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Abstract. We define the contact Schwarzian derivatives S[*j,&](<£) for 
a contact transformation <f> : K3 —» IK3. Using the contact Schwarzian 
derivatives as coefficients, we give a system of linear differential equa­
tions such that the solutions give the contact transformation.

1. Introduction

For a contact transformation <l> : (x, y, z ) i—»■ (A, Y, Z ), we define the contact 
Schwarzian derivatives .s.,/.1 o). A system of non-linear differential equations 
for a quadruple of functions is given as the condition that the quadruple is 
the Schwarzian derivatives of a contact transformation. Using a quadruple of 
functions on K 3 as coefficients, we give a system of linear differential equations. 
The integrable condition of the linear system is just equal to the non-linear 
system. We call the linear system a linearization of the integrability condition 
of the contact Schwarzian derivatives. If the linear system is integrable, the 
solutions give the contact transformation whose contact Schwarzian derivatives 
are the coefficient functions. Details will appear in a joint paper with Tetsuya 
Ozawa [2],

2. Contact Schwarzian Derivative

On the affine 3-space K 3 (K =  R or C) with the usual coordinate (x, y, z), we 
give the contact form a  = dy — zdx.

d  d  d  d
Vl  = -— + Z — , V2 = TT- , v3 = —  , VA =  V2Vi  +  VXV2 

o x  oy o z  oy
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Notice that the vector fields Vi, v2 and v3 form a Heisenberg Lie algebra:

v3 =  [v2 , v x] , and [v3, ^i] =  [vz,v2] = 0 ,

and that the vector fields V\ and v2 span the contact distribution; a (v i) =
a (v 2) =  0.
A local diffeomorphism f  is said to be a contact transformation, if it satisfies 
4>*(a) = pa  for some nonvanishing function p. For a contact transformation 
f  : (x , y , z ) I—»■ (X , Y , Z ), we define the contact Schwarzian derivatives for 
i , j ,  k  = 1,2 as follows:

where A ( f )  = v1( X ) v 2(Z)  — Vi (Z)v2( X ) . We call the functions the
contact Schwarzian derivatives of the contact transformation < >. We denote 
the quadruple of functions by

S (f ) = (5{i i i }(^),5{112}(^),5{122}(0),5{222}(^)).

A diffeomorphism <f : K 3 —» K 3 with cf)(x, y, z) =  (X, Y, Z)  induces the

By using this prolongation, we get the following.

Proposition 2.1. The inverse qi>_1 o f a contact diffeomorphism <p : K 3 —» K 3 
maps the differential equation Y f" =  0 to

y 'n — S{ 112} (̂ >) +  3S{iii}(</>)y" +  3S{222}(f)(y")2 +  £{122} ( ^ ( y ^)3 •

By [4], the condition that y ,n =  /(o ;,y , y ',y " ) is mapped to y ,n =  0 by a 
contact transformation is the vanishing of two curvatures A  and b. We obtain 
that b  =  0 is equivalent to d4f / d ( y " ) 4 =  0. Let us consider

where P  =  P ( x , y , y r), Q =  Q ( x , y , y r), R  =  R ( x , y , y r), S  =  S ( x , y , y r). 
Then the condition A  =  0 together with b  =  0 is equal to the following system 
(IC) of nonlinear differential equations

S[zj,k](f) =  vlvj (X)vk(Z) -  ViVjfflvk^X)

and

prolongation <p : K 4 —» K 4 given by

ym =  P  +  3Qyf +  3R(y")2 +  S(y")3 ,

Vs(P) — 2(ui — 2Q^)Mn +  4 P  
Sv3(Q) =  2(^2 — 4:R)Mn +  4(ui +  Q )M 4 +  4 P M 22
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3^3 (i?) — 2{vi +  4Q )^22 +  4(^2 — R )M 4 — 4 S M n  
v3[S) =  2(^2 +  2 R )M 22 — 4S M 4 ,

where we put

M n  =  -  J  (Wl (Q) -  ^  (P ) -  2Q2 +  2P R )

M 4 =  - J ( Vl( P ) - t ; 2( Q ) - Q P  +  P 5 )

M 22 =  - i ( u i ( 5 )  -  u2(ß )  -  2P 2 +  2 Q 5 ) .

Thus we obtain that

Theorem 2.1. F our functions P , Q, i?, 5  on K 3 ore the Schwarzian derivarives 
o f a contact transformation <fi : K 3 —» K 3;

(■P,Q ,R ,S ) = S (<t>),
i f  and only if  the system o f the nonlinear differential equations (IC) is satisfied.

We seek a system of linear differential equations whose integrability equation 
is equvalent to (IC) and its solutions give the contact transformation. We call 
such linear system the linearization of (IC)

3. Fundamental System

Here is the linear differential system (Sp);

v ß i ß )  =  Qvxiß) -  P v 2{ß) +  M n #  

v±{ß) =  2 (Rv1(ß) -  Q v2(i4) +  M 4#) 
v22{ß) =  S v i(# ) -  R v 2{ß) +  M 22# 

with unknown function #.

Theorem 3.1. The necessary and sufficient condition fo r  the linear PDE system 
(Sp) to have 4-dimensional solution space is equvalent to the nonlinear PDE 
system (IC).

Proposition 3.1. For any two solutions a  and ß  o f the PDE system (Sp), the 
function I { a , ß )  defined by

I { a , ß ) =  ^ a v 3(/?) -  ^ v 3{a)ß  +  vx(a)v2(ß) -  v2(a)v1 (ß)

is constant on (x, y , z). Moreover this skew product 7 (a , ß) is non-degenerate, 
and thus it defines a symplectic structure on the solution space S(P,  Q, R, S)  
o f (Sp), provided the dimension o f S (P,  Q, R-, S)  is equal to 4.
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We have the following theorem:

Theorem 3.2. I f  a map <fi : (x, y , z) i—» (X, Y, Y) zs contact, zTẑ zz em fà a 
symplectic basis {#, £ ,£ ,77} o f the solution space S {S {(j))) o f the PDE system 
(Sp) such that <fi is given by

( x , y , z )  ^ -  -  ( -  +
t f2

Conversely; given a symplectic basis {$, £, C?7/} ° f  the solution space 
S(P,  Q, R,  S)  o f  (Sp), /7z£ map </> zs a contact transformation whose contact 
Schwarzian derivatives are equal to

S {4>) = (P , Q , R , S ).

Here a linear basis is symplectic if

», ) ) =  c J , where J
/  i , j= 0 ,3

0 0 0 1 \
0 0 1 0
0 - 1 0  0

\ - l 0 0 0

and c is a nonzero constant.
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