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Abstract. We define a kind of branching process on the loop space by using 
the branching mechanism of a loop of string theory.

I. Introduction

In conformal field theory or in string theory [7,17] people look at random applica
tions ip from a Riemann surface E into a Riemannian manifold M  endowed with 
the probability measure:

d/i('fp) =  Z _1 exp[—I  (ip)] dD('f/0 (1)

where dDpif,’) is the formal Lebesgue measure over the set of maps ip and I  (ip) 
is the energy of the map ip. If E has boundaries, let us say exit boundaries which 
are circles Sj  and input boundaries which are circles S f , the amplitude related to 
the measure (1) should realize a map from ®outputH into ®inputH where H  is an 
Hilbert space associated to the loop space [42],
In the case where the manifold is the linear space Rn, (1) is a Gaussian measure, 
which corresponds to the free field measure. Since in two dimension, the Green 
kernel associated to the Laplacian has a singularity on the diagonal, the random 
field lives on random distributions [18], It is difficult to state what is a distribution 
with values in a curved manifold, because the notion of distribution is linear.
If E =  [0.1] x [0.1], there is another process indexed by E with values in X, 
which is the Brownian sheet and which is continuous, -^^ip  is the white noise 
over [0.1] x [0.1], On E, there is a natural order, and it is possible after the work 
of Cairoli [11] to study the stochastic differential equation in Ito meaning:

5s,fXs,t =  A ( x aj )5ajip (2)

by using martingale theory, where A  is a vector field over X. This gives an example 
of a non-gaussian random field parametrized by the square. In the Gaussian case, 
this gives the Brownian motion over the path space. Doss and Dozzi [13] have

276



Galton-Watson Tree and Branching Loops 277

studied the formal action which is associated to (2), that is they have studied the 
large deviation theory. Norris [41] has succeeded to give a geometrical meaning 
to (2) and has constrained x sj  to live over a curved manifold.
But it is difficult to generalize (2) to the case where the world sheet is not the square 
[0.1] x [0.1], because (2) uses the multi-parameter martingale theory.
Airault-Malliavin in a series of paper (some of them are published for instance 
in [1]) have constructed the Brownian motion over a loop group. For that, they use 
the Brownian motion in a Sobolev space with values in the Lie algebra of the group 
G. This gives a random field from the cylinder [0.1] x S 1 into G.
Infinite dimensional diffusion processes over infinite dimensional manifolds have 
a long story initiated by Kuo [21] in 1972. The Russian school has studied infi
nite dimensional processes over infinite dimensional manifolds [5,12], Brzezniak- 
Elworthy [8] have done a general theory of infinite dimensional diffusion processes 
over infinite dimensional manifolds over M  — 2 Banach spaces. The interest of 
M  — 2 Banach spaces is that there is a Doob inequality for martingales over them. 
They apply their theory to the case of the free loop space of a manifold. This 
produces random cylinders with values in a compact Riemannian manifold, or the 
Brownian motion with values in the loop space of a Riemannian manifold. The 
loops are only Holder.
Brzezniak-Leandre [10] have extended the construction of [8] to the case with 
Brownian pants. The world sheet has two output boundaries and one input bound
ary. This gives one application from E c <gj Ec into E c, where E c is the Banach 
space of continuous functions over the loop space. This means that the Brown
ian pants are Feller. This gives an approach to one of Segal’s axiom of conformal 
field theory [42], the Hilbert space of the loop space being replaced by the Banach 
space of continuous functionals over it. Moreover, the theory is 1+1 dimensional. 
We refer to [34] for similar statement.
For more general surfaces, in a series of papers Leandre [24,26-33] had considered 
a 1+2 dimensional theory, for instance the Brownian motion on a torus group, or 
the Brownian motion on the punctured sphere group. Leandre has adapted to this 
stochastic situation a lot of classical considerations in mathematical physics.
For instance, in [26] we have averaged over all the metric of the surface, the genus 
of the surface being fixed and obtain a stochastic analoguous of a string theory.
In [31] or in [33] we have used the Markov property of the nonlinear random field 
in order to sew together random punctured sphere. The relation with operads is 
exhibited, as it is classical in mathematical physics [19,22], In these two papers 
we sew together deterministic punctured spheres in the world sheet.
The archetype of an operad is the set of trees. It is classical that we can put mea
sures on the set of trees, for instance Galton-Watson measures. So in this paper, we
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would like to get a random world sheet, as it is done in string theory, but in a little 
bit different set-up: instead to choose the geometry at random of a given surface 
whose genus is fixed, we choose the topology at random (a tree at random), but 
when we fix the topology, we do not perform any randomization of the considered 
geometry of the surface. Our goal is to perform a 1+1 dimensional theory (that is a 
kind of branching process on the loop space) instead of a 1+2 dimensional theory 
as it was done in [31,331.
But let us recall that the classical branching mechanism for loops initiated in 
physics in the so-called dual resonances models (see [381 or [431), is a branching 
mechanism which is different than traditional branching mechanism of the theoiy 
of branching process [4,361. In the first part, we repeat the consideration of [101 
of construction of the elementary branching mechanism of a loop in two loops in 
a 1+1 dimensional theory. In the second part, by using a certain Galton-Watson 
process, we iterate this branching mechanism, and since we get in the theoiy of 
Galton-Watson process a time, we deduced a random tree labelled by the loop 
space, which satisfies a certain Markov property.
The reader interested by the relation about analysis over loop space and mathemat
ical physics can see the survey of Albeverio [21 and the two surveys [23,251.

2. The Elementary Branching Mechanism

We recall briefly the construction of the Brownian pants of Brzezniak-Leandre [ 101. 
We consider a compact Riemannian manifold M  of dimension d embedded in W 1 
isometrically. If’ x  7 M , IT(nc) is the orthogonal projection from l tn into TX{M).  
It can be extended to a map from W 1 into the linear applications over Rn, which 
is smooth and have bounded derivatives of all orders. We introduce the Hilbert 
Sobolev space H =  f f 1,2(S'1. Xn) of the set of loops in such that

/  | 7 0 ) |2 d s +  [  |7 (5 ) |2 d5 =  ||7 ||2 < oo.
Jo Jo

Let Bf{-) be the Brownian motion with values in EL
We can construct it as follows. Let 'I's be the linear map from H into l tn defined as 
follows: 4,s(7(0) =  7 (s). Since H is an Hilbert space and since 'I's is continuous, 
we get

^a(7(*)) =  /  ( j { u ) . a s {u))du  +  [  ( j ' { u ) .a s{u))du  
Jo Jo

where t  —> B t {s) is a Brownian motion with covariance IK O II2. (We did as we 
were working on X in order to simplify the notation, but it is easy to reduce our 
study to the case of X by looking the coordinates of 'I's.) Moreover, if s ^  s f, 
'I's is independent of 'I's/ as a linear map. This shows us that cts(-) and av(-) are 
independents and that the couple t  (B t (s). B t (s')) realized a non degenerated
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Brownian motion over Jtn x Jtn, although t  B f (s) and t  B f (s ' ) are not inde
pendent. Moreover, the covariance matrix of B t (s) and B t (sr) are not degenerated. 
In others words, we can write

Bf(s') = ai(s.  s')Bf(s)  +  ot2{s, s ) B t {s. s') (3)

where B t (s, s') is independent of B t (s) and where the two constants in the decom
position (3) are not equal to 0.
The family of Stratonovitch equations

dtzt(s) =  U{xf (s)) df B f {s), i 0(5) =  x

has a meaning. It constitutes a family of Brownian motions over the manifold over 
M  parametrized by the circle. (In this work, s will denote the internal time of the 
loop and t  the propagation time of the loop)
Let s i < S2 be two times. We constrain the elliptic diffusion t  —> (xt (si). x t (s2)) 
to be equals at y at time 1.
Let us recall that if we consider an elliptic diffusion yt{x) over a compact manifold 
M , it has an heat kernel qt {x. y) satisfying the estimate

| grad log qt(x. y)\ < C/ td (x ,y )

for the associated Riemannian metric and the natural Riemannian distance d, asso
ciated to the elliptic diffusion if x  and y are close [6,391. Let us recall that if the 
stochastic differential equation of the elliptic diffusion is given by

dyt(£) =  Xi(yt(x))  dw\ +  X 0{yf,{x)) df (4)

over the compact manifold, the bridge between x  and y satisfies to the following 
stochastic differential equation (in Stratonovitch sense)

dVt(X, y) = Y  Xi  (yt (£• y) ) ( d ^  +  $  dt) +  X 0 {yf (x, y ) ) dt  (5)

where $  =  {Xi(y t (x , y)) ,grad\ogqi- t (y t (x ,y) ,y )) .  This means that we trans
form dwl into dwl +  $  df in the equation (5) [6,39]. By the previous estimate of 
the gradient of the logarithm of the heat-kernel, we have

E 1/5i ' \dt
Jo

Let us recall briefly Brzezniak-Elworthy theoiy [81.
Let W(iv the Sobolev-Slobodetski space of maps 7 from S 1 into such that

( X  | 7 w | p d s + / 51xs. ' t x x r  d«d t) ' = h i i . , P <  00.

The Brownian motion with values in H takes in fact its values in WgiP for some p 
and some 9. Moreover, Wg^p is a M-type 2 Banach space, where there is a nice
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stochastic integration theory [401. H is continuously embedded in some WgjP. Let 
H 1 the finite dimensional sub-Hilbert space of H spanned by cts i (-) and ctS2(-). 
Let 7r(o;s) be the Hilbert projection of a s into H 1. s —> ir (a s) belongs to WgiP for 
some 9 and some p.
Let 5  be the Nemytski map

7 (0 -► {s n ( 7 (5))}.

As it was shown in [81, 3  is Lipschitz and Frechet smooth with linear growth on

We want to solve the stochastic differential Stratonovitch equation starting from a 
given element 7 (-) of Wo,p on Wo,p

dXt = 3 (X t) dBt (-) + 3 (X t)(7r(a).j3t ) dt, (6)
Since 3(ir(ot.),j3t) is smooth on Wg,p, (6) has a unique solution on Wg,p [81 up to 
a stopping blowing time r .  Let us show that r  =  1. Let On be the event where
Jq I/O| dt < n. Over On we have

I I 'XT' I I 2sup \\XS\\0 ,P
s<t

< c 9,P +  SUP
s<t.

[  z . (Xu) d B u (-) + [  sup \\XU\\20 \j3u\du ) .
JO 0 lP Jo u < s  ’ J

By Gronwall lemma we deduce that on Or

sup \\Xs \\lp < Cn ||7 |||,p +  sup
s<t. \  s<t.

f l (Xu) d B u(-)

where Cn depends only on n.
Since Wg<p is a M-type 2 Banach space, we deduce since 3  has linear growth that 
on On

su p £ [ | |X s ||| ] < oo
s<l

by using Gronwall lemma [6, (2.15)1.
If we start from a loop 7 e  Wq<p in M , we deduce that X i(7 ) is a random loop in 
M  which belongs almost surely to WgjP. Moreover, almost surely, i (7 ) (s i j =  
X \ (7 ) (^2) =  V by (5). The loop s X i(7 )(5) is split in two loops.

3. Galton-Watson Trees

Let Y  be a binary Galton-Watson tree. The probability that a vertex has one child 
is pi > 0 and that it has two children is P2 > 0. Moreover, we suppose that 
P1 +P2 = 1- At the step n , we consider the labelled exit vertices ai(n).  Each label 
Q j (n) are indexed in increasing order and the set of children is ranged in increasing
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order. If two vertices at step n  +  1 are coming from two different parents, the order 
of the two exit vertices is the same than the order of their parents. We get a random 
interval of N , and if at time n, there is no vertex at the site i, we will say that
ai(n)  =  oo. We get a set of random variable X i ( n ), i e  N , where Xi(n)  is 
the label of the parent of i (if oti(n) =  oo, we put Xi(n)  =  oo). Moreover, 
Xi(n)  < X i+i(n).
Let us define our random tree with values at WqjP. At the root, we start from a loop 
in M  belonging to WeiP:

• Either the root has two children. We consider s i =  0, 52 =  1/2 and the 
given loop at the root. We consider the branching mechanism of the starting 
loop in two loops given at the first part. We get two loops l ai{i) and 7«o{i)-

• Or the root has only one child. We consider with the notation of the previous 
part the equation:

dX,. =  E (X () d B t (-) (7)

starting from the initial loop. V is a random loop belonging to W 7;i de
noted by 7Ql(1).

Let us iterate the procedure. Let us suppose that at step n, we get I  vertices c^(ra) 
associated to the random loops yai(n)- Either, a 7(n) has two children, and we 
consider the Branching mechanism given before associated to a leading infinite 
dimensional Brownian motion independent of the others considered. Or oti(n) 
has one child, and we perform the transformation (3.1). All the leading Brownian 
motions considered are independents. If oti(n) =  oo, we put yai(n) =  0- 
We get by this procedure a set of random loops 7ai{n+i) belonging to WejP. (We 
omit to describe the different rescaling which occur when a loop branches in two 
loops.)
We complete all the cr-algebras which are considered. Let Pan be the cr-algebra 
spanned by the X{(j)  and y ai(j) for j  < 11. Let P rn be the cr-algebra spanned 
by the Xi(n)  and 7a?{n). And let Fn be the cr-algebra spanned by the Xi( j )  and 
lai(j)- j  > n - Since we work on a Galton-Watson tree and since the leading flat 
infinite dimensional Brownian motions are all independents, we get

Theorem 1. Let ^  be a random variable which belongs to L 1 and which is Fn- 
measurable. Then almost surely,

E[ip | Pan} = E H ’ | P rn\.

It is a kind of Markov property for our random tree.
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