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Abstract. Let two Riemannian metrics g and g on the torus T n have 
the same geodesics (considered as unparameterized curves). Then we 
can construct invariantly n commuting differential operators of second 
order. The Laplacian A g of the metric g is one of these operators. For 
any x  £ T n, consider the linear transformation G of TxT n given by the 
tensor gLOtga.j- If all eigenvalues of G are different at one point of the 
torus then they are different at every point; the operators are linearly 
independent and we can globally separate the variables in the equation 
Agf  =  p f  on this torus.

1. Commuting Operators for Projectively Equivalent Metrics

Let g and g are two C 2-smooth Riemannian metrics on some manifold M n. 
They are projectively equivalent if they have the same geodesics considered 
as unparameterized curves.
The problem of describing projectively equivalent metrics was stated by Bel
trami in [1], Locally, in the neighborhood of so-called sable points, it was 
essentially solved by Dini [3] for surfaces and by Levi-Civita [4] for manifolds 
of arbitrary dimension. Denote by G the tensor giagaj • In invariant terms, G is 
the fiberwise-linear mapping G : T M n —* T M n such that its restriction to any 
tangent space TXo M n is the linear transformation of TXo M  " satisfying the fol
lowing condition: for any vectors G u € TXi)M n, the scalar product g(G (G j u ) 
of the vectors G(£) and v  in g is equal to the scalar product g(G v) of the 
vectors £ and v  in g.
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The trivial example of projectively equivalent metrics is g, g =f Cg, where C  
is a positive constant. For this case, all eigenvalues of G  are equal to C.

Definition 1. The metrics g, g are strictly non-proportional at x 0 G M n, i f  the
eigenvalues o f G are all different at x 0.

Suppose that at the point x  G M n the metrics are strictly non-proportional. 
Under this assumption, Levi-Civita theorem reads as follows.

Theorem 1. (Levi-Civita [4]) Let g and g are Riemannian metrics on M n. 
Suppose that at the point x  G M n the eigenvalues o f G are all different and 
equal to po(x) > P\{x) >  ••• >  pn- i(x). Then the metrics are projectively 
equivalent in some sufficiently small neighborhood Un o f the point x, i f  and 
only i f  there exists a coordinate system x 0, . . ., x n_i in the neighborhood Un 
such that the quadratic form s o f the metrics g and g have the following form:

d s2 =  n 0 d{x0)2 +  IU f f ix 1)2 +  • • • +  n n_! d^ - 1)2 , ( 1)

d s2 =  p0n 0 d (x0)2 +  P illi d (x1)2 H------- b pn—\Tdn_\ d{xn^ ) 2 (2)

where the functions I lj, p* : Un —> M are given by

Ifi =  (Ai — A0)(Ai — Ai) • • ■ (Ai — Ai_i)(Aj+i — X f  ■ ■ ■ (An_i — A*),

A0Ai • • • An_i Ai

where A0 <  Ai <  • • • <  An_i are smooth functions on Un such that fo r  any i 
the function Ai depends on the variable x l only.

Levi-Civita theorem gives us the following series of examples of projectively 
equivalent metrics on the torus T n.
Consider the n-dimensional lattice L n in Mn. Let A0, Al5. . . ,  An_! : > IR
are smooth positive functions on Rra such that for any i the function A, depends 
only on the coordinate x \  Aj <  Ai+i and Ai is invariant modulo the lattice L n. 
Then the metrics (1, 2) are well-defined on Rn ; by Levi-Civita theorem, they 
are geodesically equivalent. By definition, they are invariant modulo the lattice 
and therefore define two geodesically equivalent metrics on the torus Wn/ L n.
We will call such metrics model metrics on the torus. Each pair of model 
metrics is given by the lattice L n and by the functions A, (x 1 ') which are invariant 
modulo the lattice.
The main result of this paper is the following theorem.
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Theorem 2. Let g and g are projectively equivalent metrics on the torus T n. 
Suppose that they are strictly non-proportional at least at one point o f T n. 
Then there exists a lattice L n, a pair o f model metrics gmodeb gmodei on the 
torus W 1 / L n and a diffeomorphism f :  M.n/ L n —> T n such that <f>*gmodel =  g, 
4* ^model 9-

In other words, model metrics give us all possible examples of projectively 
equivalent strictly non-proportional (at least at one point) metrics on the torus. 
The simplest example of the lattice is the so-called normal lattice which is 
generated by the vectors e0 =  (Z0, 0 , . . . ,  0), ex =  (0 , lx, 0 , . . . ,  0) , . . . ,  en_i =  
( 0 , 0 , . . . ,  0, ln-x)- Here li are positive numbers. We will call the pair of model 
metrics normal model, if the corresponding lattice is normal.
For normal model metrics, every function At can be viewed as the function on 
the circle S } =f (M mod If) and the torus W 1 / L n is the product S q x S i  x

Theorem 3. Let g and g are projectively equivalent metrics on the torus T n. 
Suppose that there is no vector fie ld  which is Killing fo r  both metrics and that 
the metrics g, g are strictly non-proportional at least at one point o f the torus. 
Then the following statements are true.
1. There exists a normal lattice L['ig, a covering fug'- / L['ig —»

a pair gnorraa\, n̂ormal o f normal model metrics on the torus W 1 / L
that fxiig9 n̂ormal; 0bigZZ n̂ormal-

T n and 
big such

2 . There exists a normal lattice Z£mall, a covering f smaii : T n —>• R n/L fma\\ 
and a pair gn0rmai> formal o f normal model metrics on the torus R n/L fmall
such that Ismail ̂ normal 9> Ismail ̂ normal 9‘

In particular, there always exists an orthogonal sub-lattice o f the lattice L n.

If we allow the metrics to admit a Killing vector field, the lattice may do not 
contain an orthogonal sub-lattice (and therefore the torus neither is covered 
by a torus with normal model metrics nor covers a torus with normal model 
metrics). The example of such a situation can be easily found in the class of 
the flat 2-tori.
Let g and g are projectively equivalent metrics on the torus T n; assume that 
they are strictly non-proportional at least at one point. Consider all vector fields 
which are Killing with respect to both metrics. Then it is possible to show that 
these vector fields commute and have no singular points. Then we have a 
locally-free action of the group R k, where k is the number of independent 
Killing vector fields. The orbits of this action are fc-tori; it is possible to make 
the Poisson reduction of the torus T n which gives us some (n — k ) -torus with
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two projectively equivalent metrics; these metrics admit no Killing vector field 
and therefore are normal model (up to a finite covering).
In other words, any torus with projectively equivalent metrics, strictly non 
proportional at least at one point, can be isometrically covered by the product 
of the torus with normal model metrics and the flat torus.
By Theorem 2, if M n is covered by the torus and if projectively equivalent 
metrics are strictly non proportional at least at one point then they are strictly 
non proportional at each point. A kind of inverse statement is also true.

Theorem 4. Let M n be closed and connected. Let g, g on M n are projectively 
equivalent. Suppose they are strictly non-proportional at each point o f the 
manifold. Then the manifold can be covered by the torus.

The main tool of the proof of Theorems 2, 3, 4 is the following construction that, 
given a pair of projectively equivalent metrics, produce commuting integrals 
(both in the classical and quantum sense) for their geodesic flows. The classical 
version of the construction was obtained in [16], see also [8]. The quantum 
version of the construction was announced in [10] and proved in [12] (see also

Let g and g are Riemannian metrics on M n. Consider the fiberwise-linear 
mapping G  : T M n —► T M n given by the tensor (gia gaj ). In invariant terms, 
for any x 0 G M n, the restriction of the mapping G  to the tangent space TXoM n 
is the linear transformation of TXoM n such that for any vectors ( , /./ G TXoM n 
the scalar product g(G(£)} v) of the vectors G ( f  ) and v  in the metric g is equal 
to the scalar product g(£, v) of the vectors £ and v  in the metric g. Consider 
the fiberwise-linear mapping A  : T M n —> T M n given by

Here m  lies in the set (1 ,2 , . . . , n }  so that k — n  — m  lies in the 
set { 0 , 1 , . . . ,  n  — 1}. Consider the linear partial-differential operators 

. . .  ,3 n_i given by

[11]).

A  =  (det(G ))«+i G - 1 .

Consider the characteristic polynomial

det(A — Aid) =  c0An +  CiAn_1 +  • • • +  cn . 

Consider the mappings So, S i , . . . ,  Sn_i : T M n —> T M n given by

(3)

771—1

7 =  0

3fc(/) =  A (S fc(grad /))
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where grad( / )  denotes the gradient g"' of the function /  and 2- denotes 
the divergence with respect to the metric g.

Remark 1. In coordinates the operators 3k are given by

3 , =
det(0 )

_ d _

d x l
- ( Sk )aJde t (g )g aj d_

d x j

Remark 2. The operator (—1 )n3n- i  is exactly the Laplacian A g.

Theorem 5. I f  the metrics g and g on M n are projectively equivalent then the 
operators 3k commute pairwise. In particular they commute with A g.

If differential operators commute then their symbols also commute (as functions 
on the symplectic manifold T * M n). In our case the symbols are the functions
I k : T * M n —» M, k — 0 , 1 , . . . ,  n  — 1, given by the formulas

Smbl(3fc)(x ,p ) =f Ik(x ,p)  = ga j (Skyap tPj ■

Remark 3. The function I n- i  is equal to the Hamiltonian o f the geodesic 
flow  o f the metric g.

Theorem 6 . ([16]) I f  the metrics g and g on M n are projectively equivalent 
then the functions I k are commutative integrals fo r  the geodesic flow  o f the 
metric g.

If the metrics are strictly non-proportional at a point x  G M n then I k are 
functionally independent on the cotangent bundle to some neighborhood of the 
point x  and the operators 3 k are linear independent. Moreover, the following 
theorem shows that if the manifold is connected and geodesically complete and 
if the projectively equivalent metrics are strictly non-proportional at a point 
then they are strictly non-proportional almost everywhere and therefore the 
differentials of the functions I k are linear independent at almost every point of 
T * M n.
Denote by X0(x) < Xi(x) < ■ ■ ■ < Xn_1(x) the eigenvalues of A  at x  G M n.

Theorem 7. Let g and g are projectively equivalent metrics on M n. Suppose 
that M n is geodesically complete (with respect to one o f the metrics) and 
connected. Then fo r  any i G { 0 ,1,..., n — 2} the following statements are 
true:
1. Ai(x) <  Xl+1(y) for  any x , y  G M n.
2. I fXf l x )  < Xi+1(x) fo r  some x  G M n then Xfly) <  Xi+1(y) fo r  almost each 

point y  G M n.
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3. I f  \ ( x )  — Ai+1 (y) fo r  some x, y G M n then there exists z  G M n such that
A i { z ) =  A l+i{z).

It is easy to see that the eigenvalues A0(t ) <  Ai(x) <  <  \ n_1(x) of
the mapping A  and the eigenvalues p0(x) > p\{x)  >  ••• >  pn_1(x) of the 
mapping G  are connected by the formulas

_ J _  1

Xl {x) = (p0(x)p1(x) ■ ■ ■ pn_ i (x) )  n+1 — ,
Pi

; Xi(x)  ‘

In particular, the number of different eigenvalues of G  coincides with the num
ber of different eigenvalues of A. Thus the following statement is true.

Corollary 1. Let the metrics g, g are projectively equivalent on M n. Suppose 
M n is connected and geodesically complete with respect to one o f these metrics. 
I f  at a point o f the manifold the number o f different eigenvalues o f G is equal to 
rii then at almost every point the number o f different eigenvalues o f G is greater 
or equal than ri\. In particular, if  the metrics are strictly non-proportional at 
a point then they are strictly non-proportional almost everywhere.

If the manifold is closed then the operators 3/, are self-adjoint. If they commute, 
it is possible to diagonalize them simultaneously: there exists a countable 
basis T> =  { / 1; / 2, . . . ,  / m, . . .  } of the space L 2( M n) such that each f m is 
an eigenfunction of each operator J k.
In the case of normal model metrics on the torus, the equation A gf  = p f  can 
be separated in the variables ( fC  ̂  ̂*1C  ̂» More precisely, take any function
/  from the basis <&. Since /  is an eigenfunction of each operator 3/,, we have 
that /  is a solution of the system of n  partial differential equations

3k f  = P k f  , k = 0 , 1 , . . .  , n  -  1.  (4)

In coordinates ( 0C j fC  ̂ the system (4) is equivalent to the system

d
d x k f  =

n —1

i=0
[X Pi / , & =  0 , 1 , . . . ,  n — 1. (5)

We see that for each k e  { 0 , 1 , . . . ,  n  — 1} the coefficients of the 
k-th equation depend on the variable x k only. Then /  is the product 
X 0(t°)X 1(t 1) • • • X n_1(xn~1), and for each k  G { 0 , 1 , . . . ,  n — 1} the function 
X k is a solution of the /,:-th equation of (5) so that we reduced the system of
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partial differential equations (4) on the toms to the system of ordinary differ
ential equations on the circle:

d
d x k

X k(xk) =
n — 1

x k(xk)
i= 0

k =  0 , 1, . . . ,  n  — 1
(6)

so that the variables in the equation A gf  = g f  are completely separated.
What happens if the metrics are not strictly non-proportional everywhere? Our 
conjecture is that if M n is closed and connected and if g and g are projectively 
equivalent and strictly non-proportional at least at one point then it is also 
possible to separate the variables globally: the equation A gf  — g f  splits 
naturally into n  ordinary differential equations (6) either on the interval (with 
von Neumann conditions on the ends) or on the circle.
The conjecture is true for two-dimensional surfaces (projectively equivalent 
metrics on closed surfaces were described in [2 ,5 ,7 ,9]). It is also true for 
the metric of the ellipsoid and the metric of the Poisson sphere (as shown in 
[11-16], the metric of the ellipsoid and the metric of the Poisson sphere have 
projectively equivalent metrics).

2. Spectral Polynomial Ft and the Behaviour of the Eigenvalues 
of A

Consider the function f : I x  T * M n —> R given by

Ft {x , i )  =  H------- \ - I0(x,£)  •

For a fixed point (x, £) G T*M ,  the function Ft is the polynomial in t.
In the proof of Lemma 1 we will show that all the roots of the polynomial are 
real. Let us denote the roots of the polynomial by

to(x,£) < ti(a;,£) < • ■ ■ < t„_2(x,£).

Lemma 1. Let x  is a point o f M n. Then fo r  any i G { 0 , 1 , . . . ,  n  — 2} the 
following statements are true.

1. For any £ G T*M,

K(x) < ti(x,£) < Ai+1(x).

In particular, if  X f x )  =  Xi+1(x) then t f x , ( f )  =  X f x )  =  Xi+i(x).
2. I f  t f x , £ )  is constant fo r  any £ from  some subset o f T * M  o f non-zero 

measure then X f x )  — Ai+i(x).
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Proof: In the proof we assume that the point x  G M n is fixed. For simplicity, 
we will write L(£) instead of Aj(x), U{x , £). Denote by a m the elementary 
symmetric polynomial of degree m  of the variables A0, . . . ,  An_i. Denote by 
crm(Aj) the elementary symmetric polynomial of degree m of n — 1 variables

A0, Ai , . . . ,  Aj_i, Aj+i , . . . ,  An_i .

The polynomials crm, a m (At ) and am i(A;) satisfy the relation

”̂m(Ai) Aj<rm_i(A j).

By definition, the coefficients c0, . . .  , cn of the characteristic polynomial (3) 
are given by cm =
Since the metrics g, g are positive definite, there exists a basis of the space 
T * M n such that the metric g is given by the identity matrix d iag(l, 1 , . . . ,  1) 
and the mapping A  is given by the matrix diag(A0, Ax, . . . ,  A„_i).
Let us show by induction that then the mapping S k is given by

( - l ) fe_1 diag(fjn_fc-i(Ä 0) , a n_fc_i (Ä1) , . . . , c 7n_fc_i(Än_i ) )  . (7)

The base of induction is k — n  — 1. We evidently have

S 0 =  c0 Id =  ( - 1)™ diag(l, 1 , . . . ,  1) =  ( - l )n_2 diag (cr0(A0) , . . . ,  <r0(An_:i)). 

Suppose the statement is true for k =  n  — m:

S n-m =  diag (a m_1(A0) , a m_1(A1) , . . . ,  a ^ C K - i ) )  ■

Then for k — n — m  — 1 we have

S,n —m  — l S n-m.A +  cm Id — S n_mA  +  (—l ) n rn<Jm Id 

diag ( ( - 1)"-"*+' A o ^ -j  (Âo) +  . . .  )

diag (<Tm(À0) , . . . ,  crro(An_ !)) .

Thus, for any k, the mapping S k is given by (7).
For any £ =  (po,Pi, ■ ■ ■ , pn- i ) € T * M n, denote by Pj the polynomial

Pi(t) = ( t ~  A0)(t  -  Ai) • • • (f -  A,_i)(t -  Ai+i) • • • (t -  An_i)
n  — 1 

a=0

(8)
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Then the polynomial Ft has the following form:

n —1 n — 1 

i= 0  a = 0

=  ( — 1)U (Pd(t)pl +  Pl{t)p\ H f Pn-l(t)Pn-l)
(9)

Easy to see that the coefficients of the polynomial Ft depend continuously on 
the eigenvalues A, and on the momenta p, . Then it is sufficient to prove the 
first statement of the lemma assuming that the eigenvalues Aj are all different 
and that the momenta pi are non-zero. For any «  /  i we evidently have 
Pi(Xj)  =  0. Then

n — 1

Fx, =  ( - l ) " E P« ( A i K  =  ( - 1)"P ,(K )p 2, ■
a=0

Hence F\. and FXt, have different signs and therefore the open interval 
]Aj,A*+i[ contains a root of the polynomial F ,. The degree of the polyno
mial Ft is equal n  — 1; we have n  — 1 disjoint intervals; any of these intervals 
contains at least one root so that all roots are real and the root number i lies 
between A* and Ai+ i. The first statement of the lemma is proved.
Let us prove the second statement of the lemma. Suppose that, for any £ from 
some subset U C T * M n of non-zero measure, the value £j(£) is constant and 
is equal to r. Then, by definition of ti, the function

is zero for any (  G [/. The function FT(x,£) (as a function on T * M n) is 
a polynomial in £; since it is zero on some subset of non-zero measure, it 
is identically zero. Therefore, by the first statement of the lemma, for any 
£ e  T * M n, the root U(£) is equal to the constant r.

Now let us show that, for any number r satisfying

X i  F  T  F  Aĵ i ,
there exists £ G T*M n, £ 7̂  0 such that fj(£) =  r.
Indeed, consider £i ,£2 G T * M n such that all components of £1 except for the 
component number i are zero; all components of £2 except for the component 
number i +  1 are zero. In view of (9), f^(£i) =  Ai+i and ij(£2) =  A*. Let us 
join £1 and £2 by a curve that lies in T * M n and that does not go through zero. 
Since the root L(£) depends continuously on £ G T * M n, for any r G [Aj, A*+ i] 
there exists £ lying on this curve such that L(£) — r. Thus, Aj — Aî+1 and the 
lemma is proved. □



Quantum Integrability on the Torus 237

Proof: (Theorem 7) Suppose g, g are projectively equivalent metrics on M n. 
We assume that the manifold is connected and geodesically complete with 
respect to the metric g. Then we can joint any two points x,  y  G M n by a 
geodesic 7 . Let us identify T M n and T * M n by g. By Theorem 6 , we have 
that the functions I k are constant on the orbits of the geodesic flow of g. Then 
the root L is also constant on each orbit of the geodesic flow of g so that

^ (7(0), 7(0)) =  L( 7 ( l ) , 7 ( l ) ) -

Using Lemma 1, we have that

^ (7(0)) <  **(7(0), 7 (0) ) ,  and £*(7 (1), 7 (1)) <  A ^ l ) ) .

Therefore Ai(x) < Xi+1(y) and the first statement of Theorem 7 is proved. 
Now suppose Xi(y) =  Xi+1(y) for any point y  of some subset Un G M n 
of non-zero measure. Then by the first part of the corollary, the value of A* 
is a constant (independent of y  G Un). Indeed, connecting any two points
yo,Vi G Un by a geodesic 7  we obtain (we assume y0 =  7 (0 ), yi =  7 (1))

M v o )  =  A*+i(j/o) =  t i (y0, 7 (0)) =  U(yu j ( l ) )  = Xi (y1) = Xl+1(y1) .

Denote this constant by C.  Let us prove that Ai (x)  =  Xi+1(x) =  C  for 
each point x  G M n. Let us connect the point x  with every point of Un by 
all possible geodesics. Since the solution of an ordinary differential equation 
depends continuously on initial data, the initial velocity vectors (at the point 
x)  of such geodesics form an open non-empty subset V n C TxM n =  T * M n. 
By the first statement of Lemma 1, for any geodesic 7  passing through any 
point of Un, the value L(7 , 7 ) is equal to C.  Hence, for any point £ G V n, 
the value L(£) is equal to C. Therefore, by the second statement of Lemma 1, 
Ai{x) — Xi+1(x) — C.  The second statement of Theorem 7 is proved.
Let Ai (x)  =  Xi+1(y) =  A for some i G ( 0 , 1 , . . . , n  — 2} (and for some 
constant A). We will assume that Ai{x) <  Xi+1(x). Since the manifold is 
geodesically complete, there exists a geodesic 7  (in the metric g) such that 
7 (0) =  x,  7 (1) =  y. We will show that the geodesic 7  has a point t such that 
Ai(z) — Xi+1(z) =  A; basically we will show that the geodesic 7  consists of 
the points where either A* or At , 1 (or both A* and A,. , ) are equal to A.
If ti is a multiple root of the polynomial ^ ( 7 (0 ), 7 (0)), or if there exists a 
point t G M n such that Ai - i ( z )  — X then the statement obviously follows from 
Lemma 1 and the first statement of Theorem 7. Suppose t % is not a multiple 
root and Xi_i{z) < X for any
Consider the function Fx : T * M n —> M. Let at some point (z, v) G T * M n, 
v ^  0, the differential dFx is zero. Let us show that then either A* or Ai+i (or 
both A* and Ai+i) are equal to A.
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Indeed, consider the coordinate system such that the metric g at the point z is 
given by the diagonal matrix d iag(l, 1 , . . . ,  1) and the mapping A  is given by 
the diagonal matrix diag(À0, Ai , . . . ,  An_i).  Then the restriction of the function 
F\  to the cotangent space T * M n is given by

n — 1

( - i y £ p „ ( A ) p 2 ,
a=0

where the polynomials Pi are given by (8). Then the partial derivatives

are given by
dFx
dp a

(-l)"2Pa(A)p,

OF,

dpa

Then A is an eigenvalue of the mapping A.  By the first statement of Theorem 7, 
either \  {z) — A or Ai+1(z) =  A.
Let us show that the differential dFx vanishes at the point (7,7) € T M n. 
Evidently the differential of any integral is preserved by the geodesic flow so 
that if dFx vanishes at one point of the geodesic orbit it vanishes at every 
point of the geodesic orbit and therefore for any z G 7  either A^(z) =  A or 
Â +i (z ) =  A.
By Lemma 1, we have

a =  \ i(x) <  £1(7(0),7(0)) =  £1(7(1);7(1)) < \ + i (y) =  A
so that A is a root of the polynomial ^ ( 7 (0), 7 (0)) and therefore the geodesic 
orbit (7,7) lies in the topological space

Q ä̂  { { z , r , ) € T M " - , F x (z,r,) =  0 } .

In order to show that the differential dFx vanishes at the point (7 (0 ), 7 (0)) G 
T M n, we show that any neighbourhood W  C Q C T M n of the point 
(7 (0 ) ,7 (0)) in the topological space Q is not homeomorphic to a disk.
By assumptions, the eigenspace of A  corresponding to the eigenvalue A* is one
dimensional in some small neighborhood U C  M n of the point x. Then there 
exists a smooth vector field </> on U such that A(p = \4> and g(4>, 4>) = 1. In 
particular, the eigenvalue A* depends smoothly on the point of U  and therefore 
the polynomial Pi{t) from (8) depends smoothly on the point of U. Further 
we will write Pj(£;z) instead Pi(t).
Consider a coordinate system in TxM n such that the metric g is given 
by the matrix d iag(l, 1 , . . . ,  1) and the mapping A  is given by the matrix 
diag(A0(x), Ai ( x) , . . . ,  Xn_1(x)).  In this coordinates, the component number i 
of the vector <fi is equal ±1  and the other components are zero; for any vector 
7 , its component number i is equal to the scalar product ± 5 (77, </>).
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Consider the function I :  T M n —>• M, I (z , r ) ) =  g(r],(j)). Evidently 
I  (7 (0 ), 7 (0)) =  0 and the partial derivative d l / d p i  at the point (7 (0), 7 (0)) 
is not zero. By implicit function theorem we have then that there exists some 
neighborhood V  of the point (7 (0), 7 (0)) in the topological space

n  — 1. Moreover, the restriction of the natural projection 7r: T M n —> M n to 
V  coincides with the natural projection: U> x jyn- 1 Tjt'
For any point (z, is) £ V  C  T*U ', consider the points

zero. It vanishes if and only if Ai(z)  =  A. It is easy to see that if, for some 
points ( z1, is1), ( z2, v 2) £ V,  at least one of the relations

holds then automatically = (z2, ^ 2).
It is easy to check that Fx (z, u+) = Fx (z, v_)  =  0 and that any point (z,£)  
of some neighbourhood W \ C Q of the point (7 (0), 7 (0 )) is either (z, zzj_) or 
(z, v \ ) .  Then some neighborhood of the point (7 (0), 7 (0)) in Q is homeomor- 
phic to the direct product of two copies of the disk U1 glued along the points 

 ̂ where A i ( z )  =  A and the disk D n-1 . Then no neighborhood W  C  Q  of 
the point (7 (0), 7 (0)) is homeomorphic to 2n  — 1-dimensional disk and the 
differential dFx vanishes at each point of the geodesic orbit (7 , 7 ).
Finally any point of the geodesic 7 lies in one of the following sets:

Q- = {(*, >î) e TM " ; I(z , rj) = 0}
such that V  is homeomorphic to the direct product U' x D n_1, where U' C  U 
is a neighborhood of the point x  and D n~ 1 denotes the disk of dimension

70 = {z £ 7; Ai(z) =  A } ,

71 -  {z £ 7; Xl+1(z) -  A } .

The subsets 70, 71 are evidently closed and non-empty. Then they intersect; at 
each point t of the intersection we have Ai{z) — Xi+1(z) — X. Theorem 7 is 
proved. □
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Proof: (Theorem 4) Let M n be closed connected. Let g, g are projectively 
equivalent metrics on M n. Assume that they are strictly non-proportional at 
each point of the manifold. Then the eigenvalues At are different at each point 
of the manifold. By Theorem 7 we have then that there exist r0, Ti , . . . ,  rn_2 
such that for any x  G M n

A0(x) < To < Ai(x) < Ti < ■ ■ • <  \n-2{x) < Tn_2 <  K-l{x) ■ 

Consider the polynomial

(_l)n(£ _ T0)(t — T\ ) •••(£ — Tn_ i) =  Cn_itn 1 +  ■ • • +  C0 ■

Consider the subspace

L"  =  {(* ,? ) 6  =  =  ........U * , f )  =  c » - .} -

It is easy to see that at each point of L n the matrix W,LJ — 

degenerate. Let us fix the point x  G M n. Denote by

d l% .
- — is non-
opj

Ai < A2 < • • • < An

the eigenvalues of A  at x. Since the functions FX/ are linear combinations of 
the functions / ,,  it is sufficient to show that the determinant of the matrix

dFXi

%

is not zero. Consider a basis of the space T * M n such that the metric g is 
given by the identity matrix d iag(l, 1 , . . . ,  1) and the mapping A  is given by 
the matrix diag(A0, Al5. . . ,  An_i).  In this basis, the matrix W  is the diagonal 
matrix

( - l ) n diag(2n 1(A1)p1, 2n 2(A2)p2, • • •, 2IIn(An)pn) .

Since Ai < < Xi+1 for any i G { 0 , 1 , . . . ,  n  — 1} we have that n 2(A2)p2 is
not zero and therefore the matrix W  is non-degenerate.
In particular, the differentials

d /0, d / i , . . . ,  d /n_i ( 10)

are linearly independent at each point of L n. Then L" is homeomorphic to 
the n-torus. By implicit function theorem, we have that the restriction of the 
natural projection 7r: T * M n — M n to L n has no singular points (in other 
words, the torus has no caustics). Then the torus L n covers the manifold M n. 
Theorem 4 is proved. □
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3. The Homology Group of a Manifold Admitting Projectively 
Equivalent Metrics

Theorem 8. Let M n is a connected closed manifold o f dimension n. Suppose 
that the metrics g, g on M n are projectively equivalent and strictly non
proportional at least at one point o f M n. Then

dim (iï’1 ( Mn,M)) <  n .

Moreover, i f  there exists a point x  £ M n such that

A i{x) = Ai+i(x)

then
d i m < n .

The first homology group of the torus T n has dimension n.

Corollary 2. Let metrics g, g on the torus T n are projectively equivalent and 
strictly non-proportional at least at one point. Then they are strictly non
proportional everywhere.

Sketch of proof of Theorem 8 . For n  — 1 the statement is trivial; For n  =  2, in 
view of Theorem 6 , Theorem 8 essentially follows from [7,5], see [9]. Suppose 
Theorem 8 is true for all n < k. Let us explain why it is true for n  =  k. If 
the metrics are strictly non-proportional at each point, Theorem 8 follows from 
Theorem 4. Suppose there exists a point x  £ M n such that

\ i { x )  =  Ai+i (x) .

Consider the set
A =  {x  £ M n ; Ai (x)  =  Ai+i(x )} .

By Theorem 7, the value of A,; is constant on A; denote this constant by A.
It appears that the set is a totally geodesic submanifold of co-dimension 2 
and that the homology group H 1(A,Q)  coincides with the homology group 
H 1( M n ,Q).  The proof of this statement is quite long and will appear else
where; here we will try only to explain it. Actually, in view of Theorem 6, the 
first statement follows from the results of [6], It also can be proved invariantly, 
using the same technique as in proof of the third statement of Theorem 7: the 
set A can be invariantly given as the projection of the set of the points of 
T * M n where the differential of the function Fx is zero and the differential of 
the function

rpf def 
T  A =
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is zero; this set is given in terms of integrals and therefore is preserved by the 
geodesic flow so that the submanifold A is geodesically complete.
The set A can have more than one connected components; it is always the case 
when the manifold is orientable. It appears that if we drop out one connected 
component then some other connected component is the deformation retract of 
the rest so that the homology groups H 1(A, Q ) and H 1( M n, Q)  coincide. Since 
A is totally geodesic submanifold, the restriction of g, g to A are projectively 
equivalent. Evidently, they are strictly non-proportional at least at one point. 
By the inductive assumption, the homology group H 1(A,Q)  has dimension at 
most n  — 2 and the theorem is proved.

4. Global Levi-Civita’s Coordinates on the Torus

Proof: (Theorem 2, 3) Suppose the metrics g, g on the torus T n are projec
tively equivalent and strictly non- proportional at least at one point. Then, 
by Corollary 2, they are strictly non-proportional at each point of T n. By 
Theorem 7, there exist constants r0 j . . . ,  rn_2 such that for any x  6  T n

X0(x) < T0 < Ai(x) < 7i < • • • < Xn-2(x) < Tn_2 < An_i(a:).

Consider the polynomial

In the proof of the Theorem 4 we have shown that any connected component 
of the subset (11) is a Liouville torus without caustics. Then it covers T n. 
Without loss of generality we can assume that the covering is a diffeomorphism 
(otherwise we can take the corresponding covering of the torus T n).
Then the projection of the Hamiltonian vector field from the torus (11) to the 
torus T n is a non-zero vector field on T n. Let us denote this vector field by

At each point x  G M n, consider the vectors ry given by the conditions:

( _ l ) n (£ _  T g ) ( t  — T i )  • ■ • ( £  — Tn _ i )  — Cn- \ t n 1 +  • ' ' +  C q.

and the subset

V.

( 12)

Since at each point of T n the eigenvalues of G  are different, the first condition 
of ( 12) determines the one-dimensional linear space; the second condition de
termines the length and the third condition determines the direction so that the
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vector fields v% are uniquely determined by the conditions (12). In Levi-Civita 
coordinates from Thereom 1 we evidently have vt =  ± d / d x l . Then the vector 
fields Vi commute and for each j  ^  i the vector field v t preserves A7. 
Therefore we have a locally-free action of the group M" on M n generated by 
the shifts along the integral curves of the vector fields. This action defines a 
covering of the torus T n by the space M !\ By construction, the pull-back of 
the metrics g, g on R n is given by (1, 2).
The stabilizer of each point of T n is a discrete subgroup of Mn; since T n is 
compact, the stabilizer is an n-lattice Z n c  so that the metrics g, g are 
model metrics. Theorem 2 is proved.
Evidently each element of the stabilizer preserves each A*. It is easy to see 
that if for some i the eigenvalue A,-b is constant then the vector field ry is 
Killing with respect to both metrics. If we assume that the metrics admit no 
Killing vector field then the functions \  are not constants and therefore the 
lattice must contain a sub-lattice generated by some vectors e0 =  (Z0,0 , . . . ,  0), 
e1 — (0, Zi, 0 , . . . ,  0), . . . ,  en_! =  ( 0 , 0 , . . . ,  0, ln-i )-  Thus, up to a finite 
covering, the metrics g, g are normal model metrics. Theorem 3 is proved. □
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