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Abstract. Low-dimensional topology has experienced a number of rev
olutionary upheavals in the past twenty years. For many of these the 
seeds of the revolution were sown in theoretical physics and, more par
ticularly, in the work of Edward Witten. The most recent such event 
occurred in 1994 when Witten suggested that the topological informa
tion about smooth 4-manifolds contained in the Donaldson invariants 
should also be contained in the much simpler and now famous Seiberg- 
Witten invariants. This lecture will provide an informal survey of some 
of the background behind the conjecture and how it came to be made.

1. Donaldson Theory

The first application of gauge-theoretic techniques to the study of smooth 
4-manifolds was made by Donaldson [3] who proved that if M  is a com
pact, simply connected, oriented, smooth 4-manifold and the intersection form 
qM : H2(M,  Z) x H2(M,  Z) — Z is definite, then, in fact, qM is diagonalizable 
over Z. It follows that there exists a basis for H 2(M,  Z) over Z relative to 
which the matrix of qM is ±  Id&2 (M) • Roughly, the proof goes something like 
this (in the negative definite case):

Consider the principal S U (2)-bundle SU(2) ^  P1 —*• M  over M  with second 
Chern class c2{Pi) =  1. Choose a Riemannian metric g on M.  Taubes [11] 
has shown that the bundle admits connections that are anti-self-dual (ASD) 
relative to the Hodge star operator determined by g and the given orientation of 
M  (such connections are called instantons). Two such connections are said to 
be gauge equivalent if they differ by an automorphism of P1 and the collection 
M.\{g) of gauge equivalence classes of such connections is called the moduli
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space of ASD connections on P1. For a generic choice of g, A4\{g) has the 
following properties:
1. If m  denotes half the number of homology classes x  G H2(M,  Z) for which 

qM(x,x)  =  —1, then there exist m  points p 1, . .. ,pm in A4\(g) such that 
M-i(g) — {pi, . . .  ,Pm} is a smooth, orientable 5-manifold.

2. Each pi, i =  1 , . . . ,  m, has a neighborhood in A4\(g) that is homeomorphic 
to a cone over CP2 with p,h at the vertex.

3. There is a compact set K  Ç A4\{g) such that A4\(g) — K  is a submanifold 
of M.\{g) — {pi , . . .  ,Pm} diffeomorphic to M  x (0,1).

Now build a new space A4 from A41(g) by cutting off the (open) top half of 
each cone and the bottom half of the cylinder M  x (0,1). Then A4 is compact 
(because K  is compact). It is also a manifold with boundary whose boundary 
consists of the disjoint union of a copy M  x } of M  and m  copies of CP2. 
Thus, A4 gives a cobordism between M  and U CP2. Now, the signature of the 
intersection form of a smooth 4-manifold is a cobordism invariant. This fact, 
together with the negative definiteness of qM, the known intersection form of 
UCP2 and a bit of integer linear algebra then suffice to prove Donaldson’s 
Theorem.
Between 1983 and 1994 the use of moduli spaces of ASD connections to study 
the topology of smooth 4-manifolds expanded into a vast industry (called Don
aldson theory). The product manufactured by this industry was the “Donaldson 
polynomial invariant” and we will now briefly describe the construction. For 
this we will assume that b2 (M)  is odd and greater than 1. For each k = 1,2, . . .  
we consider the principal S'Tr(2)-bundle

SU(2) ^ P k — >M

with Chern class k. For a generic Riemannian metric g on M  the moduli space 
M k{g) of irreducible ASD connections on Pk is a smooth orientable manifold 
of (formal) dimension

8 /c - 3 ( l  +  6+(M)) .

M k{g) is not compact, but it has an “Uhlenbeck compactification” A4k{g) 
which, for k > |( 1  +  b2 {M)) (the “stable range”) carries a fundamental 
homology class [A4k(g)\- Donaldson constructs, for each k, a map

ß: H2(M,  Z) — > H 2 ( M k(g), Z)

from the homology of M  to the cohomology of A4k{g). Now let

dk =  4fc -  ? (1 +  b+(M))
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be half the dimension of the moduli space (an integer because b2 (M) is as
sumed odd) and define

■ 7'
7 fc(M): H2(M,Z)  x ••• x H2(M,Z) ■> Z

by

7fe(M) ( x ! , . . . , x dfc) =  </i(xi) U - - - U / i ( a : dfc), [-Mfc(sO]}

=  J  ß{x-i) A • • ■ A ß(xdk) .
M k {g)

This is a symmetric multilinear map which, via polarization, can be identified 
with a homogeneous polynomial. It is called the k -th (stable) Donaldson poly
nomial of M.  One can show that fixing an orientation of IT2 (AT M) provides 
an orientation for each M.k(g) and then x k(M)  is an orientation preserving 
diffeomorphism invariant of M.  The proof that 7 fc(M) does not depend on the 
choice of the (generic) metric g uses the assumption that b2 {M) > 1, which 
ensures that a generic variation of the metric does not introduce any reducible 
connections.
Remark: There are various devices (e. g., “blow-up formulas”) for extending 
the definition of the Donaldson invariants outside of the stable range. When 
this is done the invariants can be collected together into a formal power series 
on H 2(M yZ) called the “Donaldson series”

OO -|

d m  (x ) =  J 2 fri7k ( M ) ( x ) .
k=0

In 1994, Kronheimer and Mrowka [6] isolated a (large) class of 4-manifolds 
(said to be of “simple type”) for which the Donaldson series can be described 
much more simply. They showed that, for manifolds of simple type, there exist 
finitely many cohomology classes K 1 : , K s G H 2(M , Z) (“basic classes”) 
and rational numbers a i , . . . ,  as (“coefficients”) such that

s
B M{x) =  e1/2gM(x’æ) ßj eKdx) .

2 =  1

Witten’s conjecture provides an alternative formula (“Witten’s Magical For
mula”) for T)m {x ).
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2. Topological Quantum Field Theories

The construction of the Donaldson invariants outlined in the previous section is 
formally analogous to the Feynman path integral approach to the quantization 
of classical field theories. In fact, Witten [14] has shown that it is a great deal 
more than simply “analogous”.
In field theory one begins with a “configuration space” of classical fields {£}. 
For example, in Yang-Mills theory there is just one field (a connection on a 
principal bundle), but in Yang-Mills-Higgs theory there are two (a connection 
and a matter field coupled to it that is represented by a section of the adjoint 
bundle). One also specifies an “action” S(£) (just a real-valued function on 
the fields), e. g., the Yang-Mills action is

S M =  Y  J t i (F„A*F„)  ,
M

where Fi  is the curvature of co and the * indicates the Hodge dual. The 
action generally has various symmetries (e. g., gauge invariance) so that the 
appropriate object of study is the quotient of the configuration space modulo 
these symmetries. This is called the “moduli space” B and its elements represent 
the physical “states”. Real-valued functions

0 : B  —

on the moduli space are called “observables”. In Yang-Mills theory, for ex
ample, the symmetry is gauge invariance and the instanton number (Chem 
class) is an observable. Observables are assigned “expectation values” (Ö) via 
Feynman integrals

(Ö) = f  e - s{i)/e2ö { i ) V ^
B

where e is a “coupling constant” and V £ signifies a (nonexistent) measure 
on B. Such integrals generally have no precise mathematical definition, but 
physicists formally manipulate them to great effect. The process of assigning 
these expectation values is known as “quantization” and the result is a quantum 
field theory (QFT). A QFT is called a topological quantum field theory 
(TQFT) if, for some distinguished set of observables, these expectation values 
are independent of the Riemannian metric g on M.
Witten [14] constructed the first example of such a TQFT with the specific ob
jective of exhibiting the Donaldson polynomial invariants as expectation values 
of certain observables. We will briefly describe Witten’s TQFT, but in a some
what more restricted context than one finds in [14]. Thus, we will assume 
that M  is a compact, simply connected, oriented, smooth 4-manifold with
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62 (M) > 1 and odd and will restrict our attention to the group G — S U (2). 
We let P  denote some principal S U (2)-bundle over M,  ad P  the vector bun
dle associated to P  by the adjoint representation of S U (2) on its Lie algebra 
su{2) and A(P)  the space of connections on P. For any ce £ A(P)  we denote 
by F  — Fcj the curvature of ce and by D = D^ the corresponding covariant 
derivatives. Now choose a generic Riemannian metric g on M.  The fields in 
the configuration space are as follows:

ce £ A
X e f ^ ( M , a d P )

ßj £ Q \ M , a d P )
77,0 G ad P ) .

Here Qfe(M, a d P )  is the space of /e-forms on M  with values in a d P  and 
ad P ) is the space of self-dual 2-forms with values in adP .  The 

action S  =  S  (ce, X, iß, 77, <f>) is given by

S  =  j  y/gd4xTv ( ^ F aßF a ß - 2 x a ß D a'tpß P g D ^

M 1
+  (f> [ißa,ißa] -  4>DaD a(j) -  -(f) X a ß  1 X

a ß

Witten introduced these fields and this Lagrangian in order to achieve gauge 
invariance and what he referred to as a “BRST-like” symmetry. An interest
ing alternative, and purely geometrical derivation of the same action has been 
obtained by Atiyah and Jeffery [1], We will denote by B the corresponding 
moduli space of equivalence classes of configurations modulo these symme
tries. For each k =  0,1, 2,3,4, Witten introduces a fc-form on M  for each 
ce, iß, 4> as follows:

Wo =  \  Tr O 2) Wj =  T r ( < ß i ß )

W 2 =  Tr ( ± i ß  A i ß  +  0F W) W3 =  Tr (Fw A i ß )

W 4 =  \  Tr [ F w A F w )

Now, for each homology fc-cycle x k £ H k(M , Z), k — 0,1, 2, 3, 4, we define

O tk\ x k) = J Wk .

These turn out to be metric independent, gauge invariant and “BRST” invariant 
so, for each x k, 0^k\ x k) is defined on the moduli space:

ö (k\ x k)-. B — >R.
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Thus, Ö ^  maps H k(M,  Z) to observables.
Remark: For a simply connected 4-manifold, H 1(M 1Z ) =  i73(M, Z) =  0 so 
(9 ^) =  (9 (3) =  o. For k — 0, (9^  essentially evaluates Wo at the point x 0. 
For k — 4, x 4 is essentially the fundamental class [M] so ( 9 is essentially 
the Chern class. New information arises only for k — 2.
Products (9(fcl) • • • ( 9 ^  map Hkl (M, Z) x • • • x H kp (M, Z) to observables and 
these have expectation values

( 0 (fc,) (z*, ) ■ ■ ■ O ik>>(xkr)) = J e - s^ O ,k'>(xkl )■■■ 0 (k<HxK ) V i  .
B

Witten then associates with each 0 {'k\ x k) a closed /c-form aSk\ x k) on the 
moduli space M.{g) of ASD connections on P  and shows that

( 0 ,k' \ x kl) - - - 0 ^ \ x k„)) = J oW K I A - . A ^ ' K ) .
M ( g )

Finally, Witten shows that, for k = 2, the cohomology class of a (2̂ {x) can be 
identified with ß(x)  so that these expectation values coincide with the Donald
son invariants.
The essential feature of Witten’s field theory that accounts for the reduction of 
the functional integral to an integral over the moduli space of instantons is the 
BRST-like symmetry which implies that the expectation values are independent 
not only of the Riemannian metric g, but also of the value of the coupling con
stant e. The calculations leading from the functional integral to the Donaldson 
invariants are perturbation calculations done in the “weak coupling limit” (small 
e). This suggests that a calculation in the strong coupling limit should give a 
alternative (dual) view of these same invariants. Until 1994, however, such 
calculations were quite intractable and one did not know what this dual version 
of Donaldson theory might look like. We summarize the pre-1994 situation in 
the following table.

Duality in Witten’s TQFT

e  — ► 0 e  — > oo

“W eak co up ling”
“ U ltrav io le t”
“M ag n e tic”
P ertu rb a tiv e
C om pu tab le

D onaldson  invarian ts

“S trong  co up ling”
“In fra red ”
“E lec tric”
N o npertu rba tive
In trac tab le

?



260 G. Naber

So matters stood until 1994 when Seiberg and Witten [10] learned how to do 
exact calculations in the infrared regime of Witten’s TQFT and filled in the 
empty box:

Seiberg-Witten invariants

We will now have a brief look at the construction of these new invariants.

3. Seiberg-Witten Invariants

We assume that M  is a compact, simply connected, oriented, smooth 4-manifold 
with &2"(M) > 1 and odd and will restrict attention to the structure group 
G — SU(2). The Seiberg-Witten invariants arise from a moduli space of 
solutions to a certain (mildly) nonlinear system of partial differential equations. 
To write down these equations we make two choices. Begin by choosing a 
Riemannian metric g on M.  Next we must select what is called a “spinc- 
structure” £  for M.
A sp in c-structure is a complex analogue of a spin structure, but, unlike spin 
structures, such things exist on every orientable, smooth 4-manifold (see [8]). 
Briefly, the definition is as follows: Since M  is oriented and has a Riemannian 
metric there is an oriented, orthonormal frame bundle with structure group
SO(  4).

5(9(4) Fr(M)  M
The group Spinc(4) is the double cover of 50 (4) x U(l),  i. e.,

Spinc(4) =  5 f/(2) x SU(2) x U( 1) /  ±  1,

where Z2 =  ±1 acts on all three factors simultaneously. By “forgetting” 
various of the factors in Spinc(4) we obtain homomorphisms Ô, s+, s_ and n 
onto U (1), U{2) and 5(9(4).

5: Spinc(4) — ► U{ 1)/ ±  1 ^  U{ 1) 
s± : Spinc(4) — ► SU{2) x U{ 1)/ ±  1 ^  U(2)

7T: Spinc(4) — ► SU(2) x SU(2)/ ±  1 ^  50(4)

Now, a spinc-structure on M  is a lift of the frame bundle to a Spinc(4)- 
bundle. More precisely, a spinc-structure £  on M  consists of a principal 
Spinc (4) -bundle

Spin" (4) 5 C(M) M
over M  and a smooth map

J J :  S C(M)  — ► Fr(M)



The Witten Conjecture 261

satisfying

and
TTFr O — 7TSc

n ( p  ■a) = i i (p)  ■ 7r(a)
for all p G S C{M ) and a G Spinc(4). The homomorphisms Ö, s+ and s 
give rise to natural representations of Spinc(4) on C and C2 and thereby vector 
bundles associated to the Spinc(4)-bundle. The associated complex line bundle

L = S C(M) x 5 C

is called the determinant line bundle of C, while the complex 2-plane bundles

S C± {M) = S C{M) x s± C2

are the positive and negative (complex) spinor bundles associated to C. Finally, 
we denote by L° the principal ?7(l)-bundle associated to L.
The Seiberg-Witten equations are defined for a pair (A, ip), where A is a 
connection on the £/(l)-bundle L° and ip is a positive spinor field, i. e., a 
section of Sp{M).  One thinks of ip as a massless spin j  particle coupled to 
the [/(l)-gauge field A. The equations read

{SW  1) P aP =  0 Dirac equation
(SW 2) p+{Fp) =  {ip® ip*) o Curvature equation

where
p A : r ( S c+(M)) —  r (SC_(M))

is a (coupled) Dirac operator and p+ is an isomorphism of the complex self
dual 2-forms on M  onto the trace-free endomorphisms of Sp(M) (ip* is the 
Hermitian conjugate of ip and {ip ® ip*)0 is the trace-free part of the endomor
phism ip ® ip*). Locally, in orthonormal coordinates, if we write da —
A = A a dxa, Fa = J2a<ß Faß àxa A dxß = a<ß{daAß -  dßA a) dxa A dxß,

and ip =  f ^ 1 
X*p2

J , the equations become

( —{do +  A q) +  i(9i +  Ai) {d2 +  A 2) +  i(<93 +  A3) \  / ip{\ _  /0 \  
v—($2 +  A 2) +  i(d3 +  A 3) —{do +  A q) — i(<9i +  A p )  \ 1p2J \0y

( {9qA i — 3\A q) +  {d2A 3 — d3A 2) = — Fi{\ipp2 — \ip2\2)
< {doA2 — d2Ao) +  {d3A\  — d \ A p  = —ilm {ip\ipp 
l (ÖqA3 — <93A0) +  {diA2 — d2A p  — — i Re {ipiipp .

There is a symmetry group Q for these equations as there is for the ASD 
equations. One can describe Q either as the group of automorphisms of the
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Spinc (4)-bundle of C that cover the identity in the frame bundle or, equiv
alently, as the group C°° (M, S 1 ) of smooth maps from M  to the circle S 1. 
Thought of in the latter way the action of Q on (A, ip) is given by

p ■ (A, ip) =  (fi~1Aß  +  p~x dp, p~xip)
=  [A +  p _1 dp, p~lrip)

and one finds that (A, ip) satisfies (SW)  if and only if p • (A, ip) satisfies 
(SW).  The orbit space of this action on the space of solutions is the moduli 
space M e  of solutions (A , ip) to the Seiberg-Witten equations. Generically 
(this now means for a generic perturbation of the curvature equation) this moduli 
space A4 £ is a smooth, oriented, compact manifold of (formal) dimension

d£ =  - j ( 2 X( M ) + 3 a ( M ) ) + i C; ( i ° )

where x(M ) is the Euler characteristic of M, a(M)  is the signature of (the 
intersection form of) M  and c\(LP) — (ci(L°) U c1(L°), [M]).
The relative simplicity of Seiberg-Witten theory over Donaldson theory is due 
to the compactness of the moduli space Me-  One no longer requires a com
pactification, or conditions to ensure that the compactification admits a funda
mental homology class with which to pair cohomology classes, or “devices” 
(e. g., blow-up formulas) for extending the definitions beyond such restrictions. 
Indeed, the Seiberg-Witten invariant S W  (M, C) associated with M  and £  can 
now be defined as follows:
1. If dc < 0 one takes S W ( M , £ )  =  0 (the moduli space M e  is generically 

empty in this case).
2. If de =  0, then A4 £ is a finite set of points, each with a sign coming from 

the orientation of A^£ and S W (M, £)  is the corresponding signed sum:

S W (M ,  £) = E ± i -
Me

3. If dc > 0, then

S W (M, £)  =  /  p U • • • U p, [Me] \  =  f  p A • • • A p ,
' ' M e

where p is the 1st Chern class of the principal I/(l)-bundle

U ( l ) ^ M ° e ^ M e ,

where M 0C = {(A, ip): ip ^  0 and (A, A) satisfies {SW)}/Q°  and Ç0 is 
the subgroup of Q consisting of those elements that act trivially on some 
fixed fiber of the Spinc (4)-bundle.
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One can show that, for a fixed, generic metric on M  there are only a finite 
number of spinc-struetures £  for which S W (M, £) ^  0.

4. The Conjecture

Roughly, Witten conjectured that, for manifolds of “simple type”, the Seiberg- 
Witten invariants contain all of the topological information in the Donaldson 
invariants.
Remark: We will not record the precise definition of “simple type” (see [6]), 
but will only note that there are no known counterexamples to the conjecture 
that every manifold of the type we are considering is of simple type. 
Somewhat more precisely, Kronheimer and Mrowka [6] proved that, if M  is of 
simple type, then the Donaldson invariants of M  are uniquely determined by a 
finite number of integral cohomology classes K 1, . . . ,  K s G f72(M, Z) (“basic 
classes”) and rational numbers cq, . . . ,  as (“coefficients”). Witten conjectured 
that S W  (M, £) ^  0 if and only if Ci(L°) — K g H 2( M , Z) is a Kronheimer- 
Mrowka basic class and, in this case, S W (M , £) is universally proportional to 
the corresponding coefficient a.
Yet more precisely, Witten’s conjecture can be summarized in what has been 
called “Witten’s Magical Formula” for the Donaldson series D M(x). Recall 
(Section 1) that the Kronheimer-Mrowka formula for D M (x) (proved in [6]) 
is

s

i = 1

Witten’s proposed alternative is

U M(x) = e1/aqM{x’x) 2miM)S W { M :C)eCliL°)ix)
ce a

where m(M)  — 2 +  |(7 x (M ) +  llcr(M )) and A is the set of isomorphism 
classes of spinc-structures C for which ci(L°) =  2x(M ) +  3a(M).
There are a number of attitudes one can adopt toward Witten’s conjecture. One 
can, of course, try to prove it. The conjecture has been verified for all of the 
known examples in which both sets of invariants have been calculated and much 
work has been devoted to constructing a rigorous proof of the general result (see 
[9], [5], and [13]). One could also argue that, whether or not Seiberg-Witten 
invariants are “equivalent” to the Donaldson invariants, they obviously contain 
a great deal of topological information that is much more easily accessed than 
that contained in Donaldson theory and should be used as an alternative tool. 
To a large extent this is the attitude that has been adopted by topologists and the 
results have been spectacular (see, for example, [7] and [12]). Another point
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of view, however, that has not gotten as much attention is that the conjecture 
arose, after all, in physics, not mathematics and mathematicians generally have 
no idea how this came about. If quantum field theory is able to provide such 
profound insights into the deepest questions facing contemporary mathematics 
it would seem appropriate that some bridges be (re-)built between mathematics 
and physics. While some steps have been taken in this direction (see [2]) 
the task of making theoretical physics accessible to the general mathematical 
community is a formidable one and much remains to be done.
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