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Abstract. We consider the variety of (p+l)-tuples of matrices Mj from 
given conjugacy classes Cj C  GL(n, C) such that M\ ■ ■ ■ Mp+i =  I.
This variety is connected with the Deligne-Simpson problem: give nec
essary and sufficient conditions on the choice of the conjugacy classes 
Cj C  GL{n, C) so that there exist irreducible (p+l)-tuples of matrices 
Mj G Cj whose product equals I. The matrices Mj are interpreted as 
monodromy operators of regular linear systems on Riemann’s sphere.
We consider among others cases when the dimension of the variety is 
higher than the expected one due to the presence of (p + 1)-tuples with 
non-trivial centralizers.

1. Introduction

1.1. The Deligne-Simpson Problem

In the present paper we consider some examples related to the Deligne- 
Simpson Problem (DSP) which is formulated like this:
Give necessary and sufficient conditions upon the choice of the p+1 conjugacy 
classes Cj C gl(n, C), resp. Cj C GL(n, C), so that there exist irreducible 
(p +  1)-tuples o f matrices Aj G c3, A 1 +  • • • +  A p+1 — 0, resp. of matrices
Mj € Cj, Mi • • • Mp_|_i =  I.
By definition, the weak DSP is the DSP in which the requirement of irreducibil- 
ity is replaced by the weaker requirement the centralizer of the (p +  1)-tuple 
of matrices to be trivial.
The matrices A :], resp. M j, are interpreted as matrices-residua of Fuchsian 
systems on Riemann’s sphere (i. e. linear systems of ordinary differential equa-

*To the memory of my mother.
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tions with logarithmic poles), resp. as monodromy operators of regular systems 
on Riemann’s sphere (i. e. linear systems of ordinary differential equations with 
moderate growth rate of the solutions at the poles). Fuchsian systems are a par
ticular case of regular ones. By definition, the monodromy operators generate 
the monodromy group of a regular system.
In the multiplicative version (i. e. for matrices Mf) the classes C3 are inter
preted as local monodromies around the poles and the problem admits the 
interpretation:
For what (p+l)-tuples of local monodromies do there exist monodromy groups 
with such local monodromies.
Remarks:
1) Suppose that A 3 denotes a matrix-residuum and that M3 denotes the corre
sponding monodromy operator of a Fuchsian system. Then in the absence of 
non-zero integer differences between the eigenvalues of A3 the operator M:I is 
conjugate to exp(27rL4j).
2) In what follows the sum of the matrices A3 is always presumed to be 0 and 
the product of the matrices M3 is always presumed to be I.

1.2. The Aim of This Paper

For a conjugacy class C  in GL(n, C) or gl(n , C) denote by d(C) its dimension 
(which is always even). Set d3 d{cf) (resp. d{Cf)).
For fixed conjugacy classes C3 consider the variety

V =  { (M i,. . . ,M p+1); M3 e C3 , M ,-- -M p+1 = / } .

This variety might contain (p +  1)-tuples with non-trivial centralizers as well 
as with trivial ones. It might contain only the former or only the latter.

Proposition 1.1. At a (p +  1 )-tuple with trivial centralizer the variety V is 
smooth and of dimension di + ■ • • +  dp+1 — n 2 +  1.

Remark. The proposition is proved at the end o f the subsection. A similar 
statement is true for the matrices A 3.

For generic eigenvalues (the precise definition is given in the next section) the 
variety V contains only irreducible (p +  1)-tuples and its dimension remains 
the same when the eigenvalues of the conjugacy classes are changed but not 
the Jordan normal forms which they define. We call its dimension for generic 
eigenvalues the expected one.
The aim of the present paper is to consider some examples of varieties V for 
non-generic eigenvalues. In the first and in the fifth of them (see Sections 3 
and 8) dim V is higher than the expected one. In the first example we discuss
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the stratified structure of V and we show that V consists only of (p+  1)-tuples 
with non-trivial centralizers. The latter fact is true for the fifth example as 
well.
In the second example (see Section 5) the eigenvalues are not generic and the 
variety V contains at the same time (p +  1)-tuples with trivial and ones with 
non-trivial centralizers. The dimension of V is the expected one.
In the third example (see Section 6) the variety V contains no (p +  1)-tuples 
with trivial centralizers but its dimension equals the expected one.
In the fourth example (see Section 7) there is coexistence in V of (p +  1)- 
tuples with trivial centralizers and of (p +  l)-tuples with non-trivial ones. The 
dimension of V at the former (i. e. the expected dimension) is lower than the 
dimension at the latter.
In the first and third examples the closure of V (topological and algebraic) 
contains also (p +  1)-tuples in which some of the matrices M3 belong not to 
Cj but to their closures, i. e. the eigenvalues are the necessary ones but the 
Jordan structure is “less generic”.
Similar examples exist for matrices A, as well. Before beginning with the 
examples we recall some known facts in the next section.

Proof: (Proposition 1.1) It suffices to prove the proposition in the case when 
C3 C S L (n , C). The variety V is the intersection in Ci x • • • x Cp x SL(n, C) 
of the graph of the mapping

Cx x • • • x Cp -► SL{n, C ) , (M 1:. . . ,  M p) ^  (M 1 ■ ■ ■ Mp)_1

and of the variety C =  Cj x • • • x Cp+1. To prove that V is smooth it suffices to 
prove that the intersection is transversal, i. e. the sum of the tangent spaces to 
the graph (which is the space {Yfj=1[Mj, Xj], X j G s/(n,C)}) and the one to 
C (it equals {[Mp+1, X p+1\, X p+1 G sl(n ,C )}) is sl(n,C). This follows from

Proposition 1.2. The {p +  1)-tuple of matrices Rj G gl(n, C) is with trivial 
centralizer if and only if the map (gl(n, C))p+1 —> sl(n, C), (Xi5. . . ,  X p+f) i—>

' 1 [Rj • X :l \ is surjective.

The dimension of V is the one of Cx x • • ■ x Cp, i. e. d1 +  • ■ • +  dp, diminished 
by the codimension of C in C\ x • • • x Cp x SL(n, C), i. e. by n 2 — 1 — dp+1. 
Hence, dim V =  di +  • • • +  dp+1 — n 2 + 1. □

Proof: (Proposition 1.2) The map is not surjective exactly if the image of every 
map X j I—> [Rj,Xj] belongs to one and the same linear subspace of sl(n, C), 
i. e. one has Tr(D[Rj, X 3]) — 0 for some matrix 0 /  D G sl(n,C) for j  — 
1 ,. . .  ,p +  1 and identically in the entries of X j. One has Tr(D[Rj,Xj]) =
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Tr([D, R j]Xj) which implies that [D. R :]\ — 0 for all j  — a contradiction with 
the triviality of the centralizer. □

2. Some Known Facts

We expose here some facts which are given in some more detail in [2]. For 
a matrix Y  from the conjugacy class C  in G L(n,C) or gl(n,C) set r(C ) := 
minAeC rank(y  — XI). The integer n — r(C ) is the maximal number of Jordan 
blocks of J ( Y ) with one and the same eigenvalue. Set rj r(cj) (resp. 
r(Cj)). The quantities r(C ) and d(C) depend only on the Jordan normal form 
of Y.

Definition 2.1. A Jordan normal form (JNF) o f size n is a family J n =  {bu  }
(i G Ii, Ii =  { 1 ,. . . ,  si}, I G L) of positive integers biti whose sum is n. The 
index l is the one of an eigenvalue and the index i is the one of a Jordan block 
with the l-th eigenvalue; all eigenvalues are presumed distinct. An nxn-matrix 
Y  has the JNF J n (notation J ( Y ) =  J n) if to its distinct eigenvalues Ai, l G L, 
there belong Jordan blocks of sizes bitl. We usually assume that for each fixed 
l the numbers b^i form a non-increasing sequence.

Proposition 2.1. (C. Simpson, see [3]) The following couple of inequalities is 
a necessary condition for the existence of irreducible (p+1)-tuples of matrices 
Mj-'

di +  • • • +  dp+1 >  2n 2 — 2 for all j  , (an)

7T +  • • • +  fy +  • • • +  rp.|_i > n . (ßn)

Remark. The conditions are necessary for the existence of irreducible (p+1)- 
tuples of matrices Aj as well.

We presume that there holds the following evident necessary condition

^ T r ( c j )  =  0, resp. ]^[det(Cj) =  1.

In terms of the eigenvalues XkjJ (resp. akj )  of the matrices from a, (resp. Cf) 
repeated with their multiplicities, this condition reads

n p+1 n p+1
E E  XkJ =  0 , resp. n n  ak,j — 1 •
k=1 j=1 k=1 j=1

An equality of the kind
p+i p+i

5Z a = ° ’ resp- n  n  ak ,j= i
j=i feeçE>j j=l



212 V. Kostov

is called a non-genericity relation; the sets contain the same number < n 
of indices for all j . Eigenvalues satisfying none of these relations are called 
generic. Reducible (p +  1)-tuples exist only for non-generic eigenvalues; in
deed, the eigenvalues of each diagonal block of a block upper-triangular (p+1)- 
tuple satisfy some non-genericity relation.

Definition 2.2. Denote by {J f}  a (p +  1 )-tuple of JNFs, j  =  1 ,. . .  ,p  +  1. We 
say that the DSP is solvable (resp. that it is weakly solvable or, equivalently, 
that the weak DSP is solvable) for a given {J f  } and for given eigenvalues if 
there exists an irreducible (p +  1 )-tuple (resp. a (p +  1 )-tuple with a trivial 
centralizer) of matrices Mj  or of matrices Aj,  with J{M f) — J f  or J{A f) — 
J f  and with the given eigenvalues. By definition, the DSP is solvable for 
n =  1. Solvability o f the DSP implies its weak solvability, i. e. solvability of 
the weak DSP.

For a given JNF J n =  define its corresponding diagonal JNF J 'n. A
diagonal JNF is a partition of n defined by the multiplicities of the eigenvalues. 
For each l {6^} is a partition of bt J and J ,n is the disjoint sum of the 
dual partitions. We say that two JNFs of one and the same size correspond to 
one another if they correspond to one and the same diagonal JNF.

Proposition 2.2.
1) One has r (J n) — r (J 'n) and d (Jn) — d (J ,n).
2) To each diagonal JNF there corresponds a unique JNF with a single eigen
value.

Example. To the JNF {{4, 3,3}, {3, 2}} of size 15 (two eigenvalues, with 
respectively three Jordan blocks, o f sizes 4, 3, 3 and with two Jordan blocks, 
of sizes 3, 2) there corresponds the diagonal JNF with multiplicities of the 
eigenvalues equal to 3, 3, 3, 2, 2, 1, 1. Indeed, the partition of 10 dual to 4, 3, 
3 is 3, 3, 3, 1; the partition of 5 dual to 3, 2 is 2, 2, 1. After this we arrange 
the multiplicities in decreasing order.
To the two above JNFs there corresponds the JNF with a single eigenvalue 
with sizes of the Jordan blocks equal to 7, 5, 3. Indeed, 7, 5, 3 is the partition 
of 15 dual to 3, 3, 3, 2, 2, 1, 1.

For a given { J f}  with n > 1, which satisfies condition (ßn) and doesn’t satisfy 
condition

( h i -------h rp+1) > 2 n (^n)

set ni =  r1 +  • • • +  rp+i — n. Hence, ni < n and n — n\ < n  — rr  Define the 
(p +  l)-tuple { J f1} as follows: to obtain the JNF J f 1 from J f  one chooses
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one of the eigenvalues of J f  with greatest number n — r3 of Jordan blocks, 
then decreases by 1 the sizes of the n — rii smallest Jordan blocks with this 
eigenvalue and deletes the Jordan blocks of size 0.

Definition 2.3. The quantity k — 2n2 — Y^= i (-{i defined for a (p+ 1)-tuple of 
conjugacy classes is called the index of rigidity.

It is introduced by Katz in [1], For irreducible representations it takes the 
values 2,0, —2, —4 , . . . .  Indeed, every conjugacy class is of even dimension 
and there holds condition (an). If for an irreducible (p +  1)-tuple one has 
k — 2, then the (p +  1)-tuple is called rigid. Such irreducible (p +  1)-tuples 
are unique up to conjugacy (see [1] and [3]).

Lemma 2.1. The index of rigidity is invariant for the construction {./" } i—>

Theorem 2.1. Let n > 1. The DSP is solvable for the conjugacy classes Cj 
or Cj (with generic eigenvalues, defining the JNFs J f  and satisfying condition 
ißn)) if and only if either {J j } satisfies condition (ccn) or the construction 
{./"} i— {J'fy } iterated as long as it is defined stops at a {p +  1)-tuple {J j  } 
either with n' — 1 or satisfying condition (ujn>).

Remarks:
1 ) The conditions of the theorem are necessary for the weak solvability of the 
DSP for any eigenvalues.
2) A posteriori one knows that the theorem does not depend on the choice(s) 
of eigenvalue(s) made when defining the construction { J f}  i—> {•/"1 }.

3. An Example with Index of Rigidity Equal to 2

3.1. Description of the Example

Denote by J*, J** two quadruples of JNFs J, of size 4, j  = 1 , . . . ,  4, in both 
of which fy, J2 and J 3 are diagonal, each with two eigenvalues of multiplicity 
2; in J '* the JNF J 4 is with a single eigenvalue to which there correspond 
three Jordan blocks, of sizes 2, 1, 1; in J** the JNF J 4 is diagonal, with two 
eigenvalues, of multiplicities 3 and 1. The JNFs J 4 from the two quadruples 
correspond to each other.
Hence, both J* and J*'* satisfy the conditions of Theorem 2.1 (to be checked by 
the reader). They are both with index of rigidity 2. In both cases (of matrices 
Aj or Mj) the quadruple J** admits generic eigenvalues and, hence, there exist 
irreducible quadruples of matrices Aj or Mj with such respective JNFs.
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Definition 3.1. Suppose that the greatest common divisor o f the multiplicities of 
all eigenvalues of the matrices Mj or Aj equals q >  1. In the case of matrices 
Mj denote by £ the product of all eigenvalues with multiplicities decreased q 
times. Hence, £ is a root of unity of order q: ^ =  exp(27ri//g), l 6 N. Denote 
by m  the greatest common divisor o f l and q. Hence, for m  > 1 the eigenvalues 
satisfy the non-genericity relation (called basic) their product with multiplicities 
divided m  times to equal 1. In the case of matrices Aj the basic non-genericity 
relation is the sum of all eigenvalues with multiplicities decreased q times to 
equal 0. Eigenvalues satisfying only the basic non-genericity relation and its 
corollaries are called relatively generic.

The quadruple J* does not admit generic but only relatively generic eigenvalues 
in the case of matrices Aj because one has q = 2.
The quadruple J* admits generic eigenvalues in the case of matrices Mr  In
deed, such is the set of eigenvalues of the four matrices ( e, e_1), (\/2, l/s /2 ), 
(3,1/3), i. In this case q =  2 and the product of all eigenvalues with multiplic
ities decreased twice equals —1. This is not a non-genericity relation. If the 
eigenvalue of the fourth matrix is changed from i to —1, then the eigenvalues 
will not be generic — their product when the multiplicities are decreased twice 
equals 1. This is the basic non-genericity relation. In this case the eigenvalues 
are relatively generic but not generic.
In our example we consider conjugacy classes Cj defining the quadruple of 
JNFs J*, with relatively generic but not generic eigenvalues. Observe that the 
expected dimension of V both in the case of J* and of J** equals 8 +  8 +  8 +
6 — 15 =  15.

3.2. The Stratified Structure of the Variety V from the Example

The variety V from the example contains at least the following two strata 
denoted by U and W. The stratum U consists of all quadruples defining repre
sentations which are direct sums of two irreducible representations, i. e. up to 
conjugacy one has (for (M1; M2, M3, M f) G U)

=  / )  , Nj .P j  € GL{2,£)  (1)

where the matrices Nj (resp. I f )  are diagonal for j  =  1,2,3. Their quadruples 
are with generic eigenvalues and for j  =  4 the eigenvalues equal —1, P4 is 
conjugate to a Jordan block of size 2 while N4 is scalar. The existence of 
irreducible quadruples of matrices Nj and Pj is guaranteed by Theorem 2.1.

Remark. The matrices Nj (resp. Pj) define an irreducible rigid representation 
(resp. an irreducible representation of zero index of rigidity).
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Proposition 3.1.
1) The variety o f matrices Nj (resp. Pj) as above is smooth, irreducible and 
of dimension 3 (resp. 5).
2) The variety o f quadruples of diagonalizable matrices Mj G GL(2,C) each 
with two distinct eigenvalues (the eigenvalues o f the quadruple being generic) 
is smooth, irreducible and of dimension 5.

All propositions from this subsection are proved in Section 4.
The stratum W consists of all quadruples defining semi-direct sums of 
two equivalent rigid representations. Up to conjugacy one has (for
(m 1, m 2, m 3, m 4) € m

M’ = ( N0 n ) '  N,<R,<=G L(%C) (2)

with Nj as above. The blocks Rj are such that for j  =  1, 2, 3 the matrices Mj 
are diagonalizable while M4 has JNF J 4 (i. e. rank f?4 =  1).
The absence of other possible types of representations is guaranteed by the 
following theorem which follows from Theorem 1.1.2 from [1], The theorem 
and its proof were suggested by Ofer Gabber.

Theorem 3.1. For fixed conjugacy classes with index of rigidity 2 there cannot 
coexist irreducible and reducible (p +  1 )-tuples of matrices Mj.

The theorem is proved in the Appendix. It follows from the theorem that 
there can exist only reducible quadruples of matrices Mj in the example under 
consideration.

Proposition 3.2. One has V = U U W.

Proposition 3.3.
1) In a quadruple (2) the matrix f? 4 is nilpotent of rank 1 and for j  — 1, 2, 3 
one has R 3 =  [Nj, Zj\ with Zj 6 s/(2,C).
2) I f  the matrices N lt N 2, N 3 are fixed, then for every nilpotent rank I matrix 
R \ there exists a quadruple of matrices (2).

Proposition 3.4. The centralizers in S L (4, C) of the quadruples (\) and (2) 
are both of dimension I. They consist respectively o f the matrices

( f  ± a - u ) and ( o  « ) ’

Proposition 3.5. The stratum W  belongs to the closure of the stratum U.
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Proposition 3.6. The stratum W  is an irreducible smooth variety of dimen
sion 15.

Proposition 3.7. The stratum U is an irreducible smooth variety o f dimen
sion 16.

Remarks:
The closure of the variety W (hence, the one of U as well) contains the variety 
y  of quadruples which up to conjugacy are of the form (2) with R 3 =  0 for 
all j .  For such quadruples
1) the matrix M4 is scalar;
2) they define direct sums of two equivalent irreducible rigid representations. 
There exist no irreducible such quadruples of matrices M3 or A;I because the 
conditions of Theorem 2.1 are not fulfilled (neither the necessary condition

Proposition 3.8. The variety y  is smooth and irreducible. One has 
dim 3̂  =  12.

4. Proofs of the Propositions 

Proof of Proposition 3.1:
1°. The variety of quadruples of matrices N3 is obtained by conjugating one 
such quadruple by matrices from SL{2, C) (indeed, rigid (p + l)-tuples are 
unique up to conjugacy, see [1] and [3]). This proves the connectedness. The 
smoothness and the dimension follow from Proposition 1.1.
2°. Denote by C* the conjugacy class of the matrix P3. Prove that the va
riety II of quadruples of matrices P3 is connected. Denote by 5 the product 
dot P| dot P2. By varying the matrices P1 and P2 (resp. P:> and Pf) one can 
obtain as their product P\P2 (resp. as PA 1 P:i 1 ) any matrix from the set A(5) 
of 2 x 2-matrices with determinant equal to Ö. The set A (ci) being connected 
so is the variety II because II =  {(Pi, P2, P3, P i)|P j 6 C*, P 1 P2 — P^_1P3~x}.
3°. The eigenvalues of the matrices P3 being generic, the variety II contains 
no reducible quadruples. Hence, the variety n  is smooth, one has d im n  — 5, 
see Proposition 1.1.
4°. Part 2) is proved by analogy with 2° and 3°. □

Proof of Proposition 3.2:
1°. A quadruple from V is block upper-triangular up to conjugacy. The eigen
values being relatively generic, the diagonal blocks can be only of size 2 and 
the restrictions of the matrices M3 to them can be with conjugacy classes like 
in the cases of quadruples of matrices N3 or P3.
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2°. Show that if one of the diagonal blocks is a quadruple of matrices Nj and 
the other one of matrices Pj, then this is a direct sum conjugate to a quadruple 
(1). Indeed, for the representations P  and N  defined by the quadruples of 
matrices P3 and Nj one has E xt1(P, N ) — Ext1 (TV, P) — 0 (to be checked 
directly). This implies that a block upper-triangular quadruple of matrices M:l 
with diagonal blocks Nj and Pj is conjugate to its restriction to the two diagonal 
blocks, i. e. the quadruple is a point from U. On the other hand, if both diagonal 
blocks equal Nj, then the quadruple is like in (2).
Hence, only quadruples like the ones from U and W  can exist in V. □

Proof of Proposition 3.3:
1°. The blocks Ri, R 2, R 3 must be of the form Rj — [Nj,Zj] for some 
matrices Zj <G gl(n, C). Indeed, it suffices to prove this under the assumption

that Nj is diagonal: Nj — ^  A ^  g. Set R 0 — (j- ^ j-  One must have

g = s — 0, otherwise Mj will not be diagonalizable. But then Rj =  [Nj,Zj\

On the other hand, if for j  =  1.2. 3 one has Rj — [Nj, Zj], then the matrices 
M 4, M 2, M 3 have the necessary JNFs — one has

2°. If one has rank R 4 =  0, then R 4 =  0 and M 4 must be scalar, i. e. M4 ^  C4. 
If rank R 4 =  2, then rank(M4+7) =  2 and again M4 ^  C4. Hence, ranki?4 — 
1. This leaves two possibilities — either R 4 has two distinct eigenvalues one 
of which is 0 or it is nilpotent.
3°. The condition M 4 ■ ■ ■ M 4 — I  restricted to the right upper block and to 
each of the diagonal blocks reads respectively

Ni N 2 N 3 = - I .

Hence, the first of these two equalities takes the form

- R i  ~  N ^ i N x ) - 1 -  (Nl N 2)R3{N1N 2) - 1 -  R 4 = 0.
As Rj = [Nj, Zj], j  = 1, 2, 3, see 1°, one has

Tr R t = T t R 2 = T r iN xR ^N x)-1) =  Tr R 3 = Tt((N 1N 2)R 3 {NxN 2) - 1) =  0. 

Hence, T rP 4 =  0. This means that R 4 is nilpotent, of rank 1. This proves 1).

-1
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4°. To prove 2) one has to recall that R 0 — [Nj. Z:l\ for j  — 1,2,3, see 1°, 
and that each matrix from sl(2,C) can be represented as ]Tj=l [N:r Zj\, see 
Proposition 1.2. Hence, for every nilpotent R 4 one can find matrices Zs such 
that for j  — 1, 2, 3 one has Rj — [A ,̂ Zj\, i. e. Mj G Cj and M i M2M3M4 — 
I. □
Proof of Proposition 3.4:

1°. Denote by F U V  
W  Y a matrix from the centralizer of the quadruple.

In the case of a quadruple (1) the commutation relations read:

[U, A y =  [y,py =  o , n,v  = vp3 . wn, = pjw.

The representations defined by the matrices Nj and Pj being non-equivalent, 
these relations imply V  — W  — 0. The irreducibility of the quadruples of 
matrices Nj and P} and Schur’s lemma imply that U and Y  are scalar. Hence, 
U = a l, Y  = £1 with =  1, i. e. £ =  ± a ~ \
2°. In the case of a quadruple (2) the matrix algebra A  generated by the 
matrices Mj contains the matrix M4 +  I  and its left and right products by 
matrices from the algebra B generated by M4, M 2 and M3. As B contains

matrices of the form ^  j for any T  G gl(2, C) (the Burnside theorem), the

algebra A  contains all matrices of the form

The commutation relations imply that W Q  =  0, hence, W  =  0, and UQ =  Q Y  
for any Q, i. e. U =  Y  =  81. Finally, one has [Â -, V] = 0 which implies that 
V  = ß l  (use Schur’s lemma).
One must have Ô4 = 1 because F  G SL(4, C). □

Proof of Proposition 3.5:
1°. One can deform the matrices M3 from a quadruple from W  as follows. The 
deformation parameter is denoted by s G (C, 0) and the deformed matrices by

Mj. Assume that N4 =  —I, R 4 =  ^  ^  (one can achieve this by conjugation

of the quadruple with a block-diagonal matrix). Set Mj =  M 4 +  c(E {̂  + 
w (£)E1>3); the matrix E kj  by definition has a single non-zero entry equal to 1 
in position w (s) is an unknown germ of an analytic function.
2°. For j  — 1,2,3 set Mj — (I + eXj{e))~1M j{I  +  £Xj{e)) where X j — 

$  ~  X®. One must have M jM jM jM j =  /  which in first
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approximation w.r.t. e reads

[M1? X f\M 2M 3M 4 +  M t [M2, X f\M 3M 4 +  M 1M 2[M3, X f\M 4
-U M, 1 —m w  \ — n

3°. Set Uf = U3{0), £/° =  (C7?,L^,I7S), Vj° =  v3(o), y° =  0^°, y2°, V?), 
w° = w(0). Equation (3) restricted to the left upper block reads:

g{U°) := [iVl5 U°]N2N3 +  N ! [TV2-, U°]N3 +  U$] = N4N2N3Eh2
(because iV4 — —I). Making use of N 4N 2N 3 =  —I  one finds

[Nu U ^Ng1] +  [ N ^ N ^ ^ N ^ N ^ N g 1] +  [N3, N ^U $]  =  E h2 (4)

The triple of matrices N 1, N 2, N 3 is irreducible, hence, so is the triple N 1, 
N 1N 2N g 1, N 3. By Proposition 1.2, one can find matrices b f  satisfying equa
tion (4).
4°. Equation (3) restricted to the right lower block is of the form 0 — 0, i. e. it 
gives no condition at all upon Uf, V f and w°. Its restriction to the right upper 
block reads:

E (V °, U°,w°) := G{V°) + H(U°) -  w°Eh3 = 0 (5)

where H  is some linear form in the entries of the matrices Uf. Hence, if Uf are 
found such that (4) holds, then one can find w 0 such that Tr('H(U?, C/2°, U%)) =  
w°. After this one can find matrices V f such that (5) hold.
5°. The map (U °,V°,w°) i—» (G(U°), E (V °, U°, w0)) is surjective onto the 
space of 2 x 4-matrices. By the implicit function theorem one can find germs 
of matrices U3, V) and a germ of a function w holomorphic in e at 0 such that

Fix e ^ O . The quadruple of matrices M- is block upper-triangular with diago
nal blocks having the properties of P3 and N3 (P, is above). Moreover, each of 
the matrices M ' is conjugate to the block-diagonal matrix whose restriction to 
the two diagonal blocks is the same as the one of M- (to be checked directly). 
By Proposition 3.2, up to conjugacy the quadruple of matrices is like the one 
from (1). □

Proof of Proposition 3.6:
1°. Proof of the irreducibility. The variety W is obtained by conjugating with 
matrices from 51/(4, C) the quadruples of matrices of the form (2) with R 4 
nilpotent of rank 1. The orbit of R 4 is an irreducible variety which implies the 
irreducibility of W.
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2°. Fix the blocks Nj of a quadruple (2). The variety S  of such quadruples 
defined modulo conjugacy is of dimension 1. Indeed, the orbit of R 4 is of 
dimension 2. The only conjugations that preserve the form of the quadruple 
and its restrictions to the two diagonal blocks are with matrices of the form

6 / ) ’ ^  ^  ^ C); this is proved in 4°. If one requires the

matrix to be from S L (4, C), this means that b =  ± l / a  and factoring out these 
conjugations decreases the dimension by 1. Indeed, such a conjugation changes 
R 4 to bR4/a, the presence of V  does not affect the block R 4.
3°. To obtain the variety H  of all quadruples defining semi-direct sums like 
(2) one has to conjugate the quadruples from S  by matrices from SX(4, C). 
This increases the dimension by 14 (not by 15 because the centralizer of such a 
quadruple is non-trivial, of dimension 1, see Proposition 3.4). Hence, dim H —

4°. Denote by G a matrix the conjugation with which preserves the block

then the condition the quadruple to remain block upper-triangular implies that 
[W, Nj] — 0, i. e. W  — hi. The condition the diagonal blocks of M4 to remain 
the same implies [A4, Y] — W R 4 — R 4W  +  [A4, U] — 0. As N 4 = —I, one 
has [A4, Y] = [N4, U} = 0, i. e. W  = 0.
The conditions [Nj, U] =  [Nj,Y] =  0 imply that U =  al, Y  = bl. □

Proof of Proposition 3.7:
1°. The varieties of quadruples of matrices Nj or Pn see Proposition 3.1, 
are smooth, irreducible and of dimensions respectively 3 and 5. Hence, the 
variety V  of quadruples of matrices M :J like in (1) is smooth, irreducible and 
of dimension 8.
2°. The variety U is of dimension 8+15—7 =  16. Here “8” stands for “d im P ”, 
“15” stands for “dimSX(4, C)” and 7 is the dimension of the subgroup of 
SL(4, C) of block-diagonal matrices with blocks 2x2 conjugation with which 
preserves the block-diagonal form of quadruple (1) (infinitesimal conjugations 
only with such matrices preserve the block-diagonal form of quadruple (1)); 
this subgroup contains the centralizer of quadruple (1), see Proposition 3.4. □

Proof of Proposition 3.8:
The variety Y  is the orbit of one quadruple of the form (2) with R t =  0, 
j  — 1 , . . . ,  4, under conjugation by SX(4, C) (recall that the matrices Nj define 
a rigid representation, i. e. unique up to conjugacy). Hence, y  is irreducible 
and smooth.

15.

upper-triangular form of the quadruple and the blocks N j . If G
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To obtain dim y  one has to subtract from 15 =  dim ,SX(4. C) the dimension of 
the centralizer in SX(4, C) of the above quadruple. The latter equals 3 — the

a l  ß l  
51 r/I j  with ar]—5ß =  ±1. Ucentralizer is the set of all matrices of the form

5. Another Example with Index of Rigidity 2

Consider the variety V in the case when p =  2, n =  4, the three conju- 
gacy classes are diagonalizable and have eigenvalues (a, a, 6, c), 
and (u, u, v, w) (different letters denote different eigenvalues). The index of 
rigidity equals 2 (to be checked directly).
The eigenvalues are presumed to satisfy the only non-genericity relation 
ab f  guv — 1. Hence, for such conjugacy classes there exist irreducible triples of 
diagonalizable matrices L3 e gl{2,C) (resp. B 3 6 gl{2,C)) with eigenvalues 
(a, b)-, (f , g ); (u,v) (resp. (a,c); (f,h );  (u ,w )) such that L i L2L3 =  I  (resp. 
B 1B 2B 3 =  I). This follows from Theorem 2.1. Hence, there exist triples of 
block-diagonal matrices M3 with diagonal blocks equal to L3 and B3. Denote 
by V  the variety of such triples. By Theorem 3.1, irreducible triples of matrices 
Mj do not exist.
There do exist, however, triples with trivial centralizers which are block upper- 

triangular: Mj — where T) =  L:IY:I — Y:lB :I for some Y) e gl(2,C)

because M3 is conjugate to X ) '  con(J'l:'on M 1M 2M 3 =  I  restricted 

to the right upper block reads:

T \B 2B3 +  L i T2B3 +  L i L2T3 — 0 

Thus the triple of matrices T) belongs to the space

T  =  {(Ti ,T2,T3) ; Tj = LjYj -  Y3B3 , X, G gl{2 ,C ) , 
T \B 2B 3 +  L\T2B 3 +  L \L 2T3 =  0} .

(*)

One has dim T  =  5.
Indeed, the conditions T3 =  L3Y3 —Y3B3 imply that each matrix T3 belongs to 
the image of the map (.) i—> L3(.) — ( )B3 which is a subspace of gl{2, C) of 
dimension 3. Condition (*) is equivalent to four linearly independent equations 
(we let the reader prove their linear independence using the non-equivalence 
of the representations defined by the matrices L3 and B 3).
Consider the space

Q =  {(Tu T2,T 3)-,T3 =  LSY  -  Y B j , Y  £ gl(2,C)} .
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For such matrices T3 there holds (*), therefore Q c  T. The space Q is 
the space of right upper blocks of triples of block upper-triangular matrices 
M:l which are obtained from block-diagonal ones from T) by conjugation with

matrices of the form

One has dim Q — 4.
Indeed, for no matrix from gl(2,C) does one have L3Y  — Y B 3 =  0 for 
j  =  1,2,3 because the triples of matrices L3 and B 3 define non-equivalent 
representations.
Hence, dim (T/Q ) =  1. Choose the triple of matrices Y3 to span the fac- 
torspace {T/Q ). Hence, the centralizer Z  of the triple of matrices M3 will be

trivial. Indeed, let Z  =  ^  6 Z. Hence, R L 3 =  B3R  for j  =  1,2,3

(commutation relations restricted to the left lower block), i. e. R  — 0 because 
the matrices L3 and B 3 define non-equivalent representations.
One must have [P,L3] — [5. B :)\ — 0 (commutation relations restricted to the 
diagonal blocks), i. e. P  — al, B  = bl. But then one must have (commutation 
relations restricted to the right upper block) (a — b)T3 =  L3Q — QB3 which 
means that a =  b (otherwise (T1,T 2,T 3) G Q), hence, L3Q — QB3 =  0 for 
j  — 1, 2,3, i. e. Q — 0. Hence, Z  — al.
Remarks:
1) It is clear that the variety V  belongs to the closure of V \V  — the triple of 

matrices M3 — £ß j ĵ belongs to V \D  for e ^  0, for e — 0 it belongs 

to V.
2) The variety V is connected, hence, irreducible. This follows from (T /  Q) 
being a linear space (V is obtained by conjugating block upper-triangular triples 
with (T!,T2,T3) e {T /Q ) and with fixed diagonal blocks by matrices from
SL{ 4,C)).

6. A Third Example with Index of Rigidity 2

Let n =  4, p = 2. Use the notation from the previous section. Define the con- 
jugacy classes C3 as follows: their eigenvalues equal (a,a,b,b), ( f , f ,g ,g ) ,  
(rt,w, u,u), the eigenvalues are relatively generic but not generic (one has 
abfguv = 1). To each of the eigenvalues a, b and /  there corresponds a single 
Jordan block of size 2, to each of the eigenvalues g, u, v there correspond two 
Jordan blocks of size 1. Hence, the index of rigidity equals 2.
The variety V contains triples of matrices which up to conjugacy are block 
upper-triangular with two diagonal blocks equal to L3, see their definition in
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the previous section. By Theorem 3.1, V contains no irreducible triples. Hence, 
it contains none with trivial centralizer either because the matrices Mj from 
any such block upper-triangular triple commute with the matrix E 1>3 +  E 2,a\ on 
the other hand, if a triple of matrices Mj E C:I is conjugated to a block upper- 
triangular form, then the diagonal blocks are of size 2 and up to conjugacy they 
equal Lj — this follows from the choice of the eigenvalues.

Proposition 6.1. One has dimV =  15 which is the expected dimension.

Remark. The closure of the variety V contains the varieties in which at least 
one of the two Jordan normal forms J (M 1) and J{M 2) contains instead of 
some Jordan block(s) of size 2 two Jordan blocks of size 1. We leave the 
details for the reader. One can prove that V is irreducible.

Proof of Proposition 6.1:

1°. Suppose that one has Mj =  with L 1 =  diag(a, 6), Xj =

d iag (l,l). Fix L 2 and L 3. Then the couple of blocks (T2,T3) belongs to 
a space of dimension 1.
Indeed, one has T3 — [L3, Z3] in order M3 to be diagonalizable and the dimen
sion of the image of the map Z3 i—» [L3, Z3] in gl{2, C) equals 2.
The block T2 belongs to an affine space of dimension 2. Indeed, one has 
T2 =  S+ [L 2, Z2], where the dimension of the image of the map Z 2 [L2, Z2] 
equals 2 and the matrix S  is defined as follows. Set L 2 = H -1 diag(/, g)H. 
Then S  — £>H ~1E 13H  where £ satisfies the condition

Tr(L2L 3 + L 1S L 3) = 0 (**)

(If by chance this condition gives £ =  0, then one has to choose two diagonal 
entries of Tj other than (1,1) so that (  f  0, otherwise M 2 will be diagonaliz
able.)
2°. The coefficient Ç satisfies condition (**) for the following reason. The 
condition M 1M 2M 3 — I  implies that Ti T1L 2L 3 +  L 1T2L3 +  L 1L 2T3 — 0. 
In particular, TrH  = 0. As

L 3L 2L3 — I , Tj — /  ,
Tr (L1L2T3) =  Tr (L1L 2L 3Z3 — L 1L 2Z3L 3) =  Tr (Z3 — L3 1Z3L 3) =  0

and Tr(L1 [L2, Z2]L3) — Tr(X3 1Z 2L 3 — L i Z2L i 1') — 0, one has Tr(_L2_L3 + 
L 3S L 3)=  0.
3°. From the dimension 2 +  2 of the space to which the couple (T2,T3) belongs 
one has to subtract 3 because the equation Ti =  0 (after one has chosen £ so 
that Tr H  =  0) imposes 3 conditions.
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4°. The centralizer Z  of the triple of matrices M:I in S L (4, C) is generated by 
the matrix E 1 >3 +  E 2>4. Moreover, any matrix from SL (4, C) the conjugation 
with which preserves the form of the triple belongs to Z . This can be proved 
by a direct computation which we leave for the reader.
5°. To find the dimension of V one has to conjugate the block upper-triangular 
triples from 1° whose variety is of dimension 1 by matrices from SL(n, C )/Z. 
The latter variety is of dimension 14. Hence, dimV =  15. □

7. A Fourth Example with Index of Rigidity 2

Let n = p =  3 and let the conjugacy classes Cj define diagonal but non-scalar 
JNFs the eigenvalues being equal respectively to (a, 1,1), (6,1,1), (c, 1,1), 
(.d, 1,1), with abed =  1. Hence, the index of rigidity is 0. There exist reducible 
such quadruples of matrices Mj with trivial centralizers. Example:

fa  0 0
M 1 = 0 1 0

\o 0 1
m 2

b 1 0 
0 1 0 
0 0 1

f c  0 1 
M3 = 0 1 0

Vo 0 1
m 4

d —1 /be — 1/c 
0 1 0
0 0 1

(the reader is invited to check the triviality of the centralizer oneself). Denote by 
T  the stratum of V of quadruples with trivial centralizers. Hence, dim T  — 8 
(Proposition 1.1). By Theorem 3.1, there exist no irreducible quadruples of 
matrices Mj G Cj.
On the other hand, there exist quadruples defining direct sums of an irreducible 
representation of rank 2 and of a one-dimensional one. Example:

( a 1 °\
M 1 - ° 1 0 , m 2

Vo 0 V
( c 0 0\

M 3 - 1/d  1 0 , m 4
0 0 1,

b - l / a  0 
0 1 0 
0 0 1
d 0 0 
1 1 0 
0 0 1

Denote by S  the stratum of V of quadruples defining such direct sums.
One has dim«S =  9.
Indeed, the subvariety S ' C S  of block-diagonal such quadruples is of dimen
sion 5 (Proposition 1.1). Hence, S  is obtained from S ' by conjugating with 
matrices from S L (3,C) (dimS'L(3,C) =  8) and one has to factor out the
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conjugation with block-diagonal matrices whose subgroup is of dimension 4. 
Thus dim<S =  5 +  8 — 4 =  9.
Remarks:
1) Both strata S  and T  contain in their closures the variety of quadruples which 
are diagonal up to conjugacy, also the ones of quadruples defining direct sums 
of the one-dimensional representation 1, 1, 1, 1 with the semi-direct sums of 
the representations 1, 1, 1, 1 and a, b, c, d.
2) The stratum T  does not lie in the closure of the stratum S  (triviality of the 
centralizer is an “open” property).
3) One can show that at every point of V one has dim V < 9.

8. An Example with Zero Index of Rigidity

By Theorem 2.1, there exist irreducible quadruples of matrices A:l or M:! of 
size 2 in which each matrix has two distinct eigenvalues and the eigenvalues 
are generic. For such quadruples the index of rigidity equals 0 (to be checked 
directly).
Consider a quadruple of matrices (say, My, for matrices Aj one can give a 
similar example) of the form

where each of the quadruples of matrices Bj and G:I is like above, with generic 
eigenvalues. Moreover, for each j  the eigenvalues of B f and C:) are the same 
but the quadruples of matrices Bj and Gj define non-equivalent representations. 
To choose them such is possible because the quadruples are not rigid. 
Compute the dimension of the variety A4 of such quadruples of matrices M:J. 
The varieties B and Q of quadruples of 2 x 2-matrices Bj or G0 are both of 
dimension 5 (see part 2) of Proposition 3.1).
Hence, dim A4 — 10. The variety Af of quadruples of matrices Mj defining a 
direct sum of two representations of rank 2 with the properties of B and Q is 
obtained by conjugating the quadruples from A4 by matrices from SX(4, C). 
Infinitesimal conjugation by block-diagonal matrices from SX(4, C) with two 
diagonal blocks of size 2 and only by such matrices preserves A4 (their sub
group is of dimension 7 in SX(4, C)). Hence, dimA/” =  10 +  15 — 7 =  18 
where 15 =  dimSX(4, C).
The expected dimension of the variety Af equals 17, see Proposition 1.1. In 
a subsequent paper the author intends to prove that for zero index of rigidity 
and for relatively generic but not generic eigenvalues the Deligne-Simpson
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problem is not weakly solvable. Hence, in the above example one has V — J\f 
and the dimension of V is higher than the expected one.
Open Questions:
1 ) Is it true that for negative indices of rigidity the dimension of the variety of 
(p+  1)-tuples with non-trivial centralizers is always smaller than the expected 
dimension of the variety of all (p +  l)-tuples (of matrices M:j or A,)?
2) Is it true that for negative indices of rigidity if the Jordan normal forms 
J™,. . . ,  Jp+1 satisfy the conditions of Theorem 2.1, then the Deligne-Simpson 
problem is weakly solvable for any eigenvalues?

Appendix A. Proof of Theorem 3.1 (by Ofer Gabber)

1°. We use arguments related to the ones from [1]. Suppose we are given the 
conjugacy classes Ci C G L(n,C), 1 < i < p +  1, and we are interested in 
solutions of

Mi ■ ■ ■ Mp+i — id , Mi G Ci (1)

We say that a solution M  =  (M1;. . . ,  Mp+1) is rigid if every solution M ' in 
some neighbourhood of M  is G L(n , C)-conjugate to M . Here “neighbour
hood” can be taken in the classical or in the Zariski topology.
2°. Consider distinct points ax, . . . ,  ap+1 G P^ and set U — P c \{ß i, • • •, ap+1}. 
Choose a base point x Q G U and a standard set of generators 7* G 7Ti (U,x0) 
where 7* is freely homotopic to a positive loop around a,, 7, • • ■ x r>+, — 1 
(using 7Ti conventions as in Deligne’s LNM 163).
Then a solution of (1) determines a local system L on U, LXo ^  Cn; the local 
monodromies are given by the matrices Mi.
3°. Recall that if / :  X  —>■ Y  is an algebraic map of irreducible algebraic 
varieties, then every irreducible component of a fibre of /  has dimension > 
dim(X) — dim(Y).
Suppose we are given a rigid solution of (1). In particular, if Si is the value of 
the determinant on Ci, then Yl dt =  1, so we have the product morphism

/ :  Ci x ••• x Cp+1 -> SL(n, C)

and by assumption the G L(n , C)-orbit of (Ml5. . . ,  Mp+1) is dense in an irre
ducible component of / -1(id). The above orbit is also an SL(n, C)-orbit, so 
it is of dimension < n 2 — 1.
4°. Hence,

p+1

~ 2(n2 “ X) '
i=1
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Denote by j  the inclusion of U in Pf and by Z (M t) the space of matrices 
commuting with Mi. Then di =  n 2 — dim Z(M i) and by the Euler-Poincaré 
formula (cf. [1] p. 16) the above inequality is equivalent to

x(Pc,j*End(L)) > 2.

Now if F  is a rank n irreducible local system with local monodromies in the 
prescribed conjugacy classes, then by the Euler-Poincaré formula

%(Poj.End(L)) =  x(Pç,j*Hom(L,F)) > 2,

so one of the two cohomology groups H°(F}2, LHomfF, F)) =  Hornu{L,F)  
or

iP2(Pc, j*Hom(L, F)) =  F))  =  Hom[/(F, L)11
is non-zero, which implies (as F  is irreducible) that F  ~  L (cp. [1], Theo
rem 1.1.2). Hence, if L is reducible, then F  does not exist. □
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