation 
for minimal surfaces -  which can be interpreted as a special case of a Goursat 
transformation, where we consider a pair of holomorphic functions as a degenerate 
Christoffel pair [13, §5.3.21]. Take

/  =  - j  g and d f*  =  |d /ij

where g and h are two holomorphic functions (note that d/  A d f*  =  0) so that we 
obtain

=  i (~jff  dhj j g d hg\
T 2 V d/ij —dhg)

and

(1, - i ) Re (gdh) i +  Re (g2 - l ) dh 
2

j +  Re i (g2 +  l )d h
--------—----k

5.3. The Darboux Transformation

Let us consider the following linear system {“Darboux’s linear system”) for a map
/  : M 2 —» l 3

(d +  At ) ||

where r  is the retraction form of an isothermic surface and A e  !  a real parameter. 
This linear system is the linearization of a Riccati type partial differential equation

d f  = M j  -  f ) d f ( J  -  f )

so that the two equations are equivalent. Rewriting the Riccati equation as

d f  = H i  -  ! ?  ■ ( /  -  / )  d t u  -  f ) - 1

we learn that /  and /  envelope a sphere congruence (which, in fact, is a Ribau- 
cour sphere congruence) and that the induced metrics are conformally equivalent. 
Thus we obtain what we called a Darboux pair of isothermic surfaces in Section 2. 
We obtain the promised recipe for cooking up Darboux transforms from a given 
isothermic surface, by solving the above Riccati type partial differential equation
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or, equivalently, Darboux’s linear system. Note that the Riccati type partial differ­
ential equation is completely intégrable in the sense that there are no integrability 
conditions

d{(/ -  /) d rc ; -  /)> = d ;  a d re ; -  /) -  </ -  /) d r  a d/ = o
when using the equation for d /  again. Thus, apart from the real (spectral) pa­
rameter A we have the choice of an initial condition for /  when integrating the 
Riccati equation. This accounts for the well know four-parameter family of Dar- 
boux transforms of a given isothermic surface in S 3 (when considering surfaces in 
S 4 we obtain a five-parameter family of Darboux transforms for a given isothermic 
surface).
An interesting example for the Darboux transformation is given by pairs of parallel 
constant mean curvature surfaces. If we take /  to have constant mean curvature 
H  /  0 (and, therefore, to be isothermic) in R3 then its Christoffel transform can 
be taken to be /*  =  /  +  ^ n .  But then /  := /*  is also a solution to the Riccati 
type equation above

d /  =  d /  +  j jd n  = H 2 ( j jn)  (d /  +  j jdn)  ( ±n )  = H 2 ( /  -  / )  d f  (J  -  / ) .

It is a characteristic feature of constant mean curvature surfaces in Euclidean space 
to have a simultaneous Christoffel and Darboux transforms [11],
Finally, we should mention that there is another way to formulate the equations 
defining the Darboux transformation. Firstly, note that A ^  d +  At is a loop of flat 
connections since

d r  =  0 and [r A r] =  0.
Hence there is a map T x : M 2 SL(H2) satisfying

d r A =  T X XT'

Secondly, note that v : M 2 H2 is (d +  At )-parallel if and only if T xv = const.
Thus, having determined T x for some A, it is then a purely algebraic matter to 
determine any Darboux transform for that A and its homogeneous coordinates are
given by T ~ xc, where c e  i 2 is a suitable vector.

5,4, The Calapso Transformation

As the above loop of maps T x : M 2 - r  Möb(3) is a central object in the theory 
of isothermic surfaces, we name it after one of its fathers (the other father being 
Bianchi, who called the transformation the “T-transformation” and for this reason 
we use “T a”)

Definition. The transformations T x : M 2 - r  Möb(3), where dT x = T x\ t , will 
be called the Calapso transformations of the isothermic surface f.
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As already discussed, the T x give rise to the Darboux transforms of an isothermic 
surface /  via the integrated form

T x ( Q  = const

of Darboux’s linear system. A second interesting application is that the above 
master Christoffel transform F* of /  can be obtained from the family of Calapso 
transformations A —» T x via Sym’s formula

F ‘ =  (ÄlA,orA) T r 1

when we base the loop A —» T x at the identity (note that dT° =  0 so that T° is a 
constant Möbius transformation which we can choose to be the identity). This is 
readily verified by taking derivatives to find

d { ( ife|A. 0r ' ) ( r " ) - 1} = A d ( r V

Note that the Calapso transformations can be considered as being attached to an 
isothermic surface in the conformal three-sphere as they do -  even though the 
formula for r  contains reference to the Euclidean ambient geometry of /  in the 
form of d/*  -  not depend on how an isothermic surface is placed in Euclidean 
space in an essential way. If A is an essential Möbius transformation, say A =

( ?  ̂ 1, so that\1  —m j

/  =  ( /  -  rn )-1 and d/*  =  - ( /  -  m) d/ * ( /  -  m) 

as discussed above then

t  = A d(A )r and T x = Ad (A)TX

(Tx is only determined by its differential equation up to post composition by a 
Möbius transformation, anyway -  which we can fix by basing the loop of T x's at 
the identity, as above).
Thus, the surfaces f x := T xf  are defined in a conformally invariant way. These 
surfaces turn out to be isothermic and there are various way to prove this -  the 
simplest way may be to see that the f x have retraction forms

t x = Ad ( T x )t

after convincing ourselves that the existence of a closed retraction form is a char­
acterization for isothermic surfaces [13, §5.3.19].

Definition. The surfaces f x =  T xf  are called the Calapso transforms of an 
isothermic surface / .
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Our final mission is to relate these Calapso transforms to the curved flat family of 
Darboux pairs. For this consider the gauge transformation

F-' := T aF° where F° = Q  { )  ( J  ° )

is a Euclidean frame of the isothermic surface /  : M 2 —» R3 =  Im H. We learn 
that F x solves the system

d F x = F x
0 f i d f

yd f*  0

which is, for X = fi2, a quatemionic version of the curved flat system of the 
Christoffel pair /  =  / M=o and /*  =  / M=o, as discussed in Section 2. Thus,
F fj2 =  ( /M, f fJ)  provide the curved flat associated family of Darboux pairs -  but we

2 2also see, as promised in Section 2, that the / M =  / M =  T fl f  can be constructed 
from /  without reference to the curved flat system, that is, without reference to 
suitable Darboux partners.
For constant mean curvature surfaces in space forms the Calapso transformation 
yields the Lawson correspondence [13, §5.5.29]. If k denotes the constant curva­
ture of the ambient space form then H 2 +  k remains unchanged when the Calapso 
transforms f x are suitably placed in an ambient space form of curvature

k\  =  k +  4 H  X — 4À2.

In particular, the Calapso transforms of a minimal surface in Euclidean space are 
“horospherical surfaces” in hyperbolic space, that is, up to scaling of the ambient 
metric they are constant mean curvature 1 surfaces in hyperbolic space and the 
Calapso transformations provide Bryant’s (local) Weierstrass type representation 
as a special case [12].

5.5. Permutability and Discrete Isothermic Nets

There is a multitude of relations between the various transformations of isother­
mic surfaces, formalized in “permutability theorems” that are often named after 
Bianchi who seems to have been the first geometer to have recognized the im­
portance of these permutability theorems. We already encountered one such per­
mutability theorem in the curved flat picture of the Calapso transformation: the 
Calapso transformation takes Christoffel pairs to Darboux pairs and vice versa, 
T XD X = C T X and T XC = D -AT A [13, §5.6.10] (in these formulas, the trans­
formation symbols C, D x, T x , etc., are to be understood symbolically, that is, as 
abstract transformations, in contrast to the very tangible way in which T x referred 
to a map into the Möbius group).
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In fact, the entire permutability scheme D XC = C D X [13, §5.6.3] for the Christof­
fel and Darboux transformations is taken, by the T x transformation, to an equiv­
alent permutability scheme (just the parameter A of the Darboux transformation 
changes sign) [13, §5.6.16],
This may indicate another permutability scheme for the Calapso transformation: 
(TA)“ i =  T ~ x . In fact, more is true -  it can be shown that the transformations T x 
satisfy a one-parameter group property, T x+fl =  T xT fl [13, §5.5.9].
The most famous permutability theorem, however, is probably the Bianchi’s per­
mutability theorem for the Darboux transformation (there are many theorems of 
this type for Bäcklund type or Ribaucour type transformations): if / i  and j '2 are 
two Darboux transforms of an isothermic surface, with parameters Ai and A2, re­
spectively, then there is exactly one isothermic surface which is, at the same time, 
a A1-Darboux transform of j '2 and a A2-Darboux transform of /1. Symbolically

jyM jyM _  jyM jyM

Moreover, this surface can be constructed from the first three in a purely algebraic 
way -  the corresponding points of the four surfaces are concircular and have con­
stant cross ratio [13, §5.6.6].
This permutability theorem can be taken as the starting point of a theory of discrete 
isothermic surfaces. By iterating the construction of the permutability theorem, 
one obtains a Z2-lattice of isothermic surfaces. The parameters of the Darboux 
transforms itself are attached to the edges of the lattice (and are equal on opposite 
edges of the faces of the lattice) and the cross ratios are attached to the faces. 
Just following the trace of a single point on the initial isothermic surface under 
the series of Darboux transformations, one arrives at the definition of a “discrete 
isothermic net’’ as a Z2-lattice in space so that the cross ratios of the faces factorize 
into two functions of one (discrete) variable on the edges of the lattice. 
Interestingly, the isothermic nets so defined have a rather similar transformation 
theory as their smooth mates have. For example, one can define all the trans­
formations discussed in this section and discovers that they satisfy the very same 
permutability theorems [13, Section 5.7], More details along this line of thought 
can be found in [2],

6. Conformally Flat Hypersurfaces

In Section 2 we have seen how (Darboux pairs of) isothermic surfaces arise from 
curved flats in the space of point pairs in S3. In this section we shall discuss another 
incarnation of curved flats in Möbius geometry: curved flats in the symmetric space 
of circles in S 4 -  these are related to (one-parameter families of) conformally flat 
hypersurfaces.
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For more details the reader is referred to [6] or [13, Chapter 2] and for most recent 
results see also [14].

6.1. Known Results and Open Problems

The theory we shall discuss is of local nature and we therefore understand the 
notion of conformal flatness in a local sense.

Definition. A hypersurface f  : M n —» S n+1 will be called conformally flat 
if around each point p G M n, there is a (locally defined) function u so that 
e~2u(df,  d f )  is flat.

Otherwise said: the induced conformal class on the hypersurface contains locally 
flat representatives.
Equivalently, the hypersurface is conformally flat if there are conformal coordi­
nates around each point, that is, the induced metric

n

< d / , d / ) = I  =  e2“ ]T d y 2 
i I

for a suitable coordinate system y : M n D U —» R” and some function u e 
C°°(U) defined on the coordinate neighbourhood.
Obviously, conformal flatness is a conformal notion so that it is best considered in 
a Möbius geometric setup.
Complete classifications of conformally flat hypersurfaces are known in dimen­
sions n =  2 and n > 4, i.e.,

n =  2. Every surface /  : M 2 —» S 3 is conformally flat (this is Gauss’ theorem 
on the existence of conformal coordinates) [13, Preliminaries P.4.6]. 

n > 4. A hypersurface /  : M n —» S n+1 is conformally flat if and only if it is 
quasi umbilic, that is, it has a principal curvature of multiplicity at least 
n — 1; or, equivalently, if and only if is is a branched channel hypersur­
face, that is, it is the envelope of a (branched) one-parameter family of 
hyperspheres [13, §1.8.17],

Conformally flat hypersurfaces of dimension n > 4 include, for example, hyper­
surfaces of revolution, cones, cylinders and tubes around curves. Note that all of 
these are foliated by (n — 1)-spheres. For more results in the higher dimensional 
case, see also [5],
Perhaps surprisingly, the case n =  3 turns out to be much more difficult (here the 
condition to be conformally flat becomes a third order condition on the metric, in 
contrast to the higher dimensional case, where the condition is algebraic for the 
curvature tensor). A classification of three-dimensional conformally flat hypersur­
faces is still open. However, there are some known examples:
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• Branched channel hypersurfaces are conformally flat, as in the higher di­
mensional case. As a consequence, it is sufficient to consider generic three­
dimensional hypersurfaces when one seeks a classification, that is, hyper­
surfaces with three distinct principal curvatures.

• Surfaces of constant Gauss curvature in three-dimensional space forms can 
be used to construct examples of generic conformally flat hypersurfaces. 
Taking a surface of constant Gauss curvature in S'3 c  R4, in R3 c  R4, or 
in i f 3 c  R4 (where i f 3 is considered as a Poincaré half space) the cone, 
cylinder or hypersurface of revolution in R4 constructed from the surface 
will be conformally flat and, generically, generic.

• However, not all three-dimensional hypersurfaces are conformally flat. 
Here, the tubes around the Veronese surface in S 4 provide rather symmetric 
examples as they are not conformally flat.

6.2. Curved Flats

In order to discover the curved flats arising from conformally flat hypersurfaces we 
go back to the classical model of Möbius differential geometry that we discussed 
in Section 1. Thus let /  : M 3 —» S 4 be conformally flat and consider

S 4 =  { y e  Rf ; |y|2 =  0, y0 =  1} C L5 C Rf

as a hyperplane section of the light cone. As /  is conformally flat, there is a (locally 
defined) function u so that

/  := e~uf  : M Z D U ^ L 5

is a flat lift of the conformally flat hypersurface, that is, the induced metric

J = ( d / , d / ) = e - 2“(d /,d /)

of /  is flat or, otherwise said, the vector bundle p ^  dpf ( T pM )  is a flat subbundle 
of the trivial Rf-bundle over U c  M3. In this situation, one then proves easily that 
the normal bundle p ^  (dpf ( T pM ) ) L of /  as an immersion into Rf is also flat 
[13, §2.1.4], As a consequence, we find that the Gauss map

:̂ M':> - Ä  p ~ *”> = d'7<îiM)
is a curved flat in the Grassmannian of spacelike three-planes in Rf [13, §2.2.7], 
Geometrically, this Grassmannian can be interpreted as the space of circles in S 4, 
much like the Grassmannian of spacelike two-planes (elliptic sphere pencils) is the 
space of two-spheres in S 4. With this geometry in mind we learn two things:
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1. the flatness of the vector bundle says that 7  defines a cyclic system, 
that is, the three-parameter family of circles given by the map 7  has a one- 
parameter family of orthogonal hypersurfaces in S 4 [13, §2.5.3]

2. the flatness of the vector bundle 7  says that all the orthogonal hypersurfaces 
of this cyclic system are conformally flat [13, §2.2.13].

Thus, each such 7, obtained from a flat lift of our conformally flat hypersurface /  
in S 4, gives rise to a one-parameter family of conformally flat hypersurfaces that 
contains the original hypersurface / .  Note that a flat lift of a conformally flat hy­
persurface is not unique and, therefore, this one-parameter family of conformally 
flat hypersurfaces attached to a given one is not unique.
Conversely, any curved flat in the space of circles yields, by the above arguments, a 
one-parameter family of conformally flat hypersurfaces that can be extracted from 
7  as parallel isotropic sections of the vector subbundle of the trivial R f -bundle
over M 3. Note that there will be no distinguished conformally flat hypersurface to 
be constructed from the curved flat 7.
On the other hand, curved flats come in one-parameter families. Hence, associated 
in a non-unique way to a given conformally flat hypersurface, we obtain a one- 
parameter family of one-parameter families of conformally flat hypersurfaces.

6.3. Guichard Nets

Curved flats come, in general, with special coordinate systems, associated to the 
roots of the symmetric space. In the case of conformally flat hypersurfaces, these 
are obtained by integrating the conformal fundamental forms of the hypersurface.

Definition. Let f  : M 3 —> S 4 be a hypersurface with principal orthonormal 
coframe (uj\, 1U2, 003) and principal curvatures k\, Jt2 and k%, that is, its first and 
second fundamental forms are given by

3 3

i  = ^  and 1 1  = Y 1
i =  1 i =  1

Then the conformal fundamental forms o f f  are:

71 := \ J &3 — k \ \ f k i  — &2u>i

72 := sjk l — k<2\/k2 — &3 UJ2

73  :=

Note that only one of these forms is real, whereas the other two take values in iR. 
The conformal fundamental forms of a hypersurface in S 4 are invariant under con­
formal changes of the ambient metric, as one readily verifies using the transfor­
mation formulae listed at the beginning of this text (if one does not have a better
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argument like, for example, their relation to a conformally invariant metric attached 
to the hypersurface [13, §2.3.4]).
Conformal flatness of a hypersurface can now be characterized using these con­
formal fundamental forms, i.e., /  is conformally flat if and only if these forms are 
closed, d-d =  0 [13, §2.3.3].
As a consequence, a conformally flat hypersurface comes with a special coordinate
system

x  : M 3 D R j, dxi = 7j.
Writing u>i =  kdxi with the “Lamé functions’’ f  (two of which are imaginary), we 
obtain

3 3 3

I  =  y  if dxf ,  I I  =  y  fcjlfdrcf, where y  if =  0
■! I i  I i  I

that is, the metric satisfies a trace zero condition, similar to the condition obtained 
on the conformal curvature line coordinates of an isothermic surface when writing 
those in complex form. This is the reason why Guichard considered conformally 
flat hypersurfaces as three-dimensional analogues of isothermic surfaces [10] and 
our reason for the following attribution:

Definition. A Guichard net on a Riemannian manifold (M 3, 1) is a (local) coor­
dinate system x  : M 3 D U —» R j so

3 3

i  =  y  ifdxi with y  if =  o.
i I i I

Note that the notion of a Guichard net is a conformal notion and that the Guichard 
net condition is not affected by conformal changes of the metric I  on M 3. We will 
often think of a Guichard net as a (parametrized) triply orthogonal system in M 3. 
With this definition we can reformulate the above result as follows: every con­
formally flat hypersurface carries a principal Guichard net. On the other hand, 
as our hypersurface is conformally flat, there are (locally) conformal coordinates 
y : M 3 D U —> R3, which we can use to map the Guichard net on the hypersurface 
into R3

x  o y -1  : R3 D y(U)  R'|.

Thus, a conformally flat hypersurface gives rise to a Guichard net in R3 which, 
because of Liou ville’s theorem and the conformal invariance of the Guichard net 
in M 3, is unique up to Möbius transformation of R3 U {oo}.
It is lengthy (and anything but straightforward) to prove the converse: any Guichard 
net in R3 gives rise to a conformally flat hypersurface, which is unique up to 
Möbius transformation [13, §2.3.12],
In this way, we obtain a one-to-one correspondence between (Möbius equivalence 
classes of) conformally flat hypersurfaces and (Möbius equivalence classes of)
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Guichard nets in R3. As a consequence, the classification of generic conformally 
flat hypersurfaces in S 4 is equivalent to a classification of Guichard nets in R3.
As an example, we consider the aforementioned generic conformally flat hypersur­
faces constructed as cones, cylinders or hypersurfaces of revolution in R4 over sur­
faces of constant Gauss curvature in S'3, R3 or H 3. Respectively, the corresponding 
Guichard nets contain one family of totally umbilic surfaces which form part of a 
sphere pencil -  so that the orthogonal trajectories are circles and the Guichard net 
is a very special case of a cyclic system (with totally umbilic orthogonal surfaces) 
in R 3 [13, §2.4.12],

6.4. Conformally Flat Hypersurfaces with Cyclic Guichard Net

Motivated by the previous example we may attempt to classify the cyclic Guichard 
nets in R3, that is, those Guichard nets that form a cyclic system. As both, the 
notion of a Guichard net as well as the notion of a cyclic system are conformal 
notions we may as well classify the cyclic Guichard nets in the conformal three- 
sphere S 3 using Möbius geometric technology.
In doing this we encounter another symmetry breaking phenomenon: any cyclic 
Guichard net in the conformal three-sphere naturally “lives” in a quadric of con­
stant curvature, where the circles of the system become straight lines and their 
orthogonal surfaces become linear Weingarten surfaces in parallel hyperspheres. 
That is, any cyclic Guichard net in the conformal three-sphere is the normal line 
congruence of a linear Weingarten surface in a space form subgeometry of Möbius 
geometry [13, §2.6.2].
The converse is true as well. Given a linear Weingarten surface, which does not 
have constant mean or principal curvatures, in a space form, its normal line con­
gruence can be parametrized so that the resulting triply orthogonal system is a 
Guichard net [13, §2.6.5].
Stereographic projection into Euclidean space R3 then provides a cyclic Guichard 
net in R3.
The obvious question before the house is now: how do the corresponding confor­
mally flat hypersurfaces look like?
The corresponding classification of conformally flat hypersurfaces with cyclic Gui­
chard net is a very recent result [14], Any conformally flat hypersurface with cyclic 
principal Guichard net naturally “lives” in a four-dimensional space form, where 
the orthogonal surfaces of the cyclic system are extrinsically (!) linear Weingarten 
surfaces in a family of parallel hyperspheres. Conversely, starting from a suitable 
linear Weingarten surface in a hyperplane of a space form, one can construct a 
unique conformally flat hypersurfaces with cyclic Guichard net.
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Here the previously mentioned symmetry breaking phenomenon incarnates in a 
different flavour. In contrast to the one discussed in Section 2.3 and the one men­
tioned above, the fixed object becomes now not a vector specifying a space form 
but the pencil of parallel hyperspheres given by a fixed two-plane in Minkowski 
space.
The construction of the conformally flat hypersurface from a linear Weingarten 
surface is not unlike the construction of the generic conformally flat cones, cylin­
ders and hypersurfaces of revolution mentioned earlier, and instead of pushing the 
initial surface out into the fourth dimension orthogonally, in this more general con­
struction the surface is moved out of its hyperplane by a sort of screw motion in its 
normal plane, parametrized by elliptic functions.
Describing a conformally flat hypersurface in terms of a real function of three 
parameters, the hypersurface with cyclic Guichard net are the most general confor­
mally flat hypersurfaces with a separation of variables, that is, where the describing 
real function splits into two functions of two and one variables, respectively. It re­
mains open to investigate the generic case further.
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