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Abstract. The analysis and the classification of all reductions for the 
nonlinear evolution equations solvable by the inverse scattering method 
(ISM) is interesting and still open problem. We show how the second 
order reductions of the N -wave interactions related to low-rank simple 
Lie algebras can be embedded in the Weyl group of q. Some of the 
reduced systems find applications to nonlinear optics.

1. Introduction

It is well known that the TV-wave equations [l]-[6]

are solvable by the inverse scattering method (ISM) [4,5] applied to the gen
eralized system of Zakharov-Shabat type [4,7,8] :

where 1) is the Cartan subalgebra and E a are the root vectors of the simple Lie 
algebra g. Indeed (1) is the compatibility condition

i[V? Qt] — i[7, Qx] +  [[/, Q\, [J , Q]] — 0, ( 1 )

ct£ A +

[L(A),M(A)] = 0, (4)
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where

M (X )^ (x ,t, A) =  +  [I,Q(x,t)] -  \ k j  ^ ( x , t ,  A) =  0, I  G I). (5)

Here and below r  =  rank g, A+ is the set of positive roots of g and a, b G 
Er are vectors corresponding to the Cartan elements J , I  G 1). The inverse 
scattering problem for (2) with real valued J  [1] was reduced to a Riemann- 
Hilbert problem for the (matrix-valued) fundamental analytic solution of (2) 
[4,7]; the action-angle variables for the N -wave equations was obtained in the 
preprint [1]. However often the reduction conditions require that J  be complex
valued. Then the solution of the corresponding inverse scattering problem for 
(2) becomes more difficult [9].
The interpretation of the ISM as a generalized Fourier transform and the ex
pansions over the “squared solutions” of (2) were derived in [8] for real J  and 
in [10] for complex J. They were used also to prove that all N -wave type 
equations are Hamiltonian and possess a hierarchy of Hamiltonian structures
[8,10] {H (k\  k = 0, ±1, ± 2 ,__ The simplest Hamiltonian formulation
of (1) is given by {7/4°) = H0 + Hint, IF0’} where

= dx {Q, [I, Qx}) = i J d x ^ 2 (b ,  a k)(qkyXpk -  qkPk,x),
— oo —oo k=l

oo
Hint = \  j  àx ([J, Q], [Q, [I, Q}]) = £  u jikH (i,j , k);

- O O  [i,j,k]eM
OO ,

H ( i , j , k) = f  dx (qiPjPk -  Piqjqk), x>jk =  2det (
J \ { a ,a k) (b,ak)— OO x

and the symplectic form is equivalent to a canonical one
oo

f i (0) = ̂  J dx ([J ,SQ (x ,t)] /\5Q (x ,t)

(6)

(7)

( 8)

Here ( •, • ) is the Killing form of 0 and the triple [z,j, k\ belongs to A4 if 
a i7aj7a k G A+ and =  ay +  a k. Physically to each term H (i, j, k) we 
relate part of a wave-decay diagram which shows how the z-th wave decays 
into j-th and fc-th waves. In other words we assign to each root a  an wave 
with an wave number ka and a frequency oja. Each of the elementary decays 
preserves them, i. e.

k kaj +  kak 5 ^OLi "f” ^OLk *
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Our aim is to display a number of non-trivial reductions for the TV-wave equa
tions. Thus we exhibit new examples of integrable TV-wave type interactions 
some of which have applications to physics.
Our investigation is based on the reduction group introduced by A. V. Mikhailov 
[11] and further developed in [12,13]. The examples are related to Z2 and 
Z2 (8) Z2 reduction groups. We point our that the reduction group can be 
embedded in the group of automorphisms of 0 in several different ways which 
may lead to inequivalent reductions of the TV-wave equations.

2. Preliminaries and General Approach

The well known reductions of TV-wave systems are Z2-reductions realized by 
outer automorphisms of 0, namely (see [4]):

Ci(x) = - A ïX^Aî 1, Ki (A) =  A*, (9)

where A t belongs to the Cartan subgroup of the group 0 :

Ai = exp(7riiïi) , (10)

and H 1 E 1) is such that ct(iïi) G Z for all a  G A.
Another Z2 reductions are related to other type of outer automorphisms:

C2(x) = - A 2x T A ^ 1, Ki (A) =  -A , (11)

where A 2 is again of the form (10). The best known examples of NLEE 
obtained with the reduction (11) are the sine-Gordon and the MKdV equations 
which are related to g ~  sl(2). For higher rank algebras such reductions to 
our knowledge have not been studied. Generically reductions of type (11) lead 
to degeneration of the canonical Hamiltonian structure, i. e. = 0; then we 
need to use some of the higher Hamiltonian structures (see [11,10]) for proving 
their complete integrability.
In fact the reductions (9) and (11) provide us examples when the reduction is 
obtained with the combined use of outer and inner automorphisms.
Along with (10), (9) one may use also reductions with inner automorphisms:

C3(x) = A 3x A 3 ' (12)

Since our aim is to preserve the form of the Lax pair we limit ourselves by au
tomorphisms preserving the Cartan subalgebra 1). This conditions is obviously 
fulfilled if A k is in the form (10). Another possibility is to choose A lf A 2, A 3 
so that they correspond to a Weyl group automorphisms.
In fact (9) is related to outer automorphisms only if g is from the A r series. 
For the B r , C r and D r series (10) is equivalent to an inner automorphism (12)
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with the special choose for the Weyl group element w0 which maps all highest 
weight vectors into the corresponding lowest weight vectors (see Remark 1). 
Finally Z2 reductions of the form (9) in fact restrict us to the corresponding 
real form of the algebra g.

2.1. The Reduction Group

The reduction group G is a finite group which preserves the Lax representation 
(4), i. e. it ensures that the reduction constraints are automatically compatible 
with the evolution. G must have two realizations: (i) G C A utg and (ii) 
G C Conf C, i. e. as conformal mappings of the complex A-plane. To each 
t/i, ■: G we relate a reduction condition for the Lax pair as follows [11]:

Ck(L(Tk( A))) =  L( A) Ck(M (Tk( A))) =  M ( A) (13)

where 6). G Aut g and Tfc(A) are the images of gk. Since G is a finite group 
then for each gk there exist an integer N k such that gk k = 11.

2.2. Finite Groups

The condition (13) is obviously compatible with the group action. Therefore it 
is enough to ensure that (13) is fulfilled for the generating elements of G.
In fact (see [14]) every finite group G is determined uniquely by its generating 
elements gk and genetic code, e. g.:

9k k = H > (9j9k)Nok =  A ; N k,N jk G Z . (14)

For example the cyclic Z iV and the dihedral D;V groups have as genetic codes

gN = t ,  N  > 2  for Z N , (15)

and

9i =92 = (9i 92)n = U • N  > 2  for . (16)

2.3. Cartan-Weyl Basis and Weyl Group

Here we fix up the notations and the normalization conditions for the Cartan- 
Weyl generators of g. We introduce hk G 1), k = 1 ,r  and E a, a  G A 
where {hk} are the Cartan elements dual to the orthonormal basis {ek} in the 
root space Er . Along with hk we introduce also

2 r 
H« = -(— v E(a, a) ^

(rr, ck )̂hk , a  G A , (17)
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where (a, e*) is the scalar product in the root space Er between the root a  and 
e*;. The commutation relations are given by:

\Ĵ k 1 ^ a \ (^-î ^k)E a  ̂ E — a] H a ,

■ T-, jri i _  /  ̂ a,ßE a+ß for a  +  ß  G A
' ^  ~~ io  for a l ^ A U  {0} .

(18)

We will denote by a = J2l=i akek the r-dimensional vector dual to J  G 1); 
obviously J  = YX=i akhk■ If J  is a regular real element in t) then without 
restrictions we may use it to introduce an ordering in A. Namely we will 
say that the root a  G A + is positive (negative) if (a, a) > 0 ((a, a) < 0 
respectively). The normalization of the basis is determined by:

where the integer p > 0 is such that a + sß  G A for all s = 1 ,. . .  ,p  and 
a + (p + l)ß  ß  A. The root system A of g is invariant with respect to the 
Weyl reflections Sa; on the vectors y G Er they act as

All Weyl reflections Sa form a finite group Wg known as the Weyl group. One 
may introduce in a natural way an action of the Weyl group on the Cartan-Weyl 
basis, namely:

It is also well known that the matrices A a are given (up to a factor from the 
Cartan subgroup) by

E -a — Ea , (E -a, E a) — 1 ,
N - a - ß  =  N a tß  , iV QjJg =  ± ( p  +  1 )  ,

(19)

(20)

Sa(Hß) = A a(Hß)A~1 = H Saß ,

Sa{Eß) =  A a(Eß)Aa 1 =  na,ßE Saß, na ß̂ = ± 1 .
(21)

(22)

The formula (22) and the explicit form of the Cartan-Weyl basis in the typical 
representation will be used in calculating the reduction condition following 
from (13).
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2.4. Graded Lie Algebras

One of the important notions in constructing intégrable equations and their 
reductions is the one of graded Lie algebra and Kac-Moody algebras [15]. 
The standard construction is based on a finite order automorphism C G Aut g, 
CN =  11. Obviously the eigenvalues of C are u>k, k = 0 , 1 , . . . ,  N  — 1, where 
ui =  exp(27ri/Ar). To each eigenvalue there corresponds a linear subspace 
${k) c  g determined by

g(fc) =  jx ; x  G g , C(x ) =  u>kx  j  . (23)

JV-1
Obviously g =  0 gw and the grading condition holds

fc=o

0(k) c  g(fe+n) 5 (24)

where k +  n is taken modulo AT. Thus to each pair {g, C} one can relate an 
infinite-dimensional algebra of Kac-Moody type gc whose elements are

X ( \ )  = Y , X kXk, X fcG gw . (25)
k

The series in (25) must contain only finite number of negative (positive) powers 
of A and g: k ' A =  gl ,'’:i. This construction is a most natural one for Lax pairs; 
we see that due to the grading condition (24) we can always impose a reduction 
on L(A) and M (A) such that both U (x,t, A) and V (x ,t, A) G gc- So one of 
the generating elements of G will be used for introducing a grading in g; then 
the reduction condition (13) gives

U0,V0 EQW , / , J G g (1) nf). (26)

A possible second reduction condition will enforce additional constraints on 
Uq, V0 and J, I.

2.5. Realizations of G  C A ut g

It is well known that Aut g =  V  0 Aut0 g where V  is the group of outer 
automorphisms (the symmetry group of the Dynkin diagram) and Aut0 g is the 
group of inner automorphisms. Since we start with / ,  J  G 1} it is natural to 
consider only those inner automorphisms that preserve the Cartan subalgebra fy 
Then Aut0 g ~  Ad,/ 9jW  where Ad,, is the group of similarity transformations 
with elements from the Cartan subgroup:

Adc x = CxC  1 C = exp
2mHc

(27)5 N 1
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and W  is the Weyl group of g. Its action on the Cartan-Weyl basis was 
described in (21) above. From (18) one easily finds

C H aC -1 = Ha, C E a C -1 = e2vi(a^ /NE a , (28)

where c £ Er is the vector corresponding to Hc £ f) in (27). Then the condition 
CN =  U means that (a, c) g Z for all a  £ A. Obviously Hc must be chosen 
so that c = Yfk=l 2cfeo;jfe/(ajfe, a k) where uok are the fundamental weights of 0 
and ck are integer. In the examples below we will use several possibilities by 
choosing Ck as appropriate compositions of elements from V , Ad^ and W . In 
fact if 0 belongs to B r or C r series then V = H.

2.6. Realizations of G  C  C onf C

Generically each element gk £ G maps À into a fraction-linear function of À. 
Such action however is appropriate for a more general class of Lax operators 
which are fraction linear functions of À. Since our Lax operators are linear in 
À then we have the following possibilities for Z2:

T i ( A )  =  a 0 +  77À, rj =  ± 1 ,
T 2(A)  =  &o +  eA*,  e =  i l ,  bo +  e&Q =  0 .  ( 2 9 )

We will discuss also situations when one (or several) of the elements of G act 
on A trivially, e. g. Tk(A) =  A. In many cases the effect of such reductions
will consist in reducing to an n-wave system for a sub algebra of 0.

3. Inequivalent Reductions

The reduction group G may be imbedded in the Weyl group W {q) of the 
simple Lie algebra in a number of ways. Therefore it will be important to 
have a critérium to distinguish the nonequivalent reductions. As any other 
finite group, W (0) can be split into equivalence classes. So one may expect 
that reductions with elements from the same equivalence class would lead to 
equivalent reductions; namely the two systems of N -wave equations will be 
related by a change of variables.
In what follows we will describe the equivalence classes of the Weyl groups 
W (B 2), W (G 2) and W (B 3); note that W (B i) W{C{). This is due to two 
facts: (1) the system of positive roots for B r is e^}, i < j  while
the one for C r series is =  {ê  ±  eJ 5 2e*}, i < j\  and (2) the reflection Sej 
with respect to the root ej coincide with S2ej — the one with respect to the root 
2ej. In the tables below we provide for each equivalence class: (i)the cyclic 
group generated by each of the automorphisms in the class; (ii) the number of 
elements in each class; and (iii) a representative element in it.
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R em ark 1. F or  B r and  C r series and fo r  G 2 the inner autom orphism w 0 
which m aps the highest w eight vectors into the low est w eight vectors o f  the 
algebra acts in the root space as fo llo w s:

^0 (-^a) — on ^o(-^fc) ^ k i  ^  ^ ^+5 ^ a. Ü -  (30)

The Weyl group W (B 2) consists of 8 elements. Its genetic code is given by

si,.., = Si = n, (s.,-.,sra)4 = ii, (31)
i. e., it is isomorphic to the group D4. It has 5 equivalence classes:

11 -1 4 1} 4 2) Z4
1 1 2 2 2
11 w0 Que\ —e2 sei Q Que\ —e2

The Weyl group W (G 2) has 12 elements. Its genetic code is

S 2ei_e2 = S i  = 11, (Sei- e2Se2)6 = U , (32)

i. e., it is isomorphic to the group D6. The 6 equivalence classes are:

U -11 4 1} l l 2) Z3 hg
l 1 3 3 2 2
11 w 0 sai (.saisa2f sais,

The Weyl groups W (B 3) has 48 elements; its genetic code is

C2 _  C2 _  Ç2 _  ri
^ei-e2 ^ßo-eq ß̂q 11 5e2—e3 63

(Sei_e2Se2_e3)3 =  (Se2 _es >Se3 )4 =  1 , (Sei_e2Se2_e3Se3f  = i  .
(33)

Its 10 equivalence classes are characterized by:

11 -11 4 1} 4 2) 4 3)
1 1 6 3 6
11 ifo ĉe i  —e2 S e 3

0 0
^ e i  —e2

4 4) Z3 z£1} 4 2) Ze
3 8 6 6 8

S e A 2 c c
^ e i  —e2 ^ e 2 — e.3

C Q
u ei u ei  —e2

C O O
u ei u e3 u ei  —e2

q  q  q
u e i —e 2 u e 2 —e 3 l-J e3

We leave more detailed explanations of the general theory to other papers and 
turn now to the examples.
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Remark 2. In all examples below we apply the reductions to L-operators of 
generic form. This means that the unreduced J  is a generic element of f) and 
therefore (a, a) 0. In fact we have used above the vector a for fixing 
up the order in the root system of 0. The potential Q is also generic, i. e. 
depends on |A| complex-valued functions where |A| is the number of roots of 
0. However the reduction imposed on J  may lead to qualitatively different 
situation in which the reduced Jr is not generic, i. e. there exist a subset of 
roots A0 such that (ar, a) =  0 for a  G A0. Then obviously the potential [J, Q\ 
in L will depend only on |A| — |A0| complex-valued fields.
In what follows whenever such situation arises we will provide the subset 
A0 or; equivalently the list of redundant functions in Q. Obviously both the 
corresponding N-wave equation and its Hamiltonian structures will depend 
only on the fields labelled by the roots a such that (ar, a) /  0.

Remark 3. Several of the Z2-reductions below contain automorphisms which 
map J  to — J. Then it is only natural that both the canonical symplectic form 

and the Hamiltonian H ^  vanish identically. In these cases we will write 
down the corresponding N-wave systems of equations; their Hamiltonian for
mulation is discussed in Section 5 below.

Remark 4. In several of the examples below the action of the Z2 reduction 
group on the spectral parameter \  is trivial. Then the result is an N-wave 
system related to a subalgebra 0O C 0.

Remark 5. The final remark here is that under some of the reductions the 
corresponding Equation (1) becomes linear and trivial. This happens when 
the Cartan subalgebra elements invariant under the reduction form a one
dimensional subspace in f) and therefore Jr oc I r. For obvious reasons we 
have omitted these examples.

4. Examples of Z2 and Z2 0  Z2 Reductions

Remark 6. Here and below we will skip the leading zeroes in the notations 
of the roots, e. g. by {1} and {11} we mean {001} and {011} respectively 
for the B 3 and C 3 algebras. For G 2 algebra by {1} we mean {01}.

4.1. 0 C 2 =  sp (4)

This algebra has four positive roots A+ =  {10, 01,11, 21} where =  e 1 — e2, 
a 2 =  2e2 and j k  = j a x +  ka 2. Then Q (x,t)  contains eight functions.

Example 1. After the reduction of anti-hermitian type K F (X )K ~1 =
—L(?7iA*)t, where K  =  diag (si, s2, l / s 2, l / s i )  and rj 1 =  ±1 we obtain
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Pio = -r tiS i/s2q*w, Pi = -771 s%ql, pu  = - r j i s ^ q ^ ,  p21 =  -V is lq 2V and 
the next 4-wave system

i(ai -  a2)q10.t -  i(&i -  b2)q10.x -  2n{s22q11ql -  s1s2q21ql1) =  0 , 

iû29i;t -  i&29i;z -  2^(s i/ s2)9i i ^ 0 =  0 , 
iai?21;t -  i&4̂ 21;x +  2tfÇnÇio =  0 ,
i(ai +  a2)</11;t — i(&i +  b2)q11]X — 2k (</io9i — ($ i/s2)ç2i ^ 0) =  0 ?

where k  =  a i&2 — a2bi. It is described by the following interaction Hamilton
ian:

Hmt =  4k (sis2 (çnçïçïo “  rçi9n9i9io) -  s? (92i9n9Îo +  rçi92i9n 9io)) • (35)

In the case rj\ = 1 ifw e identify q10 =  Q, qn =  </21 =  E a and q1 =  E?s,
where Q is the normalized effective polarization of the medium and Ep, E s 
and E a are the normalized pump, Stockes and anti-Stockes wave amplitudes 
respectively; /7zot we obtain the system of equations studied, e. g. m / 76"7- E/z/s 
approach allowed us to derive a new Lax pair for (34). A particular case of 
(34) with Si =  s2 =  1 and 7/i =  l zs equivalent to the 4-wave interaction, see 
[4 f

Example 2. C2 =  Sei- e2. C2(L*(j]A*)) =  L(A) and p = ± 1. 77zzs reduction 
gives the following restrictions:

Pw =  WiV 0Î1 =  99n , 921 =  m l  j 3̂6)
a2 =  r/a* , b2 = pb\ , =  7/pn , p2i =  ~VP*i •

Then we obtain 5-wave (2 real and 3 complex) 1 system which is described 
by the Hamiltonian:

oo
#mt =  4fi; J dx[qu (q*10pi -  qwp l)+  r]pn (q*wql -  qwqi)], (37)

— OO

wiY/i « =  ai&j — öj&i.

Example 3. C3 =  S2e2. C'3(L*(r/A*)) =  L(A) and 77 =  ± 1 . Then we have:

a*l = r j a 1, a*2 = - r ta 2 , b\ =  rjb i, b*2 = - p b 2 ,

qu = - i m l 0 , P11 =  *WÎo , «2i =  -TO21, (38)
P21 =  - W 21, Pi =  - m l  •

1 Here and below we count as ‘real’ also the fields that are in fact purely imaginary.



Reductions of TV-wave Interactions 65

which leads again to 5-wave (2 real and 3 complex) system with the Hamil
tonian:

H mt

oo

= - 4 irjn J àx[\q11\2(q1 -riq*l ) + \p11\2(p21+ q21j\, (39)

and k =  aib2 — a2bi.

Example 4. C 4 =  w0. C 4( L * (?7À * ) )  =  L ( A )  and rj =  ± 1 .  Then: 

a* =  —rjdi , =  -r]a2 ; 6* =  - 77&1 , b*2 =  —rjb2 ;

-rjq*a for a  =  {(11)} (40)
Pa = for a  =  {(10), (1), (21)}.

which leads to 4-wave system with the Hamiltonian:
oo

H-m =  4k /  dx [Qh QioQi +  92i5n5i*0 + ??(9i*i5io5i + 52i<?n4io)] , (41)
— OO

and k =  aib2 — d2bi.

Example5. C5 =  C5(L(—A)) =  L(A). get:

P io  = -Q io  , Pn =  9n , Pi =  - q i  , P21 =  -Ç 21 • (42)

Then we obtain the following 4-wave system (see Remark 3):

i(a i -  a 2)5io,t -  i(6i -  &2)5io,æ -  2k (52i 5ii +  5 i5n) =  0 , 
ia2qht -  ib2qhx -  2Kq10qn  = 0, (43)
i(a i +  02)^11,t — i(6i +  (>2)511,æ +  2^(521510 — 5i5u) =  0 , 

iai52i,t -  ibiq2i,x +  2k5io5ii  =  0 .

with n — dib2 — d2bi. Note that this reduction doesn’t restrict the Cartan 
elements.

4.2. 0 -  G2

G 2 has six positive roots A+ =  {10,01,11,21,31,32} where again km  =  
kai +  m a 2, ot\ =  l/3e i — l/3 e 2 +  2/3e3, a 2 = e2 — e3 and the interaction 
Hamiltonian contains the set ot triples of indices A4 =  {[11,1,10], [21,11,10], 
[31, 21,10], [32,31,1], [32,21,11]}.
Note that here if the Cartan elements are real then the N -wave equations after 
the reduction become trivial, see Remark 5.
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4.2.1. Z2 reductions

Example 6. C6 =  Sai. C6(L*(r]À*)) =  L(A) ond 77 =  ± 1. Then:

_J (fli -\- a f)/2  for 7j =  1 , _ J (6i 4- 6^)/2 for 77 =  1
° 2 \  (ai — a\)/2 i for 77 =  —1. 2 \  (6i — b\)/2i for 77 =  —1.

9si =  ï79Ï> P 10 =  99Ïo> 921 =  99Îi> 9s2 =  932,

P31 =  VP*1 , P21 =  VP*n, P*32 =P32-  (44)

50 we obtain 7-wave (2 real and 5 complex) system with the Hamiltonian:

Hmt = - 6 t)k [Ht(32,31,1) -  H r(32,21,11) +  r,Hr(31, 21,10)

Here Hr( i,j ,k )  is givenby (7) after the present reduction and k = a ib l—a^bi.

Example 7. C7 = Sa2■ C7(L* (rjX*)) = L (A) and 77 = ± 1. Then:

_  J ( a 2 +  a2)/6 for 77 =  1 _  J (62 +  62)/6  for 77 =  1
01 \  (a2 — aïjVôi for 77 =  —1. 1 \  (62 — 62) / 6i for 77 =  —1.

9n =  ~VQw, Pi = 99Î, 1*21 = -VQ21, 932 =  9931,
Pu = -VPl 0, P21 =  -9P21, P32 = PPti- (46)

so we obtain 7-wave (2 real and 5 complex) system which is described by the 
Hamiltonian:

Hinl = -2r]K[Hr(32,31,1) -  Hr(32, 21,11) +  Hr(31,21,10)

with k  =  a 262 — a 2 62-

Example 8. C8 = w0. Cs(L*(r/X*)) = L(X) and 77 =  ±1. This gives:

+  2Hr(21,11,10) +  Hr( 11,10,1)].
(45)

2£Tr (21,11,10) +  pHr( 11,10,1)]
(47)

a* =  - 7701, a*2 =  -rja2, b\ = - 7761, 63 =  -??62;

„ _  /  -99a for « =  ( ( 10)> (32)}
“  l  <S for a  — {(1), (11), (21), (31)}. (48)

and a 6-wave system described by the Hamiltonian:

Hinl = - 6 t]k [ -  pHr(32,3 1 ,1) +  pHr(32,2 1 ,11) +  Hr(31,2 1 ,10) 
+  2tfr (21,11,10) +  Hr( 11,10,1)],

(4 9 )

with k = a7b2 — a2b7.
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4.2.2. Z2 (8) Z2 reductions

Example 9. =  Sai, <^1}(L(A*)) =  —Lf(A) and C f } = S3ai+2a2,
Cq2\ L ( —\*)) = A). The first reduction gives the following restrictions:

a2 =  ai +  a\ , b2 =  &i +  b\ , 9i0 =  9io 5

P21 =  9Îi , Pi =  931 > P u  =  ?2i > (50)
P31 =  9i ? P32 =  Ç32 5 P 10 =  P 10 ?

i. e. after the reduction there remain 7 (2 real and 5 complex) waves. Imposing 
the second reduction we obtain in addition the following restrictions:

Pio =  9io, 92i =  - 9 n ,  932 =  -032, Qs 1 =  - 9 Î ;  (51)

and this gives the next 4-wave (1 real and 3 complex) system:

i(ai + al)q10't -  i(£>i +  b\)qWtX -  + qfiql ~  2|<?n|2) =  0,
i(a i — — i(bi — — 3k(çioÇh +  q32Qi) =  0,
Îûl9ll,t — î^l^ll.æ — (̂t7lOt7l +  ^ h l l h l O  +  ?329i i ) =  0, (52)

i(«i -  al)q32,t ~  i(^i -  bf)q32,x ~  3/<|<?i|2 -  |<?n|2) =  0,

with k = a fii — a f i f  Since Cg1̂ (Cg2\ j Ÿ ) J  then Remark 3 applies.

4.3. 0 ~  B 3 =  so (7)

In this case there are nine positive roots A+ =  {100, 010, 001, 110, 011, 
111, 012, 112, 122} where again i jk  = ia 3 +  j a 2 +  ka 3 and ai = e3 — e2, 
a 2 = e2 — e3, a 3 = e3. Below the interaction Hamiltonian is

H'mt 'y ' j, k ) , (53)
[ i , j , k]eM

where the set ot triples of indices A4 = {[122, 112, 10], [122, 111, 11], 
[122, 12, 110], [112, 111, 1], [112, 12, 100], [111, 110, 1], [111, 11, 100], 
[12, 11, 1], [11, 1, 10], [110, 10, 100]}.

4.3.1. Z2 reductions
Example 10. C10 = Sei_e2. C10(L(A)) = L (A). Then

PlOO =  ÇlOOy QllO =  qiOy Ç l l l  =  q i l y  Ç l l 2  =  <?12> Ql22 =  0,
PllO =  PlOj Pi l l  =  Pl l j  Pll2 =  Pl2j Pl22 =  0,
a2 =  öi b2 = bl .

(5 4 )
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The interaction reduces to 8-wave system with the Hamiltonian:

H jy = 8(a ib3 -  biaa)(H( 12, 11, 1) +  77(11,1, 10)). (55)

After a proper identification of the dynamical coefficients we find that (55) 
coincide with the Hamiltonian related to the subalgebra B 2 — so(5). We in
vestigated several choices for the second order automorphism Ciq. Whenever 
C10 is a reflection with respect to a long root of B 3 we again obtain a generic 
B 2 — so(5)-system. In addition gi0o becomes redundant, see Remark 2.

Example 11. Cn  =  Se3. Cn(L(X)) = L(X). Here we have

O112 =  (Zno? O12 =  (Z10? Oui =  On = 0 , Pi = ~0h
n 7 n (56)Pii2=Puo, P i2=Pio , Pill = P11 =  0, a3 = b3 = 0.

The interaction Hamiltonian reduces to

H $  = 4(a ib2 -  bia2)(Hr( 122,110,12) +  77r (110,10,100)), (57)

and contains only coefficients qk related to the long roots of B 3, i. e. it reduces 
to 8-wave system related to the subalgebra D 3 C B 3.
Reductions that act trivially on the spectral parameter naturally reduce the 
Q-wave system to a g0-wave system where 0O is a subalgebra of 0. These 
reductions preserve the Hamiltonian formulation.

Example 12. Ci2 =  Sei_e2Se3. Ci2(L(—À)) =  L(A). The nontrivial action on 
the spectral parameter X ensures that the reduction will not be just a transition 
from g to its subalgebra. Then

Pioo — ~Oio(h 0.12 — — (Zno? O u i — On-, 0 .1 1 2  — —Ois-, P i  — Oh

P l 2 =  —P ll(h  P i l l  =  P l h  P l l 2 — —P h h  a 2 =  —& h  =  —b l-
(58)

However this choice means that Ci2( J) =  — J  and therefore Remark 3 applies. 
This automorphism reduces (1 ) to the following 8-wave equations:

i^i^ioo ,t — ifriÇioo,æ +  k (QioPiio — OnoPio) — 0,
i(ai +  a3)gio,t — i(&i +  b3)qiQ̂ x +  2n(q1q11 — OiooOno) — 0,

,t — b̂3qi x +  nflnPno — OnPio +  PnOno ~ PnOio) =  0, 
i(ai — a3)gno,t — i(&i — b3)qi1Ĝx +  2 n(qiqn +  OiqqOio) — 0,
iaiOiyt ~  iM n,* -  ^(OiOno + OiOio) =  0, (59)
i(ai +  a3)pi0,t — i(&i +  b3)piQ̂ x +  2n(p11q1 +  OiooPno) =  0, 
i(ai — a3)pno,t — i(&i — b3)pno^x +  2 n(pnqi — OiooPio) — 0, 
iaiPn,t -  i&iPn,* -  k (OiPuo + OiPio) =  0, 

where n =  ai&3 — a3b 1 and q122, P122 are redundant, see Remark2.
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Example 13. Ci3 =  SeiSe2. Ci3(L(—À)) =  L(A). 77ze reduction conditions 
give C13(J) = — J  and:

Pioo — #1005 P 112 — #1105 P in  =  — #1115 P 110 =  Ç1125

Pi =  0, P 122 =  #122, P 12 =  #10 5 P 11 =  #115 (60)

P 10 =  #12 , # i = 0  a3 = 0, &3 =  0 .

Again Remark 3 applies and we obtain the next 8-wave system:

i ( a l  — a 2 )# 1 0 0 , t  — K ^ l  — ^ 2)#100 ,æ  +  f t ( # 1 0 # 1 1 2  +  # 1 2 # 1 1 0  — ^ Q l l Q l l l )  =  0 ,  

i t t 2 # 10 ,t  — i&2#10,æ — ^ ( # 1 0 0  +  # 1 2 2 )# 1 1 0  =  0 ,  

ia i# ii0 ,t -  i&i#iio,* -  ^ ( # 1 0 0  -  #i2 2)#io =  0,
i&2#ll,t — i&2#ll,æ — ^(#100 +  #122)#111 =  0, (61)

i& l#lll,t — i^l#lll,æ — ^(#100 — #122)#11 =  0, 

i&2#12,t — i&2#12,æ — ^(#100 +  #122)#112 =  0, 

i^l#112,t — i^l#112,æ — ^(#100 — #122)#12 =  0,

i( a i  +  a 2 )qi22,t ~  i(&i +  b2 )q i22 x̂ +  ^ (# io # ii2  +  #i2#no — 2# n # m ) =  0, 

where n =  axb2 — a2b1.

Example 14. C14 =  Sei_e2Se3. C14(Ü (À*)) =  —L(À). Then:

OlOQ =  QlOOi Pl2 =  9ll0> P11 =  9 lll)  PlO =  0.1121

Pl22 =  0*1221 Pll2 =  ~0l0i P ill  =  0*111 PllO =  -0*121 (62)
a2 = - a 1} b2 = - b 1} q\ = qu p \= p i ,  p*100 = - p Wo,

and we obtain 10-wave (4 real and 6 complex) system which is described by 
the Hamiltonian:

Hint = 4ft[iPr (112, 111, 1) -  iPr (112,12,100) +  t f r ( l l l ,  110,1)
-  Hr( 1 2 ,1 1 ,1 )  -  £Tr ( l l ,  1 ,1 0 ) -  Hr( 1 1 0 ,1 0 ,1 0 0 )] . (63)

Here k = a3bs — a3b3 and q122, p i22 are redundant, see Remark 2.

Example 15. C15 =  SeiSe2. C'i5(Lt (A*)) =  —L(A). As a result:

«3 = 0 , b3 = 0, q112 = q*lw , qi2 = ql0, P112 = P*iW, P12 = P*Wi
#100 =  9ioo? Pi 00 =  Pioo? Oin =  —qn h  P in  =  —Pm? (64)
#122 =  #1225 P l22 =  Pl22 5 Pi =  — #l 5 # ll =  #115 P u  =  P ll 5
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and we get 12-wave (8 real and 4 complex) system which is described by the 
Hamiltonian:

Ai* =  2«[flr (122, 110, 12) +  f l r (122, 112, 10) -  2f lr (122, 111, 11)
+  Hr( 112, 12,100) +  Hr(110,10,100) +  2Hr( l l l ,  11,100)]. (65)

with k =  aib2 — a2b1; the fields q1 and p1 are redundant, see Remark 2. 

Example 16. Ci6 =  Sei- e2. Ci6(Lt (—A*)) =  —L(A). Therefore:

9ioo =  9iocb Pio =  1̂105 P11 =  9ni5 P12 =  (?112?
P l 0 0  =  -PIOO5 P l l O  =  ^105 P i l l  =  9*15 P l l 2  =  9 l2 5

P122 =  —9i22 5 Pi — 9j\ =  tti, b2 =  &i,
which gives 8-wave system with the Hamiltonian:

flint =  2«[flr (122, 112, 10) -  f l r (122, 12, 110) +  f l r (112, 111, 1)
+  f l r (12, 11, 1) +  f l r ( l l l ,  110, 1) -  f l r ( l l ,  10, 1)].

Here n — ai&3 — a3&i and Qi00, P100 redundant, Remark 2.

Example 17. Ci7 =  Ses. Ci7(Lf(-A*)) =  -L(A). TTien:

P100 =  9ioo5 P112 =  9*105 Pin =  — 9*ii5 P110 =  9*125
P122 =  9l225 P12 =  9l05 Pll =  — 9ll 5 Pio =  9l25
Ql = ~Qu P*i = ~Pu 03 =  0, h  = 0, 

so we obtain 8-wave system with the Hamiltonian:

Hint = 2n[Hr(122,112,10) +  ffr (122,110,12) -  2Hr(122, 111, 11)
+  i7r (112,12,100) -  2Hr( l l l ,  11,100) +  t f r (110,10,100)].

Here n = a-\ b2 — a-2h-\ and q-\, pi are redundant, see Remark 2.

4.3.2. Z2 ® Z2 reductions

Example 18. =  Sei- e2 and =  exp(i7r/ii)) with C[g>(L (\)) = L (A)
and (L(A*)) = —Zl(A). The first reduction is the same as in Example 10 
and after its action there remain 8 complex-valued functions. The second 
reduction requires in addition:

Pi2 = - q \2, Pu = q\ 1, Pi = ql, Pio = -qlo  (70)

Applying both reductions we obtain the 4-wave system with the Hamiltonian 

Hint = 8n[Hr(12,11,1) +  Jîr ( l l ,  1,10)], (71)

and k =  0163 — a36i. This system is related to a B 2 subalgebra, see Remark 4.

(66)

(67)

(68)
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Example 19. C $  = Sei- e2Se3 and =  exp(i7r(/ii +  h2 +  h3)) with 
à ) )  =  L ( A )  and C i ^ ( L ( A * ) )  =  —ZA(A) .  The first reduction is 

as in Example 12. The second one restricts the potential also by:

(72)

(73)

P100 — 1̂005 P11 — 1̂15 P10 — QlOl
P i  =  ~ Q i  5 P n o  =  ~ Q i w

This gives the following 5-wave (2 real and 3 complex) system

i&i7ioo, t  — i&i^ioo,x +  ^ ( 7 i i o 7 i o  7 i o 7 n o )  =  0 ,  
i(ai +  a3)gi0,t — i(&i +  b3)qio^x +  ^(^no^ioo — QiiQi) =  0, 
i a 3<?i,t -  i M i , *  +  ^ ( 9 i i 9 n o  “  9 n 9 Ï o  +  9 Ï i 9 i o  -  QÏiQn o )  =  0 ,  
i(a i — a3)çno,t — i(&i — b3)qno,x — 2n(g10ogio +  QiQii) =  0, 
i û - i 9 n , t  — i ^ i 9 n , æ  +  ^((ZiÇiio +  (Zi(Zio) =  0 ,  

where n =  a i&3 — a3b 1. Like in Example 12 Remark 3 applies.

4.4. fl ~  C 3 =  sp (6)

In this case there are nine positive roots A+ =  {100, 010, 001, 110, 011, 
111, 021, 121, 221} where again zjfe =  zaï +  j a 2 +  fea3 and a x =  
ei — e2, a 2 =  e2 — e3, a 3 =  2e3 and the set ot triples of indices is
M  =  {[110, 10, 100], [111, 11, 100], [121, 21, 100], [121, 11, 110], [21, 11, 10], 
[111, 110, 1], [11, 1, 10], [121, 111, 10], [221, 121, 100], [221, 111, 110]}.

4.4.1. Z2 reductions
Example20. C20 = Sei- e2. C20(L(A)) = L(A). Therefore:

Çiio  — Ç105 (Z111 — (Z11? Ç221 — —Ç215 P100 — Ç1005
(74)

P110 — Pio5 P111 — P11? P221 — — P215 a2 — ai, b2 — &i,

and obtain 8-wave system which is described by the Hamiltonian:

flint =  8«[flr ( l l l ,  110,1) -  f l r (121, 111, 10) -  f l r (121,110,11)]. (75)

Here n — a\b3 — a3bly and this system is related to a C 2-subalgebra, see 
Remark 4. Note that the functions q121 and q1 remain unrestricted and q100 is 
redundant, see Remark 2.

Example 21. C21 = S2e3. C21(L(A)) =  L (A). TTzen:

(Z111 =  — (Z110? (Z11 — — Ç105 P i n  — —P110? P 11 — —P10?

P221 =  P121 =  P21 = 0, q2 21 =  Ç121 =  Ç21 = 0 , Pi =  gï, (76)
03 =  0, 63 =  0;
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giving 6-wave system with the Hamiltonian:

Hmi =  4ni7r (110,100,10). (77)

Here n — aib2 — a2bi. This system is related to an A 2-subalgebra, see Re
mark 4.

(78)

Example22. C 22 =  Sei_e2S2e3. C 22( L ( —À)) =  L(A). This gives:

a 2 =  —a i, b2 =  —&i, Pioo =  — #ioo5 #no =  # n 5 # m  =  #io5

#221 =  — #2 15 Pi =  —# i5 Pno =  P u  5 P m  =  P io5 P221 =  —̂ 215

and  the next 8-wave system  (see Rem ark 3):

iai9ioo,t -  iMioo,* +  ^(Pio#n -  Pn#io) =  0,
i (a i +  a3)#io,t — +  3̂) 910, æ — 2n(g2iP n  +  #ioo#n +  Q1 Q1 1 ) =  0,

ia 3 Çi,t -  i&3 «i,æ -  ^ (P io # n  -P 1 1 Ç 1 0 )  =  0 .

i(a i — a3) ç n jt — i(&i — &3)# n ,œ — 2 n (#2iPio — #ioo#io +  #i#io) =  0, 

iai?2i,t -  i&i92i,x -  2ft<?io<7ii =  0, (79)

i(a i +  a3)pio,t — i(&i +  &3)Pio,æ +  2 n (# iP n  +  #iooPn — P2i# n )  =  0,

i(a i -  a3)p n >t -  i(6i -  b3)p lhx +  2n (#1p 10 -  #iooPio -  p 2i#io) =  0,

iaiP2i,t -  i&i^2i,æ +  2nPioPn =  0, 

where n =  ai&3 — a3&i and #m  zs a redundant field , see Rem ark  2.

Example23. C23 =  S ei_ e2S ei+e2. C23(L (-A ) )  =  L(A). 77zen: 

a 2 =  a i , b2 =  6 1, pio =  (Z1105 P 110 =  #io5 P 11 =  —#1115
(80)

P in  — — #115 P21 — #2215 P221 — #215 P 121 — — #1215 Pi — — #1 •

sa g££ dze next 8-wave system  (see Rem ark 3):

i(a i — a 3)#i0,t — i(&i — &3)#io,æ +  2/^(#121#n +  #2i# m  — #n#i) =  0, 

i&3#i,t — i^3#i,æ +  2n(#in#io +  #iio#n) — 0,
i(ai — a 3)#no,t — i(&i — &3)#no,æ — 2n(#221#n +  # i#m  — # m # m ) =  0, 

i(ai +  a 3)# n jt — i(&i +  fr3)#n ,œ — 2n(#121#10 +  #i#io +  #2i#no) — 0, 
i(ai +  a 3)# in jt — i(&i +  &3)#m ,œ — 2n(#1#110 +  #m #no — #221^1 0) — 0, 
i&i#2i,t — ibi#2i,æ +  2n#io#n =  0, (81)

ia l#121,t — iM m ,x +  ^(#lll#10 +  #iio#n) — 0,
iai#22i,t — i^i#22i,æ +  2n#no#iii =  0,

where n =  (iib3 — a3bi and  # i00 is redundant, see R em ark2.
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Example24. C24 =  Se 1- e2. À*)) =  —L(X). Therefore:

Q100 =  #100? P100 — P1001 P i  =  #1 5 P121 =  9 i 2 i  5

P10 =  olioi P110 =  0*ioi Pn = 9m . P m  = oh , (82)
P21 = — 0.2211 P221 =  — 921; 02 =  01) = b\ .

and we obtain 8-wave system which is described by Hamiltonian:

Hmt = An[Hr(221, 111, 110) -  Hr(121, 111, 10) -  Hr( 121,110,11)
-  Hr(21,11,10) +  t f r ( l l l ,  110,1) +  Hr( l l ,  1,10)], (83)

where n =  ai &3 — a3b 1 and q100, p100 are redundant fields (see Remark 2). 

Example25. C25 =  S2es. C25(L+(-A*)) =  —L(A). 77zot:

#1 =  Ql-> P i  — P l i  PlOO — QlOO") P i l l  =  — ^1105 

Pno =  - 9 m ,  P u  = -«îo> Pio =  - 9 n ,  P m  =  “ 4 .  (84)
P221 = -O ku  P21 = -0*211 o3 =  0, b3 = 0.

and we get another 8-wave system with:

Hint = 2n[Hr(221,121,100) +  Hr( 121, 11,110) -  2Hr(121,21,100)
+  Hr( 121, 111, 10) -  t f r ( l l l ,  11, 100) +  £Tr (110,10, 100)], (85)

where k = aib2 — a2bi and qly pi are redundant fields (see Remark2).

4.4.2. Z2 ® Z2 reductions

Example 26. C $  = Sei_e2 and = exp(m (h i + h2 + h3)). C $ (L ( \) )  = 
L (À) C2G (L (\)) = the Cartan elements I , J  are real. The first
reduction is as in Example 20. This gives 8-wave system. After applying the 
second reduction we have in addition:

P 21  =  - 0*211 P l i  =  0 * 11 , P i  =  0*11 P 10 =  0*10 ■ ( 8 6 )

Thus we obtain 4-wave system with the Hamiltonian:

Hmt =  4/^277(21,11,1)) +  77(11,10,1)]. (87)

and k =  a i&3 — a3bi. This system is related to a C 2-subalgebra, see Remark4.

Example27. Cffl = Sei_e2S2e3 and Cyj =  exp(i7r(/ii +  h2 +  h3)). 
C27 (Lt^—À)) =  L(A) C$(L(Xf )  =  — I f ( —À*), the Cartan elements I , J  are 
real. The first reduction is as in Example 22 and the second one gives:

* * * *
#100 — #100, Qi — #1, Q110 — —Q m  Q111 — ~ Q io

P221 =  #2215 P21 =  #21 •
(8 8 )
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The composition of both reductions leads to the following 5-wave (2 real and 
3 complex) system (see Remark 3):

i^i^ioo ,t i î îoo,æ +  Qi iQio) =  0,
i(ai +  a3)gi0,t — i(&i +  b3)qio^x +  2n(q2iq\1 — qiqn — qiooqn) 
iai9i,t -  iM i,x +  2K,(ql0qn  -  Çio?n) =  0, 
i ( a i  — a 3 )q n ,t — i( ^ i — ^3)911,® +  2 tt(<72i(Zio — (Zi(Zio +  qiooqio)

1̂ 1̂ 21,t — ib1q2i,x +  2nqioqn =  0 .

w//7z ft =  ai&3 — a 3bi.

Example 28. =  Sei_e2,Sei+e2 and =  exp(i7r/r3/ 2). C^(Lt(A*)) =
L (A) C21\ l (X)) = the Carton elements I , J  are real. The first
reduction is as in Example (23). The second one gives:

<7l00 =  “ <7l00 5 <7221 =  “ <72215 <7l21 =  “ <7l215 ^

<7m =  i<7Ïio> P m  =  “ i<7uo-

The result is a 6-wave system with the Hamiltonian:

Hint = 4«[2fi'r (121, 21,100)) -  i î r (121,110,11) -  2tfr (221,121,100)
-  t f r (110, 10, 100) +  iiTr*(121, 110, 10) +  itf r*(110, 10, 100)], (91)

where k = a1b2 — a2b1 and Hr*(i,j, k) =  dx (<Mj<7fc — QiQjQk) <s' the term 
similar to (7). Such type of interactions are known as “blow-up instability” 
of waves. In this case the functions qwo, q221 and gm  are purely imaginary.

=  0,
(89)

=  0,

5. Hamiltonian Structures of the Reduced N -wave Interactions

The generic IV-wave interactions (i. e., prior to any reductions) possess a hier
archy of Hamiltonian structures. As mentioned in the Introduction the simplest 
one is {H^°\ f2̂ } ;  the symplectic form I f 11 after simple rescaling

qa ^ w a = pa  ̂ya — a  G A ,
y (a , a ) y  (a 5 a )

becomes canonical with wa being canonically conjugated to ya. However in a 
number of cases the reduction conditions lead to degeneracies, i.e. both H W) 
and vanish identically. Then it is necessary to use some of the higher 
Hamiltonian structures, given by:
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V„tf(fc+1) =  AV„H{k),
o°

Q{k) = ̂  J dx ( [J ,5Q(x, t ) ] / \Ak5Q(x, t )^  ,
(92)

where q(x , t ) =  [J, Q(x, t)], V9iT =  (SH)/(ôqT(x , t )). The so-called gener
ating (or recursion) operator A =  (A+ +  A_)/2 is determined by:

A±Z{x) = ad}1 ^ i - ^  +  P0 ■ ([q(x), Z(x)])

+  i [q(x),i± (u -  p 0) [q{y), z ( y )]] j , (93)
X

P o S ^ a d j ' - a d j - S ,  ( I± S) (x )= J  d yS (y ) .
± oo

The degeneracies takes place when the reduction group contains elements trans
forming J  —> — J. A Z2-reduction with this property degenerates =  0 
and =  0 for all k = 0, ±1, ±2 . . . .  Reductions of higher orders (e. g.
7Ln with N  > 2) degenerate all Hamiltonian structures with labels k /  1( 
mod N ), see [11,8,10]. These results may be derived using the expressions 
for and in terms of the scattering data of L.

6. Conclusions

We end this paper with several remarks.
1. The reductions that act trivially on À reduce to n-wave systems for a sub

algebra 0i C 0. In particular, suppose we apply Z2-reduction by a Weyl 
reflection with respect to the simple root a k. Then the Dynkin diagram of 
the corresponding subalgebra A01 is obtained from A0 by deleting a k.

2. The Z2-reductions which act on À by Ti(À) =  À* may be viewed as Cartan 
involutions and lead in fact to restricting of the system to a specific real 
form of the algebra 0.

3. To all reduced systems given above we can apply the analysis in [8,10] 
and derive the completeness relations for the corresponding systems of 
“squared” solutions. Such analysis will allow one to prove the pair-wise 
compatibility of the Hamiltonian structures and eventually to derive their 
action-angle variables, see [1,19] for the A n-series.

4. These results can be extended naturally in several directions:
• for NLEE with other dispersion laws. This would allow us to study 

the reductions of the multicomponent NLS-type equations, Toda type 
systems, etc.
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• for Lax operators with more complicated A-dependence, e. g.

^ i +  U0(x,t)  +  XUi(x, t) +  — U -i (a;, i)^ t , A) =  0.

This would allow us to investigate more complicated reduction groups 
as e. g. T, O (see [18]) and the possibilities to imbed them as subgroups 
of the Weyl group of p.

Acknowledgement

We have the pleasure to thank Dr. L. Georgiev for valuable discussions. 

References

[1] Zakharov V. E., Manakov S. V., Exact Theory of Resonant Interaction of Wave 
Packets in Nonlinear media, INF preprint 74-41, Novosibirsk (1975) (in Russian).

[2] Zakharov V. E., Manakov S. V , On the Theory of Resonant Interaction of Wave 
Packets in Nonlinear Media, Zh. Exp. Teor. Fiz. 69 (1975) 1654-1673 (in Rus
sian);
Manakov S. V., Zakharov V. E., Asymptotic Behavior of Nonlinear Wave Sys
tems Integrable by the Inverse Scattering Method, Zh. Exp. Teor. Fiz. 71 (1976) 
203-215.

[3] Kaup D. J., The Three-wave Interaction — a Nondispersive Phenomenon , Stud. 
Appl. Math., 55 (1976) 9-44.

[4] Zakharov V. E., Manakov S. V., Novikov S. R, Pitaevskii L. I., Theory of Solitons: 
the Inverse Scattering Method, Plenum, New York 1984.

[5] Faddeev L. D., Takhtadjan L. A., Hamiltonian Approach in the Theory of Solitons, 
Springer Verlag, Berlin (1987).

[6] Kaup D. J., Reiman A., Bers A., Space-time Evolution of Nonlinear Three-wave 
Interactions. I. Interactions in an Homogeneous Medium, Rev. Mod. Phys. 51 
(1979) 275-310.

[7] Shabat A. B., Inverse Scattering Problem for a System of Differential Equations, 
Functional Annal. & Appl. 9(3) (1975) 75-78 (in Russian);
Shabat A. B., Inverse Scattering Problem , Diff. Equations 15 (1979) 1824-1834 
(in Russian).

[8] Gerdjikov V. S., Kulish P. P, The Generating Operator for the n  x N  Linear 
System, Physica D 3D(3) (1981) 549-564;
Gerdjikov V. S., Generalized Fourier Transforms for the Soliton Equations. Gauge 
covariant Formulation, Inverse Problems 2(1) (1986) 51-74.

[9] Beals R., Coifman R. R., Scattering and Inverse Scattering for First Order Sys
tems, Commun. Pure and Appl. Math. 37(1) (1984) 39-90.

[10] Gerdjikov V. S., Yanovski A. B., Completeness of the Eigenfunctions for the 
Caudrey-Beals-Coifman system , J. Math. Phys. 35(7) (1994) 3687-3725.

[11] Mikhailov A. V, The Reduction Problem and the Inverse Scattering Problem , 
Physica D, 3D(l/2) (1981) 73-117.



Reductions of TV-wave Interactions 77

[12] Fordy A. R, Gibbons J., Integrable Nonlinear Klein-Gordon Equations and Toda 
Lattices, Commun. Math. Phys. 77(1) (1980) 21-30.

[13] Fordy A. R, Kulish P. R, Nonlinear Schrôdinger Equations and Simple Lie Alge
bras, Commun. Math. Phys. 89(4) (1983) 427-443.

[14] Coxeter H. S. M., Moser W. O. J., Generators and Relations for Discrete Groups, 
Springer Verlag, Berlin-Heidelberg-New York 1972;
Humphreys J. E., Reflection Groups and Coxeter Groups, Cambridge University 
Press, Cambridge 1990.

[15] Helgasson S., Differential Geometry, Lie Groups and Symmetric Spaces, Aca
demic Press, 1978.

[16] Gerdjikov V. S., Kostov N. A., Inverse Scattering Transform Analysis of Stokes- 
anti-Stokes Stimulated Raman Scattering, Phys. Rev. A 54, (1996) 4339-4350; 
Gerdjikov V. S., Kostov N. A., Inverse Scattering Transform Analysis of Stokes- 
anti-Stokes Stimulated Raman Scattering , Patt-sol/9502001.

[17] Bourbaki N., Elements de mathématique. Groupes et algebres de Lie. Chapters 
I-VIII, Hermann, Paris (1960-1975);
Goto M., Grosshans F, Semisimple Lie Algebras, Lecture Notes in Pure and 
Applied Mathematics vol. 38, M. Dekker Inc., New York & Basel 1978.

[18] Kuznetzov E. A., Mikhailov A. V, On the Complete Integrability of the 2- 
Dimensional Classical Thirring Model, Teor. Mat. Fiz. 30 (1977) 303-315 (in 
Russian);
Mikhailov A. V, On the Integrability of the 2-Dimensional Generalization of the 
Toda Chain, JETPh Lett. 30 (1979) 443-448.

[19] Beals R., Sattinger D., On the Complete Integrability of Completely Integrable 
Systems, Commun. Math. Phys. 138(3) (1991) 409-436.


	SECOND ORDER REDUCTIONS OF TV-WAVE INTERACTIONS RELATED TO LOW-RANK SIMPLE LIE ALGEBRAS

	1.	Introduction

	i[V? Qt] — i[7, Qx] + [[/, Q\, [J, Q]] — 0,

	2.	Preliminaries and General Approach

	N-a-ß = Natß , iVQjJg = ±(p + 1) ,


	(20)

	(21)

	(22)

	CHaC-1 = Ha, CEaC-1 = e2vi(a^/NEa,	(28)

	3.	Inequivalent Reductions



	si,.., = Si = n,	(s.,-.,sra)4 = ii,	(31)

	S2ei_e2 = Si = 11, (Sei-e2Se2)6 = U ,	(32)

	(Sei_e2Se2_e3)3 = (Se2 _es >Se3 )4 = 1,	(Sei_e2Se2_e3Se3f = i .


	4.	Examples of Z2 and Z2 0 Z2 Reductions

	Pw = WiV 0Î1 = 99n, 921 = ml j	^36)

	P21 = -W21, Pi = -ml •

	H

	9si = ï79Ï> P10 = 99Ïo> 921 = 99Îi>	9s2 = 932,


	P31 = VP*1, P21 = VP*n, P*32 =P32-	(44)

	[i,j,k]eM



	+ flr(12,11,1) + flr(lll, 110,1) - flr(ll, 10,1)].

	M = {[110,10,100], [111,11,100], [121,21,100], [121,11,110], [21,11,10], [111,110,1], [11,1,10], [121,111,10], [221,121,100], [221,111,110]}.

	5.	Hamiltonian Structures of the Reduced N-wave Interactions

	6.	Conclusions




