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Abstract. In this paper we will report on our recent studies on curvature 
properties of space-like hypersurfaces in de Sitter space. In particular, 
we will state certain estimates for the higher order mean curvatures, 
the scalar curvature and the Ricci curvature of complete space-like 
hypersurfaces in de Sitter space. We will also establish a sufficient 
condition for a compact space-like hypersurface in de Sitter space to be 
spherical in terms of a lower bound for the square of its mean curvature.

1. Introduction and Statement of the Main Results

The study of space-like hypersurfaces in de Sitter space Sj' 1 1 has been of 
increasing interest in the last years, because of their nice Bernstein-type prop­
erties. Since Goddard [7] conjectured in 1977 that the only complete space-like 
hypersurfaces in §™+1 with constant mean curvature H  should be the totally 
umbilical ones (which is clearly false), many authors have worked on the prob­
lem of finding global rigidity theorems for space-like hypersurfaces in de Sitter 
space [1,5,10,12,14,17,18],
In this paper we will report on our recent studies on curvature properties of 
space-like hypersurfaces in de Sitter space. By curvatures here we mean the 
higher order mean curvatures of the hypersurface, as well as its scalar and Ricci 
curvatures. For further details we refer the reader to the original papers [2] and 
[3]. In particular, for the case of complete space-like hypersurfaces we have 
obtained the following (Theorem 1 in [2]).
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Theorem 1. Let f  : M n —> S™+1 c  Ln+2 be a complete space-like hypersur­
face in de Sitter space whose sectional curvatures are bounded away from 
—oo. I f f ( M )  is contained in the region

for a time-like direction a G Ln+2 and a positive real number r > 0, then for 
each j  =  1, ,n,  the j-th mean curvature Hj of M  satisfies

Here the sign of the extrinsic j-th mean curvatures (when j  is odd) is the one 
given by the orientation of M  determined by the Gauss map N  which is in the 
same time-orientation that the time-like direction a.
Our study in [2] was motivated by the recent papers of Leung [9] and Erdogan 
[6], where they established interesting estimates for the Ricci curvature of a 
complete hypersurface contained in a geodesic ball of a Riemannian space form. 
In our case, the unbounded regions Q(a,r) play, in some sense, the same role 
as the geodesic balls in the Riemannian space forms. In fact, Q(a,r) can be 
thought as a Lorentzian geodesic ball centered at infinity, which is bounded 
by a totally umbilical round sphere of radius coshr and constant j-th mean 
curvature hj (r) given by

In particular, the bound for Hj  is precisely the value of hj(r). Since the 
scalar curvature S  and the second mean curvature H 2 are related by S — 
n{n — 1)(1 — H 2), it follows that under the assumptions of the theorem above

Even more, we were also able to estimate the Ricci curvature of the hypersurface 
as follows (Theorem 2 in [2]).

Theorem 2. Let f  : M n § i+1 c  Ln+2 be a complete space-like hypersur­
face in de Sitter space whose sectional curvatures are bounded away from 
—oo. I f f ( M )  is contained in the region

Q(a, r) =  {x G §”+1 : (a, x) < — sinh(r) < 0}

supfïj > tan lE (r).

hj (r) =  tanhJ ( r ) .

Q(a, r) =  {x G § i +1 : (a, x) < — sinh(r) < 0} 

for a time-like direction a G Ln+2 and a positive real number r > 0, then
n — 1
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Observe again that the bounds for the scalar and Ricci curvatures of the hy­
persurface M  coincide with the values of the corresponding curvatures for the 
boundary of the region Q (a,r) where is contained.
On the other hand, for the case of compact space-like hypersurfaces in §™+1, 
we have characterized the totally umbilical round spheres in terms of some 
appropriate bounding conditions for their curvatures. Recall that the Gauss 
map of a space-like hypersurface in de Sitter space can be seen as a map 
N \ M n —» Hn+1, where Hn+1 denotes the (n +  1)-dimensional hyperbolic 
space, that is

e n+1 = { i e  Ln+2 : (x, x) =  -1 }  .

The image N( M)  is then called the hyperbolic image of M.
In [4] the second author established a sufficient condition for a compact space­
like hypersurface M  in de Sitter space to be spherical in terms of a pinching 
condition for the Ricci curvature, involving also the size of its hyperbolic 
image. Specifically, he proved that if the hyperbolic image of M  is contained 
in a geodesic ball in M,1+l of radius o and its Ricci curvature satisfies Ric < 
(n—1)/ cosh2 (q), then M  must be a round sphere of radius cosh (g). As for the 
case of the mean curvature, we have obtained the following result (Theorem 1 
in [3]).

Theorem 3. Let : M n —» +1 c  Ln+2 be a compact space-like hypersurface
in de Sitter space such that its hyperbolic image is contained in a geodesic ball 
in Hn+1 of radius q > 0. I f the mean curvature H  of M  satisfies

H 2 > tanh2(p ),

then M  must be a totally umbilical round sphere of radius cosh(p).

As an application of this, we can extend the main result in [4] as follows.

Theorem 4. Let f  : M n —> §”+1 C  Ln+2 be a compact space-like hypersurface 
in de Sitter space such that its hyperbolic image is contained in a geodesic ball 
in Hn+1 of radius g > 0. I f  the scalar curvature S  of M  satisfies

n(n — 1)
-  cosh2(p) ’

then M  must be a totally umbilical round sphere of radius cosh(p).

For further applications and related results, we refer the reader to [3].



Estimates for the Curvatures of Spacelike Hypersurfaces 75

2. Preliminaries

Let Ln+2 be the (n +  2)-dimensional Lorentz-Minkowski space, that is, the 
real vector space IRn+2 endowed with the Lorentzian metric tensor (, ) given 
by

n+l
{V, W)  =  Vt Wt ~  Vn+2Wn+2 ,

i=1
and let S™+1 c  Ln+2 be the (n +  1)-dimensional unitary de Sitter space, that 
is,

§?+1 =  {x e  Ln+2 : (x,x) =  1}.
As is well-known, for n > 2 the de Sitter space S”+1 is the standard simply 
connected Lorentzian space form of positive constant sectional curvature. A 
smooth immersion ^  : M n —► S”+1 C Ln+2 of an n-dimensional connected 
manifold M  is said to be a space-like hypersurface if the induced metric via 
ïJj, which we will also denote by (,), is a Riemannian metric on M.  As is 
usual, the space-like hypersurface is said to be complete if the Riemannian 
induced metric is a complete metric on M.
First of all, let us remark that every space-like hypersurface in de Sitter space is 
orientable, so that there exists a time-like unit normal field N  globally defined 
on M.  Actually, if a G Ln+2 is a constant unit time-like vector on Ln+2, then 
there exists a unique time-like unit normal field N  on M  which in the same 
time-cone as a. We will refer to N  as the Gauss map of the immersion in the 
time-orientation given by a, and we will say that M  is oriented by N.  
Associated to N  there is the shape operator of the hypersurface, A: X{M)  —? 
X(M) ,  given by A — —dN.  We will denote by ku , kn the principal 
curvatures of M,  and by

(Jj(kl7. . .  , kn) = 1 < j < n ,
ii

their elementary symmetric functions. Then we define the j- th  mean curva­
ture Hj  of the space-like hypersurface by

= ( -1  ya j ( k u . .. ,kn) =  . .  •, - k n) . ( 1)

When j  =  1, H 1 =  —(l/n )T r(A ) = H  is the mean curvature of M.  The
choice of the sign (—1)  ̂ in our definition of Hj  is motivated by the fact that

—̂
in that case the mean curvature vector is given by H  =  HN.  Therefore,—*
H(p) > 0 at a point p G M  if and only if H{p) is in the time-orientation 
determined by N(p),  that is, if ( H, N)  < 0.
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On the other hand, when j  =  n, Hn =  (—l) ndet(A) defines the Gauss- 
Kronecker curvature of the space-like hypersurface, and for j  — 2, H 2 is, up 
to a constant, the scalar curvature S  of M.  Indeed, the Ricci curvature of M  
is given by

R ic(X ,y) = ( n -  1 ) (X,Y)  -  TY01)(A(X),y) +  (A(X), A ( Y) ) , (2)

for X, Y  G X{M) ,  so that its scalar curvature is

S  =  Tr(Ric) =  n{n -  1) -  Tr(A)2 +  Tr(A2) = n{n -  1)(1 -  H 2) . (3)

3. Complete Space-like Hypersurfaces

Our results for the case of complete hypersurfaces will be an application of the 
following generalized maximum principle for Riemannian manifolds given by 
Omori [13] (see also Yau’s paper [16]).
A generalized maximum principle. Let M  be a complete Riemannian 
manifold whose sectional curvatures are bounded away from —oo and let 
u: M  —> M be a smooth function bounded from above. Then, for each e > 0 
there exists a point p£ G M  such that

i) |Vu(pe)| < e,
ii) V 2uPe{v , v ) < e, for all tangent vector v  G TPM,  |u| =  1,

iii) sup u — £ < u(ps) < sup u,
where V u  and V 2u denote, respectively, the gradient and the Hessian of u. 
Indeed, the idea of the proof of our Theorems 1 and 2 is to apply this generalized 
maximum principle to the function u — {a, ip), which is bounded from above 
on M  by — sinh (r) . Then, for each em =  1/m  we find a point pm G M  such 
that

\Vu(pm) \ < £ m, and V 2uPm (v,  v )  <  £m , (4)

for all unit tangent vector v G TPm M , and satisfying

sup u — £m < u(pm) < sup u . (5)

It is easy to see that the gradient and the Hessian of u are respectively given 
by

V u  — aT — a +  (a, N ) N  — (a, , (6 )

and
V 2u(X,  X )  = ~ { a , N) ( A{ X) , X )  -  ( a , f ) ( X , X ) .
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Therefore, if is an orthonormal basis of principal directions at the
point pm satisfying A Prn{er[l) — ki(pm)e™, then one obtains that

V 2w(e™, e™) =  - ( a ,  N{prn))ki{prn) -  u(pm) < £m ,

and, since (a, N(pm)) < 0, it follows that

k i ( P m )  <
T £to

— (a , N ( p m)) '
From (5) we know that lim^^oo u(pm) + e m =  supu < — sinh(r) < 0, so that 
ki(pm) is negative for sufficiently large m. Let us assume from now on that m  
is large enough such that hL{pm) <  0. On the other hand, from (6) we get that

— 1 =  (a, a) — I Vw|2 — (a, N )2 +  u2 ,

and using (4), we can deduce that

- ( a , N(pm)) = yjl  +  u2(pm) +  \Vu{pm)\2 < ■sj 1 +  u2(pm) +  e2m .

From here, one concludes that

kiiPm) < Pm) T £m
\ / l  +  U2{Pm) +

< 0.

In particular,

and

n \ tt I nH j \Pm ) L -u(Pm) ~ A
J 3 J V J 1 +  U2(pm) +  £.2m

RicPm (ej1, e™) =  (n -  1) -  ^  ki(pm)kj(pm) +  k2{pr
i= 1

("U 1) ^  ^

< (n — 1) — (n — 1)
-u( P m )  +  £ r

\ / l  +  u2(P'm) +

Finally, the results follow letting m  —> oo, since lim u(pm) =  sup(u) <
m —»■ oo

— sinh(r).
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4. Compact Space-like Hypersurfaces

In the case of compact hypersurfaces, our Theorems 3 and 4 are a consequence 
of the following stronger result.

Theorem 5. Let if : M n +1 c  Ln+2 be a compact space-like hypersurface 
in de Sitter space, a 6 Lra+2 a time-like direction and r > 0, verifying that 
(a,f>) < sinh (r). If the mean curvature H  of M  satisfies

H 2 > tanh2( r ) ,

then M  must be a totally umbilical round sphere of radius cosh(r).

In other words, if f )(M)  is contained in the region

B(a  , r) — {x G §”+1 ; — sinh(r) < (a,x) < sinh(r)} ,

whose boundaries are two totally umbilical round spheres with radius cosh (r) 
and constant mean curvature h2(r) — tanh2(r), and the mean curvature of M  
satisfies H 2 > h2{r), then M  must be one of these two round spheres.
Similar results were obtained by Markvorsen in [11] for the mean curvature 
of compact hypersurfaces bounded in a geodesic ball of a Riemannian space, 
generalizing the classical result of Koutroufiotis [8] on surfaces in Euclidean 
3-space. More recently, Vlachos [15] has obtain similar results for the case 
of the higher order mean curvatures of compact hypersurfaces bounded in a 
geodesic ball of a Riemannian space.
The proof of Theorem 5 has two main steps. The first step consists on proving 
the result under the additional hypothesis that the function {a, ff) does not 
vanish on M.  Assume, for instance, that (a, ff) is negative on M.  Then, using 
some analysis we conclude that A (a, if) < 0 on M,  which by Hopf-Bochner 
theorem implies that (a, ff) is constant on M,  yielding the result (for the details, 
see the proof of Proposition 6 and Corollary 7 in [3]). The second step consists 
on proving that (in the non-trivial case, that is, when r  ^ 0 )  the function (a, ff) 
actually does not vanish on M.  Actually, if this is not the case then there exist 
non-negative real numbers r i , r 2, not both vanishing, such that

—r < — ri < 0 < r 2 < r ,

and there exist points pmax,Pmin G M  satisfying

max (a, fj(p)) =  (a,f)(pmBX)) =  s in h ^ )p€M
min (a, fj(p)) = (a, fj(pmin)) -  -  sinh(r2) .
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Besides, we also know from Lemma 5 in [3] that

min H  < tanh(r2) (7)
and

max H  > — ta n h (r i) . (8)
On the other hand, the hypothesis on H  implies that either

H  >  tanh(r) (9)
or

H  < — ta n h (r ) . ( 10)

We may assume without loss of generality that r1 > r 2, that is, r > r1 > r2 > 0, 
and moreover r1 > 0. Otherwise, just replace a by —a. If (9) holds, then from 
equation (7) it follows that r 2 =  r =  r1 > 0 . Since (a, ^ (pmin)) =  — sinh(r) < 
0, then there exists a neighbourhood U of pmin where (a, ip) is negative. Using 
that — sinh(r) < (a, ip) on M , at each point p G M  we have from (9)

Therefore, by the maximum principle, (a, %')) is constant on U. Since M  is 
connected, this implies that (a, ip) is constant on M , in contradiction with the 
fact that mmpeM (a, ip) — — maxpeM (a, *p(p)) < 0.
On the other hand, if (10) holds, then from (8) it follows that r1 =  r. Moreover, 
since (a,ip(pma,yi)) = sinh(r) > 0, there exists a neighbourhood V of pmax 
where (a, ip) is positive. Using that (a, ip) < sinh(r) on M , we conclude from 
(10) that

Reasoning as above we obtain now that A (a, ip) > 0 on V, and that the function 
(a, ip) is constant on M  and equal to sinh(r) > 0, in contradiction to the fact 
that its minimum is non-positive. This finishes the proof of Theorem 5.

which is strictly positive on U. Since —(a , N ) > y  1 + (a, ip)2 on M  (see 
equation (6)), then

A(a, ip) < —n(a, ip) on U .



80 Juan A. Aledo and Luis J. Alias

Once we have got Theorem 5, we can easily derive Theorems 3 and 4. Indeed, 
assume the hyperbolic image of M  is contained in a geodesic ball B(a, g) in 
Hn+1 of radius g > 0 centered at a E Hn+1, (a, a) =  —1. Recall that

_B(a, g) = {q G Hn+1 ; 1 < (a, q)2 < cosh2(p)} , 

so that (a, N( p ))2 < cosh2(p) at each p E M,  which gives

(a, f ) 2 < (a, N )2 — 1 < sinh2(p)

on M.  Therefore, Theorem 3 follows directly from Theorem 5. To obtain 
Theorem 4, simply observe that by the Cauchy-Schwarz inequality we have 
that H~ >  H 2, s o  that

S  > n(n — 1)(1 — H 2) ,
since S  =  n(n — 1)(1 — H 2). Thus, if S  < n(n — 1 ) /cosh2(p) then H 2 > 
tanh2(p) and we can apply Theorem 3.
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