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Abstract, A few explicit formulas providing conformal coordinates of the 
axially symmetric constant mean curvature surfaces introduced by Delaunay 
and their duals are derived. These results give also new examples in a long 
line of research connected with finding isothermic immersions of surfaces 
and their duals.

1. Introduction

Let us assume that the parametrized surface <S is (locally) an image of the immer
sion

(u, v) — ► x[u, v] = (x(u, v), y (u, v),z(u, v)) (1)

defined on an open set V  c  R2. In these coordinates the pullback of the Riemann- 
ian metric on <S can be expressed (using the standard notation) in the form

I  =  E  du2 +  2F  du du +  G dv2 (2)

which is known as the first fundamental form of <S. The coefficients in I  are given 
by

E  = x u . x u, F  = x u . x v, G = x v . x v.

One has to notice that these three functions determine completely the Riemannian 
structure of <S, but that they are not determined by it. For we can apply a diffeo- 
morphic change of coordinates u =  u(u, v), v =  v(u, v) in order to obtain an 
isometric structure which is actually the same. Then the new coefficients E, F,  G 
can be easily found by plugging in the expressions for

du = undu + Uy di; and du = Vydu + vj, di;
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into the standard notation given above. Using the language of the quadratic forms 
and their associated matrices, we have

( E  F
If  g . and T i E  F  

F  G

which are not independent but obey to the simple relation

T i  =  J lT i J  where J

/ du d v \
du du 
du dv

\ d v  d v )

denotes the Jacobian matrix and means the transposed matrix.
This setting suggest that one has to try to find the most appropriate coordinates 
in which the expressions for E, F  and G are as simple as possible. This task is 
greatly facilitated by a knowledge of both the intrinsic and extrinsic geometry of 
iS, e.g., if the set of coordinates is such that F  0. i.e.,

I  = E  du2 +  G dv2 (3)

this system of coordinates is called orthogonal. If, in addition, E  G
X(u, v) > 0, i.e.

I  =  A(u, v)(du2 +  dv2) (4)

the coordinate system is called conformal, because the angle between any two 
directions on the surface <S is equal to angle of their pre-images in the Euclidean 
plane (u, v). One has to notice that orthogonal coordinates can always be found and 
that this is almost a trivial task. It can be proven also that conformal coordinates 
exist always as well, but it is a much harder problem to find them in explicit form 
as this often leads to evaluation of (hyper)elliptic integrals (see Kamberov et al [8] 
for more details).
In what follows we will derive such coordinates for the constant mean curvature 
surfaces of revolution in the Euclidean space R3 which are known in the literature 
as Delaunay surfaces.

2. Delaunay Surfaces

In this Section we present the result of the classification theory of constant mean 
curvature surfaces of revolution -  the Delaunay surfaces, and some of their prop
erties by which we can recognize them. Before this, let us recall that the mean 
curvature of a surface in R3 is defined via the coefficients of its first and second 
fundamental forms. Computing the latter requires choosing a unit normal vector
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field n[u, u] to the surface. Assuming that xu x x„ never vanishes on V,  our choice 
for this normal vector n  to <S from now on will be

X „  X  X , :
n =  nm, u = (5)

| x «  X  X ,. _

In this setting the coefficients of the second fundamental form

I I  =  L  du2 +  2M  d udv  + N  dv2 (6)

of the parametrized surface (1) with a fixed unit normal vector n[u, u] are given by 

L  =  L[u, u] =  xuu.n, M  =  M[u,  u] =  xu„.n, N  = N[u, u] =  x„„.n. 

Making use again of the matrix notation, we have

L M
E n  = M  N (7)

and it turns out convenient to introduce also

W  := (8)

which is known as a shape operator or Weingarten map. The most important 
characteristics of S,  i.e. its Gauss and mean (meaning “average”) curvatures, 
denoted respectively by K  and I I . can be easily expressed via the invariants of W.  
Namely, the formulas are

K  = det(W )
L N - M 2 
E G  - F 2

and II  trace(W )
E N  -  2F M  +  GL  

2(EG -  F 2) • (9)

Surfaces of Delaunay were originally defined in [2] as surfaces obtained by re
volving profile curves which themselves arise from rolling conics on a line. Such 
curves are called roulettes of conics. In an Appendix to the same paper Sturm char
acterizes Delaunay’s surfaces variationally as those surfaces of revolution having 
a minimal lateral area at a fixed volume. That in turn revealed why these surfaces 
make their appearance as soap bubbles and liquid drops [3, 6, 12] or cells under 
compression [16], Modem expositions of the classical differential-geometric con
struction along the variational viewpoint can be found in [12] and [13]. Using 
entirely different methods the same problem has been treated by Kenmotsu [9,10] 
and Konopelchenko and Taimanov [11].
The complete list of Delaunay surfaces is provided by: planes, spheres, catenoids, 
cylinders, nodoids and unduloids. The generating curves of a nodoid and an undu- 
loid, called respectively the nodary and the undulary are periodic along the sym
metry axis and have one local minimum and one local maximum in each period. 
If X  is the surface symmetry axis Delaunay [2] had found (up to integration) the
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following parametrization in the X O Z  plane of these two curves
aadipx = a sin ip — a tan  ipy 1 +  a  — sin2 ip +  /

Jo

z = —a cos ip +  a y  1 +  a  — sin2 ip,

cos2 ipy 1 +  a  — sin2 ip 

ip G R.
(10)

Here a /  0, a  > — 1 and 0  -  arbitrary, are three real constants. The mean curva
ture H  of the surfaces obtained by rotating any of the above curves is 1 /2a. The 
calculation shows also that the coefficients of their first fundamental forms are

E  =

G =

a2 a  +  cos2 ip — cos ip'j
a  +  cos ip F  = 0

a  — 2 cos ip a  + cos2 ip — cos ^

and makes obvious that the coordinate nets are orthogonal but not conformal. Be
sides, one has to notice that Delaunay had derived the above parametrization by 
finding first the corresponding evolute and then the generating curve itself. This 
means that these solutions exist only on restricted intervals on which the evolute 
can be found.

3. Conformal Parametrizations

Now, we concentrate on the central subject of this paper and introduce the rota
tional surface

x[u, v] = cos V ,e^ u) sin v, J *  sin 0(f) df^ . (11)

In this coordinate chart the respective coefficients of the I  and I I  fundamental 
forms are

E  = e2tj{u\  F  = 0, G =  e2tj(u) (12)
and

L = - e lW 0 ?(!i), M  = 0, N  = sin Q(u) (13)
where O(-u) denotes the polar angle of the unit normal vector to the surface. Fur
thermore, the above coefficients are not independent of each other but must satisfy 
some compatibility conditions known as Codazzi-Mainardi-Peterson relations and 
the Gauss equation. The former ones turn out to be satisfied automatically and the 
latter one is just the celebrated Gauss’ Theorema Egregium which in our conformal 
coordinates E  = G = A =  e2tJW states that

K
1

2A ~ ) u
^ A (lo g A ) =  - a " ( u ) e - 2̂ (14)
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where A =  is the standard Laplacian in the parametric plane R2. On
the other hand, the first formula in (9) yields

K  = sin 0 (u)0 ?(u )e-2tJW (15)

and the comparison of these results allows us to conclude that the integrability 
conditions reduces to the equation

a'(u) =  cos Q(u). (16)

The second formula in (9) now gives

H  = —i(sinO (u ) +  0 ?(u))e_tJW (17)

from which it immediately follows that the class of minimal surfaces of revolution, 
i.e. those surfaces for which H  0 is singled out by the equation

Q'(u) =  — sin Q(u). (18)

This is an equation in which the variables are separated, i.e.,

dO
sinfi

—dix. (19)

and can be easily integrated by making use of the substitution cos Q(u) 
so one gets

si1U
cos i 2m) =  ——  =  thix

ehu
and

sin Q(u) = (1 — th 2 u)1̂ 2 

Furthermore, one has also

1
eh u

seehu.

1 - t 2 
1 + t 2’

(20)

(21)

a(u) = / c o s f l (u )du=  / th u d u  =  lneh u (22)

where the integration constant is omitted because after exponentiation of o(u), i.e.,

etJW =  ch u (23)

it will contribute just to the scale factor which is not interesting at this moment for 
our consideration.
Finally,

z {u )  =  ea^  sin 0  (u) =  ch u seeh u = 1 (24)

and therefore
z(u) =  u (25)
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where the new integration constant is omitted again as this lime its meaning is 
nothing other than a translation along the symmetry axis. Combined, all this above 
gives us the surface

x[u, r;] =  (ch u cos v, ch u sin v, u) (26)

lhal can be immediately recognized as a caienoid (the surface on the righl-hand 
side in Fig. 1). A classical theorem in differential geometry (cf. [4, 12, 13, 14])

Figure 1, Sphere and its dual surface (the eatenoid) on the right side

says lhal this is the only minimal surface of revolution which is obtained this lime 
by revolving the catenary x =  ch c around the O Z  axis.
In the rest of this paper we will concentrate on the more general and interesting 
case of rotational surfaces for which

H  =  — , a =  constant /  0. (27)
2 a '

From (17) it is clear lhal the condition H  = constant is equivalent lo the equation

fi??(u) =  sin fi(u) cos fi(u) (28)

which can be easily integrated lo the first order second degree equation

(fi?(u))2 =  sin2 fi(u) +  .4, .4 =  constant. (29)

The character of the solution of the last equation is strongly influenced by the sign 
of the constant in (29) so we shall consider separately each of the three possibilities

.4 =  —m 2, 0 and m 2.

Lei us siait with the first case .4 =  —m 2, so lhal we have

(Q?(u))2 =  sin2 fi(u) — m 2. (30)
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Introducing as a new variable

£ =  sin Q(u), m 2 < £2 < 1 (31)

equation (30) can be rewritten in the form

£? =  -  ̂ / '( l - C 2)(C2 - m 2) (32)

and integrated once more. This can be done by making use of the Jacobi’s elliptic 
function dn(«, k) where the elliptic modulus k  is related to m  via an identification 
of the latter with the complementary elliptic modulus k, i.e. m  = k

£ =  dn(«, k), k2 =  1 — m 2 =  1 — k 2. (33)

It is a matter of an easy check to establish that

Q(u) = 7 r — aresin(dn(«, k)) (34)

satisfies (28) and in conjunction with (16) one has also

a (u )  = cos fi('u) =  ksn(u ,k ) .  (35)

Now we have to integrate the Jacobian function sn(u, k) which turns out to be an 
elementary integral. In fact, the composition of substitutions sn(u, k) =  £ and 
£2 =  t  has as a result

=  / 7 ! T = i W = F P T
I f  dt

= 2 J  v / ( i  — t ) ( i  — (3 6 )

=  &_1 ln ( \ / l  — k 2t  +  k \ f l  — t).

Going back to the original variable t  =  sn2(u, k) gives

a(u) =  ln(dn(u, k) +  ken(u,  k)) (37)

which after exponentiation produces

ea-(«) =  dn(u, k) + kcn(u ,k) .  (38)

Finally, the integration of

z ( u )  =  e'7̂  sin Q(u) =  (dn(u, k) +  k  cn(u, k)) dn(u, k) (39)

gives us
z(u) = £ (am (u , k), k ) +  ksn(u,  k ) (40)

where E(C,k)  denotes the incomplete elliptic integral of the second kind and 
am (a, k) is the so called Jacobi amplitude function. For a straightforward exposi
tion and properties of the elliptic functions and integrals see [5] and [7], Actually, 
this completes the consideration of the first case as the input data required by (11)
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for building the surface are provided by (38) and (40). The surface itself is the 
unduloid depicted on the left side in Fig. 2.

Figure 2, Some open parts of the unduloid and its dual surface on the 
right side for k =  0.555556

As the treatment of the other two cases is quite similar we will fix only the main 
points. So, let us continue and consider the next possibility

A = 0

which means that we have to solve

fi?(u) =  sin Q(u).

As the last equation differs from (19) by a sign, we can write immediately

cosfi(u) =  — t-hu, sinfi(u) =  sechu, fi(u) =  tt — arcsinfsech u) (41) 

and furthermore

a(u) = — Inch u, e0" ^  =  sech u and £ ( u ) = t h u .  (42)

So, this settles the second case and the surface which we have obtained is the 
ordinary sphere shown on the left-hand side in Fig. 1.
Finally, let us consider the last case when A = m 2 > 0. Now,

(Q?(u))2 = sin2 fi(u) +  m 2 (43)

and the substitution £ =  sin fi(u) converts the above equation into

£? =  t / f 1 — £2)(£2 +  m2). (44)

It can be integrated again via the Jacobian elliptic functions, this lime using

1 ~ Til*'
£ =  cn(u/k,  k) where k2 = --------^ and k2 = --------^

' 1 +  m-  1 +  m-
(45)
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From all of the above we have also

Q{u) =  7T — arcsin(cn(u/fc, k)) (46)

and consequently

<j '(u) =  cos f2(u) =  sn(u/fc, fc)
<j(u) =  In(dn(u/fc,fc) +  kcn(u/k ,  k))

ea(u- = dn(u /k ,  k) +  k cn (u/k,  k) (47)

z' iu) = sin Cl(u) = (dn(u/fc, k) +  k cn( u/k,  k)) cn (u/k,  k)
1 -  k2

z(u) = ksn(u/k ,  k) +  E(a,m(u/k,  k), k ) ------- ----- u.' ' ' ' k
The surface geueraied by these data is just the nodoid mention above and drawn on
the left side in Fig. 3.

Figure 3, Slices of the immersions of the nodoid and its dual surface 
on the right side for k =  0.555556

4. Duals of the Delaunay’s Surfaces

Another important properly of the classical conformal immersions is the phenom
enon of dual surfaces. Two immersions x  and x  are considered as dual lo each 
other if they share the same tangent plane al corresponding points. This definition 
follows from the simple observation lhal if the first fundamental form induced by 
x  is given by

/  =  e2T(«.r)(du2 +  cb2) (48)

then a direct computation shows lhal the form

~2t(v-vHx v du — x v diOcj =  e (49)
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is closed and therefore can be considered (locally) as a differential of the immersion 
x  given by

dx =  e~2T(u,v) (xu du — x v dv). (50)

The situation is a little bit more simple for the surfaces of revolution as in this 
case there exists an explicit expression for their dual immersions (for more details 
see [8]). For, if such a surface is parameterized by the isothermal coordinates (u, v) 
in the form

x[u, u] =  (r(u) cos v, r(u) sin v, z(u)) (51)

then its dual is given by
eosu smt)

x |u ,u | =  I ---- — , --- — ,z(u)
r(u) ’ r(u)

where the function z(u)  satisfies the separable ordinary differential equation

d z  1 dz
du r 2 du

Rewriting (52) in the conformal coordinates (11) we will have

(52)

(53)

xfu, ul =  [ —e cos v, —e sin v sin 0 (f) d t)  (54)

and using this formula one can easily determine the respective dual surface in ex
plicit form. As the x  and y components of x  are clear in each of the three cases 
under consideration we will concentrate on their z  components.
Taking into account (34), (38) and (40) we have for the unduloid

dn(u, k) du
z = =  (E(a,m(u,k),k)  — ksn{u, k ) ) / k A

Io dn(u, k) -)- k  cn(u, k) 

and its dual surface is shown on the right-hand side in Fig. 2. 
The sphere case is straightforward as well and one gets

x[u, u] =  (— eh u cos v, — eh u sin v, u)

(55)

(56)

which coincides with the catenoid (26) up to a reflection with respect to the sym
metry axis in the meridional planes.
Finally, for the nodoid case we have to evaluate the integral

en (u/k,  k ) du
/ o dn (u/k,  k) +  k  en (u/k,  k) 

which after some work with the Jacobian elliptic functions gives us

(57)

z =  (ksn(u/k,  k) — E(a,m(u/k,k) ,k))  f k 2 +  u/k .  (58)

The respective dual surface is shown on the right side in Fig. 3
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This completes also our study on the subject given in the title of the present work
and makes obvious the need of more detailed investigation of the new surfaces
obtained as duals to nodoids and unduloids.
We hope to report on this topic soon elsewhere.
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