CHAPTER 7

AREA MINIMIZING CURRENTS

This chapter provides an introduction to the theory of area minimizing currents. In the first section (§33). of the chapter we derive some basic preliminary properties, and in particular we discuss the fact that the integer multiplicity varifold corresponding to a minimizing current is stable (and indeed minimizing in a certain sense). In $\S 34$ there are some existence and compactness results, including the important theorem that if $\left\{T_{j}\right\}$ is a sequence of minimizing currents in U with $\sup _{j \geq 1}\left(M_{=W}\left(T_{j}\right)+M_{=W}\left(\partial T_{j}\right)\right)$ $<\infty \quad \forall W \subset C U$, and if $T_{j} \rightarrow T \in D_{n}(U)$, then T is also minimizing in U and the corresponding varifolds converge in the measure theoretic sense of §15. This enables us to discuss tangent cones and densities in §35, and in particular make some regularity statements for minimizing currents in §36. Finally, in $\S 37$ we develop the standard codimension 1 regularity theory, due originally to De Giorgi [DG], Fleming [FW], Almgren [A4], J. Simons [SJ] and Federer [FH2].

§33. BASIC CONCEPTS

Suppose A is any subset of $\mathbb{R}^{n+k}, A \subset U, U$ open in \mathbb{R}^{n+k}, and $T \in D_{n}(U)$ an integer multiplicity current.
33.1 DEFINITION We say that T is minimizing in A if

$$
{ }_{=}^{M}(T) \leq M_{W}(S)
$$

whenever $W \subset \subset U, \partial S=\partial T$ (in U) and $\operatorname{spt}(S-T)$ is a compact subset of $A \cap W$.

There are two especially important cases of this definition:
(1) when $A=U$
(2) when $A=N \cap U, N$ an $\left(n+k_{1}\right)$-dimensional embedded submanifold of \mathbb{R}^{n+k} (in the sense of $\S 7$).

As a matter of fact, these are the only cases we are interested in here.

Corresponding to the current $T=T(M, \theta, \xi) \in D_{n}(U)$ we have the integer multiplicity varifold $V=\underline{\underline{V}}(\mathbb{M}, \theta)$. As one would expect, V is stationary in U if T is minimizing in U and $\partial T=0$; indeed we show more:
33.2 LEMMA Suppose T is minimizing in $\mathrm{N} \cap \mathrm{U}$, where N is an $\left(n+k_{1}\right)$-dimensional c^{2} submanifold of $\mathbb{R}^{n+k}\left(k_{1} \leq k\right)$ and suppose $\partial T=0$ in U . Then V is stationary in $\mathrm{N} \cap \mathrm{U}$ in the sense of 16.4 , so that in particular V has locally bounded generalized mean curvature in U (in the sense of 16.5).

In fact V is minimizing in $\mathrm{N} \cap \mathrm{U}$ in the sense that

$$
\begin{equation*}
M_{=W}(V) \leq \mathcal{M}_{=W}\left(\phi_{\#} V\right) \tag{*}
\end{equation*}
$$

whenever $W \subset \subset U$ and ϕ is a diffeomorphism of U such that $\phi(\mathbb{N} \cap U) \subset \mathbb{N} \cap U$ and $\phi \mid \mathrm{U} \sim \mathrm{K}={ }^{1}=\mathrm{U} \sim \mathrm{K}$ for some compact $\mathrm{K} \subset \mathrm{W} \cap \mathrm{N}$.

Note: Of course $N=U$ (when $k_{1}=k$) is an important special case; then V is stationary and in fact stable in U.
33.3 REMARK In view of 33.2 (together with the fact that $\theta \geq 1$) we can apply the theory of chapters 4 and 5 to V; in particular we can represent $T=\underline{\underline{\tau}}\left(M_{*}, \theta_{*}, \xi\right)$ where M_{*} is a relatively closed countably n-rectifiable subset of U, and θ_{*} is an upper semi-continuous function on M_{*} with $\theta_{*} \geq 1$ everywhere on M_{*} (and θ_{*} integer-valued H^{n}-a.e. on M_{*}).

Proof of 33.2 Evidently (in view of the discussion of §16) the first claim in 33.2 follows from (*) (by taking $\phi=\phi_{t}$ in (*), ϕ_{t} is in 16.1 with $U \cap N$ in place of U).

To prove (*) we first note that, for any W, ϕ as in the statement of the theorem,

$$
\begin{equation*}
M_{W}\left(\phi_{\#} V\right)=M_{W}\left(\phi_{\#} T\right) \tag{1}
\end{equation*}
$$

by Remark $27.2(3)$. Also, since $\partial T=0$ (in U), we have
(2)

$$
\partial \phi_{\#} T=\phi_{\#} \partial T=0
$$

Finally,

$$
\begin{equation*}
\operatorname{spt}\left(T-\phi_{\#} T\right) \subset K \subset W \tag{3}
\end{equation*}
$$

By virtue of (2), (3) we are able to use the inequality of 33.1 with $S=\phi_{\#^{T}}$. This gives (*) as required by virtue of (1).

We conclude this section with the following useful decomposition lemma:
33.4 LEMMA Suppose $T_{1}, T_{2} \in D_{n}(U)$ are integer multiplicity and suppose $\mathrm{T}_{1}+\mathrm{T}_{2}$ is minimizing in $\mathrm{A}, \mathrm{A} \subset \mathrm{U}$, and

$$
\underset{=}{M}\left(T_{1}+T_{2}\right)=M_{W}\left(T_{1}\right)+M_{W}\left(T_{2}\right)
$$

for each $W \subset U$. Then T_{1}, T_{2} are both minimizing in A.

Proof Let $x \in D_{n}(U)$ be integer multiplicity with spt $x \subset K, K$ a compact subset of $A \cap W$, and with $\partial X=0$. Because $T_{1}+T_{2}$ is minimizing in A we have (by Definition 33.1)

$$
=W\left(T_{1}+T_{2}+X\right) \geq M_{W}\left(T_{1}+T_{2}\right)
$$

However since $M_{W}\left(T_{1}+T_{2}\right)=M_{W}\left(T_{1}\right)+M_{W}\left(T_{2}\right)$ and $M_{W}\left(T_{1}+T_{2}+X\right) \leq M_{W}\left(T_{1}+X\right)+$ ${ }_{=1}=\left(T_{2}\right)$, this gives

$$
\underline{M}_{W}\left(T_{1}\right) \leq M_{W}\left(T_{1}+X\right) .
$$

In view of the arbitrariness of X, this establishes that T_{1} is minimizing in $A \cap W$ (in accordance with Definition 33.1). Interchanging T_{1}, T_{2} in the above argument, we likewise deduce that T_{2} is minimizing in $A \cap W$.

§34. EXISTENCE AND COMPACTNESS RESULTS

We begin with a result which establishes the rich abundance of area minimizing currents in Euclidean space.
34.1 LEMMA Let $s \in D_{n-1}\left(\mathbb{R}^{n+k}\right)$ be integer multiplicity with spt s compact and $\partial \mathrm{S}=0$. Then there is an integer multiplicity current $T \in D_{n}\left(\mathbb{R}^{n+k}\right)$
 $R \in D_{n}\left(\mathbb{R}^{n+k}\right)$ with spt R compact and $\partial R=S$.

34.2 REMARKS

(1) Of course T is minimizing in $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ in the sense of Definition 33.1.
(2) By virtue of 33.2 and the convex hull property 19.2 we have automatically that spt $T \subset$ convex hull of spt S.

$$
\begin{equation*}
\underline{\underline{M}(T)^{\frac{n-1}{n}} \leq c M(S)} \tag{3}
\end{equation*}
$$

by virtue of the isoperimetric theorem 30.1.

Proof of 34.1 Let

$$
I_{S}=\left\{R \in D_{n}\left(\mathbb{R}^{n+k}\right): R \text { is integer multiplicity, spt } R \text { compact, } \partial R=S\right\}
$$

Evidently $I_{S} \neq \emptyset$. (e.g. $0 \mathbb{X} S \in I_{S}$.) Take any sequence $\left\{R_{q}\right\} \subset I_{S}$ with

$$
\begin{equation*}
\lim _{q \rightarrow \infty} M\left(R_{q}\right)=\inf _{R \in I_{S}} M(R) \tag{1}
\end{equation*}
$$

let $B_{R}(0)$ be any ball in \mathbb{R}^{n+k} such that $s p t S \subset B_{R}(0)$, and let $f: \mathbb{R}^{n+k} \rightarrow \bar{B}_{R}(0)$ be the nearest point (radial) retract of \mathbb{R}^{n+k} onto $\bar{B}_{R}(0)$. Then Lip $f=1$ and hence

$$
\begin{equation*}
\underline{M}\left(f_{\#} R_{q}\right) \leq M\left(R_{q}\right) . \tag{2}
\end{equation*}
$$

on the other hand $\partial f_{\#} R_{q}=f_{\#} \partial R_{q}=f_{\#} S=S$, because $f \mid B_{R}(0)=\mathcal{E}_{B_{R}}(0)$ and spt $S \subset B_{R}(0)$. Thus $f_{\#} \mathbb{R}_{q} \subset I_{S}$ and by (1). (2) we have
(3)

$$
\lim _{q \rightarrow \infty} M\left(f_{\#}{ }^{R} q\right)=\inf _{R \in I_{S}} M(R)
$$

Now by the compactness theorem 27.3 there is a subsequence $\left\{q^{\prime}\right\} \subset\{q\}$ and an integer multiplicity current $T \in D_{n}\left(\mathbb{R}^{n+k}\right)$ such that $f_{\#^{R}} q^{\prime} \rightarrow T$ and (by (3) and lower semi-continuity of mass with respect to weak convergence)

$$
\begin{equation*}
\stackrel{M}{=}(T) \leq \inf _{R \in I_{S}} M(R) \tag{4}
\end{equation*}
$$

However spt $T \subset \overline{B_{R}}(0)$ and $\partial T=\lim \partial f_{\#^{\prime} R^{\prime}}=\lim f_{\#} \partial R_{q^{\prime}}=S$, so that $T \in I_{S}$, and the lemma is established (by (4)).

The proof of the following lemma is similar to that of 34.1 (and again based on 27.3), and its proof is left to the reader.
34.3 LEMMA Suppose N is an ($\mathrm{n}+\mathrm{k}_{1}$)-dimensional compact C^{1} submanifold embedded in $\mathbb{R}^{\mathrm{n+j}}$ and suppose $\mathrm{R}_{1} \in \mathrm{D}_{\mathrm{n}}\left(\mathbb{R}^{\mathrm{n}+\mathrm{k}}\right)$ is given such that $\partial \mathrm{R}_{\mathrm{I}}=0$, spt $R_{1} \subset N$ and

$$
I_{R_{1}}=\left\{R \in D_{n}\left(\mathbb{R}^{n+k}\right): R-R_{1}=\partial S\right.
$$

for some integer multiplicity $s \in D_{n+1}\left(\mathbb{R}^{n+k}\right)$ with spt $\left.s \subset \mathbb{N}\right\} \neq \varnothing$.

$$
\begin{aligned}
& \text { Then there is } T \in I_{R_{1}} \text { such that } \\
& \qquad M(T)=\inf _{R \in I_{R_{1}}} M(R)
\end{aligned}
$$

34.4 REMARKS

(1) $R-R_{1}=\partial S$ with S integer multiplicity and spt $S \subset N$ means that R, R_{1} represent homologous cycles in the n-th singular homology class (with integer coefficients) of N. (See [FH1] or [FF] for discussion.)
(2) It is quite easy to see that T is Zocally minimizing in N; thus for each $\xi \in$ spt T there is a neighbourhood U of ξ such that T is minimizing in $N \cap U$.

We conclude this section with the following important compactness theorem for minimizing currents:
34.5 THEOREM Suppose $\left\{T_{j}\right\}$ is a sequence of minimizing currents in U with $\sup _{j \geq 1}\left(M_{W}\left(T_{j}\right)+M_{W}\left(\partial T_{j}\right)\right)<\infty$ for each $W \subset C$, and suppose $T_{j} \rightarrow T \in D_{n}(U)$. Then T is minimizing in U and $\mu_{T_{j}} \rightarrow \mu_{T}$ (in the usual sense of Radon measures in U).

34.6 REMARKS

(1) Note that $\mu_{T_{j}} \rightarrow \mu_{T}$ means the corresponding sequence of varifolds converge in the measure theoretic sense of $\S 15$ to the varifold associated with T. (T is automatically integer multiplicity by 27.3.)
(2) If the hypotheses are as in the theorem, except that $\operatorname{spt} T_{j} \subset N_{j} \subset U$ and T_{j} is minimizing in $N_{j},\left\{N_{j}\right\}$ a sequence of C^{1} embedded ($n+k_{1}$)-dimensional submanifolds of $\mathbb{R}^{n+k} \quad$ converging in the C^{1} sense to
$\mathbb{N}, N \subset U$ an embedded $\left(n+k_{1}\right)$-dimensional C^{1} submanifold of $\mathbb{R}^{n+k}{ }^{(*)}$, then T minimizes in N (and we still have $\mu_{T_{j}} \rightarrow \mu_{T}$ in the sense of Radon measures in U). We leave this modification of 34.5 to the reader. (It is easily checked by using suitable local representations for the \mathbb{N}_{j} and by obvious modifications of the proof of 34.5 given below.)

Proof of 34.5 Let $K \subset U$ be an arbitrary compact set and choose a smooth $\phi: U \rightarrow[0,1]$ such that $\phi \equiv 1$ in some neighbourhood of K, and spt $\phi \subset\{x \in U: \operatorname{dist}(x, K)<\varepsilon\}$, where $0<\varepsilon<$ dist $(K, \partial U)$ is arbitrary. For $0<\lambda<1$, let

$$
W_{\lambda}=\{x \in U: \phi(x)>\lambda\} .
$$

Then

$$
\begin{equation*}
\mathrm{K} \subset \mathrm{w}_{\lambda} \subset \subset \mathrm{U} \tag{1}
\end{equation*}
$$

for each $\lambda, 0 \leq \lambda<1$.

By virtue of 31.2 we know that $\alpha_{W}\left(T_{j}, T\right) \rightarrow 0$ for each $W \subset C U$, hence in particular we have

$$
\begin{equation*}
T-T_{j}=\partial R_{j}+S_{j}, M_{W_{0}}\left(R_{j}\right)+M_{=W_{0}}\left(S_{j}\right) \rightarrow 0 \tag{2}
\end{equation*}
$$

$\left(W_{0}=\{x \in U: \phi(x)>0\}\right)$.

By the slicing theory (and in particular by 28.5) we can choose $0<\alpha<1$ and a subsequence $\left\{j^{\prime}\right\} \subset\{j\}$ (subsequently denoted simply by \{j\}) such that

$$
\begin{equation*}
\partial\left(R_{j} L W_{\alpha}\right)=\left(\partial R_{j}\right) L W_{\alpha}+P_{j} \tag{3}
\end{equation*}
$$

where $\operatorname{spt} P_{j} \subset \partial W_{\alpha}, P_{j}$ is integer multiplicity, and
(*) Thus $\exists \psi_{j}: U \rightarrow U, \psi_{j} \mid N_{j}$ in a diffeomorphism onto N, and $\psi_{j} \rightarrow{ }_{=}^{1}=U$ locally in U with respect to the C^{1} metric.
(4)

$$
\stackrel{M}{=}\left(P_{j}\right) \rightarrow 0 .
$$

We can also of course choose α to be such that

$$
\begin{equation*}
\stackrel{M}{=}\left(T_{j} L \partial W_{\alpha}\right)=0 \quad \forall j \text { and } \quad \underline{M}\left(T L \partial W_{\alpha}\right)=0 \tag{5}
\end{equation*}
$$

Thus, combining (2), (3), (4) we have

$$
\begin{equation*}
T L W_{\alpha}=T_{j} L W_{\alpha}+\partial \tilde{R}_{j}+\tilde{S}_{j} \tag{6}
\end{equation*}
$$

with $\tilde{R}_{j}, \tilde{S}_{j}$ integer multiplicity $\left(\widetilde{R}_{j}=R_{j} L W_{\alpha}, \tilde{S}_{j}=S_{j} L W_{\alpha}+P_{j}\right)$ with

$$
\begin{equation*}
\underline{M}\left(\widetilde{R}_{j}\right)+\underline{\underline{M}}\left(\widetilde{S}_{j}\right) \rightarrow 0 . \tag{7}
\end{equation*}
$$

Now let $x \in D_{n}(U)$ be any integer multiplicity current with $\partial x=0$ and spt $X \subset K$. We want to prove

$$
\begin{equation*}
M_{W} W_{\alpha}(T) \leq M_{\alpha}(T+X) \tag{8}
\end{equation*}
$$

(In view of the arbitrariness of K, X this will evidently establish the fact that T is minimizing in U.

By (6), we have
(9)

$$
\begin{aligned}
\mathcal{M}_{\alpha}(T+X) & =M_{W}\left(T_{j}+X+\partial \widetilde{R}_{j}+\tilde{S}_{j}\right) \\
& \geq M_{W}\left(T_{j}+X+\partial \tilde{R}_{j}\right)-M\left(\tilde{S}_{j}\right)
\end{aligned}
$$

Now since T_{j} is minimizing and $\partial\left(X+\partial \tilde{R}_{j}\right)=0$ with $\operatorname{spt}\left(X+\partial \tilde{R}_{j}\right) \subset \bar{W}_{\alpha}$, we have

$$
\begin{equation*}
\left.M_{\lambda}=T_{j}+X+\partial \tilde{R}_{j}\right) \geq M_{\lambda}=W_{j}\left(T_{j}\right) \tag{10}
\end{equation*}
$$

for $\lambda>\alpha$. But by (3) we have $\underline{M}\left(\partial \tilde{R}_{j} L \partial W_{\alpha}\right)=\underline{\underline{M}}\left(P_{j}\right) \rightarrow 0$, and by (5) $\stackrel{M}{=}\left(T_{j} L \partial W_{\alpha}\right)=0, \underline{M}\left(T L \partial W_{\alpha}\right)=0$. Hence letting $\lambda \psi \alpha$ in (10) we get

$$
\underline{M}_{\alpha}\left(T_{j}+X+\partial \tilde{R}_{j}\right) \geq M_{W_{\alpha}}\left(T_{j}\right)-\underline{M}\left(P_{j}\right),
$$

and therefore from (9) we obtain

$$
\begin{equation*}
M_{W_{\alpha}}(T+X) \geq M_{W_{\alpha}}\left(T_{j}\right)-\varepsilon_{j}, \quad \varepsilon_{j} \downarrow 0 . \tag{11}
\end{equation*}
$$

In particular, setting $x=0$, we have

Using the lower semi-continuity of mass with respect to weak convergence in (11), we then have (8) as required.

It thus remains only to prove that $\mu_{T_{j}} \rightarrow \mu_{T}$ in the sense of Radon measures in U. First note that by (12) we have
so that (since $K \subset W_{\alpha} \subset\{x: \operatorname{dist}(x, K)<\varepsilon\}$ by construction)

$$
\lim \sup \mu_{T_{j}}(K) \leq \underline{\underline{M}}\{\mathrm{x}: \operatorname{dist}(\mathrm{x}, \mathrm{~K})<\varepsilon\}(\mathrm{T})
$$

Hence, letting $\varepsilon \not \downarrow 0$

$$
\begin{equation*}
\lim \sup \mu_{T_{j}}(K) \leq \mu_{T}(K) \tag{13}
\end{equation*}
$$

(We actually only proved this for some subsequence, but we can repeat the argument for a subsequence of any given subsequence, hence it holds for the original sequence $\left\{T_{j}\right\}$.)

By the lower semi-continuity of mass with respect to weak convergence, we have

$$
\begin{equation*}
\mu_{\mathrm{T}}(\mathrm{~W}) \leq \lim \inf \mu_{\mathrm{T}_{j}}(\mathrm{~W}) \quad \forall \text { open } \mathrm{W} \subset \subset U \tag{14}
\end{equation*}
$$

Since (13), (14) hold for arbitrary compact K and open $W \mathbb{C} U$, it now easily follows (by a standard approximation argument) that $\int f d \mu_{T_{j}} \rightarrow \int f d \mu_{T}$ for each continuous f with compact support in U, as required.

§35. TANGENT CONES AND DENSITIES

In this section we prove the basic results concerning tangent cones and densities of area minimizing currents. All results depend on the fact that (by virtue of 33.2) the varifold associated with a minimizing current is stationary. This enables us to bring into play the important monotonicity results of Chapter 4.

Subsequently we take N to be a smooth (at least C^{2}) embedded ($n+k_{1}$)-dimensional submanifold of $\mathbb{R}^{n+k}\left(k_{1} \leq k\right), U$ open in \mathbb{R}^{n+k} and $(\bar{N} \sim N) \cap U=\varnothing$. Notice that an important case is when $N=U$ (when $k_{1}=k$).
35.1 THEOREM Suppose $T \in D_{n}(U)$ is minimizing in $U \cap N$, spt $T \subset U \cap N$, and $\partial T=0$ in U. Then
(1) $\Theta^{n}\left(\mu_{T}, x\right)$ exists everywhere in U and $\Theta^{n}\left(\mu_{T}, \cdot\right)$ is upper semicontinuous in U ;
(2) For each $x \in \operatorname{spt} T$ and each sequence $\left\{\lambda_{j}\right\} \downarrow 0$, there is a subsequence $\left\{\lambda_{j},\right\}$ such that $\eta_{x, \lambda_{j}} \#^{T} \rightarrow C$ in \mathbb{R}^{n+k}, where $c \in D_{n}\left(\mathbb{R}^{n+k}\right)$ is integer multiplicity and minimizing in $\mathbb{R}^{n+k}, \eta_{0, \lambda \#}=c \quad \forall \lambda>0$, and $\theta^{n}\left(\mu_{C}, 0\right)=\theta^{n}\left(\mu_{T}, x\right)$.

35.2 REMARKS

If C is as in (2) above, we say that C is a tangent cone for T
at x. If spt C is an n-dimensional subspace P (notice that since C is integer multiplicity and $\partial C=0$, it then follows from 26.27 that $C=m \| P \rrbracket$ for some $m \in \mathbb{Z}$, assuming P has constant orientation) then we call C a tangent plane for T at x.
(2) Notice that is not clear whether or not there is a unique tangent cone for T at x : thus it is an open question whether or not C depends on the particular sequence $\left\{\lambda_{j}\right\}$ or subsequence $\left\{\lambda_{j,}\right\}$ used in its definition. Recently it has been shown ([SL3]) that if C is a tangent cone of T at x such that $\theta^{n}\left(\mu_{C}, x\right)=1$ for $a l Z x \in \operatorname{spt} C \sim\{0\}$, then C is the unique tangent cone for T at x, and hence $\eta_{x, \lambda \neq T} \rightarrow C$ as $\lambda \downarrow 0$. Also B. White [WB] has shown in case $n=2$ that C is always unique (with spt C consisting of a union of $2-$ planes meeting transversely at 0).

Proof of 35.1 By virtue of Lemma 33.2 we can apply the monotonicity formula of 17.6 (with $\alpha=1$) and Corollary 17.8 in order to deduce that $\Theta^{n}\left(\mu_{T}, x\right)$ exists for every $x \in U$ and is an upper semi-continuous function of x in U .

Similarly the existence of C as in part (2) of 35.1 follows directly (*)
from Theorem 19.3 and the compactness theorem 34.5 (more particularly from Remark 34.6 with $N_{j}=\eta_{x_{r} \lambda_{j} \#^{N}}$) . Notice that Remark 34.6 establishes first that C is minimizing only in the $\left(n+k_{1}\right)$-dimensional subspace $T_{x} N \subset \mathbb{R}^{n+k}$. However since orthogonal projection of \mathbb{R}^{n+k} onto $T_{x} N$ does not increase area, and since spt $C \subset T_{x} N$, it then follows that C is area minimizing in \mathbb{R}^{n+k}.
(*) Actually 19.3 gives $\eta_{0, \lambda \#} V_{C}=V_{C}$ for the varifold V_{C} associated with C, but then $x \wedge \vec{C}(x)=0$ and hence $\eta_{0, \lambda \#} C=C$ by 26.22 with $h(t, x)=t \lambda x+(1-t) x$.
35.3 THEOREM ${ }^{*}$ Suppose $T \in D_{n}(U)$ is minimizing in $U \cap N$, spt $T \subset U \cap N$, and $\partial T=0(i n \mathrm{U})$. Then
(1) $\theta^{n}\left(\mu_{T}, x\right) \in \mathbb{Z}$ for all $x \in U \sim E$, where $H^{n-3+\alpha}{ }_{(E)}=0 \quad \forall \alpha>0$;
(2) There is a set $F \subset E$ (E as in (1)) with $H^{\mathrm{n}-2+\alpha}{ }_{(\mathrm{F})}=0$
$\forall \alpha>0$ and such that for each $x \in \operatorname{spt} T \sim F$ there is a tangent plane (see 35.2(1) above for terminology) for T at x.

Note: We do not claim E, F are closed.

The proof of both parts is based on the abstract dimension reducing argument of Appendix A. In order to apply this in the context of currents we need the observation of the following remark.
35.4 REMARK Given an integer multiplicity current $S \in D_{n}\left(\mathbb{R}^{n+k}\right)$, there is an associated function $\phi_{S}=\left(\phi_{S}^{0}, \phi_{S}^{1}, \ldots, \phi_{S}^{N}\right): \mathbb{R}^{\mathrm{n}+\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{N}+1}$, where $N=\binom{n+k}{n}$, such that (writing $\theta_{S}(x)=\theta^{* n}\left(\mu_{S}, x\right)$)

$$
\phi_{S}^{0}(x)=\theta_{S}(x), \phi_{S}^{j}(x)=\theta_{S}(x) \xi_{S}^{j}(x), j=1, \ldots, N,
$$

where $\xi_{S}^{j}(x)$ is the $j^{\text {th }}$ component of the orientation $\vec{S}(x)$ relative to the usual orthonormal basis $e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}, 1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq n+k$ for $\Lambda_{\mathrm{n}}\left(\mathbb{R}^{\mathrm{n}+\mathrm{k}}\right.$) (ordered in any convenient manner). Evidently, for any $\mathrm{x} \in \mathbb{R}^{\mathrm{n}+\mathrm{k}}$,

$$
\phi_{S}(x+\lambda y)=\phi_{\eta_{x, \lambda \#}}(y), y \in \mathbb{R}^{n+k},
$$

and, given a sequence $\left\{S_{i}\right\} \subset D_{n}\left(I+R^{n+k}\right)$ of such integer multiplicity currents, we trivially have

$$
\phi_{S_{i}}^{j} a H^{n} \rightarrow \phi_{S}^{j} d H^{n} \quad \forall j \in\{1, \ldots, N\} \quad \circ \quad S_{i}+s
$$

[^0]and
$$
\phi_{S_{i}}^{0} d H^{n} \rightarrow \phi_{S}^{0} d H^{n} \Leftrightarrow \mu_{S_{i}} \rightarrow \mu_{S}
$$
(where $\psi_{i} d H^{n} \rightarrow \psi d H^{n}$ means $\int £ \psi_{i} d H^{n} \rightarrow \int £ \psi d H^{n} \forall £ \in C_{C}\left(\mathbb{R}^{n+k}\right)$).

We shall also need the following simple lemma, the proof of which is left to the reader.
35.5 LEMMA Suppose s is minimizing in $\mathbb{R}^{n+k}, \partial s=0$, and

$$
\eta_{\mathrm{x}, 1 \#^{*}} \mathrm{~s}=\mathrm{s} \quad \forall \mathrm{x} \in \mathbb{R}^{\mathrm{m}} \times\{0\} \subset \mathbb{R}^{\mathrm{n}+\mathrm{k}}
$$

for some positive integer $m<n$. (Recall $\eta_{x, 1}: y \mapsto y-x, y \in \mathbb{R}^{n+k}$.) Then

$$
\mathrm{s}=\llbracket \mathbb{R}^{\mathrm{m}} \rrbracket \times \mathrm{s}_{0}
$$

where $\partial s_{0}=0$ and s_{0} is minimizing in \mathbb{R}^{n+k-m}.

Furthermore if s is a cone (i.e. $\eta_{0, \lambda \#} s=s$ for each $\lambda>0$), then so is S_{O}.

Proof of $35.3(1)$ For each positive integer m and $\beta \in\left(0, \frac{1}{2}\right)$ let

$$
U_{m, \beta}=\left\{x \in U: \Theta^{n}\left(\mu_{T, x}\right)<m-\beta\right\}
$$

Now T is minimizing in $U \cap N$, so by the monotonicity formula of 17.6 (which can be applied by virtue of 33.2) we have, firstly, that $U_{m, \beta}$ is open, and secondly that for each $x \in U_{m, \beta}$, there is some ball $B_{2 \rho}(x) \subset U_{m, \beta}$ such that
(1) $\quad \frac{\mu_{T}\left(B_{\sigma}(y)\right)}{\omega_{\cdot n} \sigma^{n}} \leq m-\beta / 2 \quad \forall \sigma<\rho, y \in B_{\rho}(x)$.

We ultimately want to prove

$$
H^{n-3+\alpha}\left(\sum_{m=1}^{\infty}\left\{x \in U_{m, \beta}: m-1+\beta<\theta^{n}\left(\mu_{T}, x\right)<m-\beta\right\}\right)=0
$$

for each sufficiently small $\alpha, \beta>0$, and, in view of (1), by a rescaling and translation it will evidently suffice to assume

$$
\begin{equation*}
B_{2}(0)=U, \frac{\mu_{T}\left(B_{\sigma}(Y)\right)}{\omega_{n} \sigma^{n}} \leq m-\beta \quad \forall \sigma<1, Y \in B_{1}(0) \tag{2}
\end{equation*}
$$

and then prove

$$
\begin{equation*}
H^{n-3+\alpha}\left\{x \in B_{1}(0): \Theta^{n}\left(\mu_{T}, x\right) \geq m-1+\beta\right\}=0 \tag{3}
\end{equation*}
$$

We consider the set T of weak limit points of sequences $S_{i}=\eta_{x_{i}}, \lambda_{i} \#^{T}$ where $\left|x_{i}\right|<1-\lambda_{i}, 0<\lambda_{i}<1$, with $\lim x_{i} \in \bar{B}_{1}(0)$ and $\lim \lambda_{i}=\lambda \geq 0$ both existing. For any such sequence S_{i} we have (by (2))

$$
\lim \sup {\underset{W}{W}}^{(}\left(S_{i}\right)<\infty
$$

for each $W \subset \subset \eta_{x, \lambda}(U)$ in case $\lambda>0$, and for each $W \subset \subset \mathbb{R}^{n+k}$ in case $\lambda=0$. Hence we can apply the compactness theorem 34.5 to conclude that each element S of T is integer multiplicity and
(4) S minimizes in $\eta_{x_{0}} \lambda^{U} \cap \eta_{x, \lambda} N$ in case $s=\lim \eta_{x_{i}}, \lambda_{i} \#^{T}$
with $\lim x_{i}=x$ and $\lim \lambda_{i}=\lambda>0$, and

$$
\begin{equation*}
S \text { minimizes in all of } \mathbb{R}^{n+k} \text { in case } S=\lim \eta_{x_{i}}, \lambda_{i} \#^{T} \tag{5}
\end{equation*}
$$

with $\lim x_{i}=x$ and $\lim \lambda_{i}=0$. (Cf. the discussion in the proof of 35.1(2).)

For convenience we define

$$
U_{S}= \begin{cases}\eta_{x}, \lambda^{U} & \text { in case } \lim \lambda_{i}>0 \text { (as in (4)) } \tag{6}\\ \mathbb{R}^{n+k} & \text { in case } \lim \lambda_{i}=0 \text { (as in (5)) }\end{cases}
$$

so that $s \in D_{n}\left(U_{S}\right)$ for each $s \in T$.

Now by definition one readily checks that

$$
\begin{equation*}
\eta_{\mathrm{x}_{\theta} \lambda \#} T=T, 0<\lambda<1,|\mathrm{x}|<1-\lambda, \tag{7}
\end{equation*}
$$

and, by (2).

$$
\begin{equation*}
\theta^{n}\left(\mu_{S}, y\right) \leq m-\beta \quad \forall y \in U_{S}, s \in T \tag{8}
\end{equation*}
$$

Furthermore by using 34.5 together with the monotonicity formula 17.6 , one readily checks that if $S_{i} \rightarrow S\left(S_{i}, S \in T\right)$ and if $Y, Y_{i} \in B_{1}(0)$ with $\lim y_{i}=y$, then

$$
\begin{equation*}
\theta^{n}\left(\mu_{S}, y\right) \geq l i m \sup \theta^{n}\left(\mu_{S_{i}}, y_{i}\right) \tag{9}
\end{equation*}
$$

It now follows from (7), (8), (9) and 34.5 that all the hypotheses of Theorem A. 4 (of Appendix A) are satisfied with (using notation of Remark 35.4)

$$
F=\left\{\phi_{S}: S \in T\right\}
$$

and with sing defined by

$$
\text { sing } \phi_{S}=\left\{x \in U_{S}: \Theta^{n}\left(\mu_{S},^{\circ}\right) \geq m-1+\beta\right\}
$$

for $S \in T$. We claim that in this case the additional hypothesis is
satisfied with $d=n-3$. Indeed suppose $d \geq n-2$; then there is $s \in T$ and $\eta_{y, \lambda \#} s=s$ $\forall y \in I, \lambda>0$ with L an $(n-2)$-dimensional subspace of $\mathbb{R}^{n+k}, L \subset$ sing ϕ_{S}. Since we can make a rotation of \mathbb{R}^{n+k} to bring L into coincidence with $\mathbb{R}^{n-2} \times\{0\}$, we assume that $L=\mathbb{R}^{\mathrm{n}-2} \times\{0\}$. Then by Lemma 35.4 we have

$$
s=\llbracket \mathbb{R}^{n-2} \rrbracket \times s_{0}
$$

where $S_{0} \in D_{2}\left(\mathbb{R}^{N}\right), N=2+k$, with S_{0} a 2-dimensional area minimizing cone in $\mathbb{R}^{\mathbb{N}}$. Then spt S_{0} is contained in a finite union $\underset{i=1}{\mathbb{U}} P_{i}$ of 2-planes, with $P_{i} \cap P_{j}=\{0\} \quad \forall i \neq j$. (For a formal proof of this characterization of 2 dimensional area minimizing cones, see for example [WB].) In particular, since $\theta^{n}\left(\mu_{S}, \circ\right)$ is constant on $P_{i} \sim\{0\}$ (by the constancy theorem 26.27), we have that $\theta^{n}\left(\mu_{S}, y\right) \in \mathbb{Z}$ for every $y \in \mathbb{R}^{n+k}$, and by (8) it follows that $\theta^{n}\left(\mu_{S}, y\right) \leq m-1 \quad \forall y \quad \mathbb{R}^{n+k}$. That is, sing $\phi_{S}=\varnothing, a$ contradiction, hence we can take $d=n-3$ as claimed. We have thus established (3) as required.

Proof of $35.3(2)$ The proof goes similarly to $35.3(1)$. This time we assume (again without loss of generality) that

$$
\begin{equation*}
\mathrm{U}=\mathrm{B}_{2}(0), \tag{1}
\end{equation*}
$$

and we prove that T has a tangent plane at all points of spt $T \cap B_{1}(0)$ except for a set $F \subset$ spt $T \cap B_{1}(0)$ with

$$
\begin{equation*}
H^{n-2+\alpha}(F)=0 \quad \forall \alpha>0 . \tag{2}
\end{equation*}
$$

T is as described in the proof of $35.3(1)$, and for any $s \in T$ and $\beta>0$ we let

$$
\begin{aligned}
R_{\beta}(S)= & \left\{x \in \operatorname{spt} S: \overline{B_{\rho}}(x) \subset U_{S}\right. \text { and } \\
& h(\text { spt } S, L, \rho, x)<\beta \rho \text { for some } \rho>0 \\
& \text { and some } \left.n \text {-dimensional subspace } L \text { of } \mathbb{R}^{n+k}\right\},
\end{aligned}
$$

where U_{S} is as in the proof of $35.3(1)$ (so that $S \in D_{n}\left(U_{S}\right)$), and where we define

$$
h(\operatorname{sptS}, I, \rho, x)=\sup _{y \in \operatorname{spt} \cap_{B}(x)}|q(y-x)|
$$

with q the orthogonal projection of \mathbb{R}^{n+k} onto L^{\perp}.

Now notice that (Cf. the proof of $35.3(1)$)

$$
\begin{equation*}
\eta_{\mathrm{x}, \lambda \#} T=T \quad \forall 0<\lambda<1,|\mathrm{x}|<1-\lambda, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{x, \lambda^{R}}(S)=R_{\beta}\left(\eta_{x, \lambda \#} S\right) \quad s \in T \tag{3}
\end{equation*}
$$

Furthermore if $S_{j} \rightarrow S, S_{j}, S \in T$, then by the monotonicity formula 17.6 it is quite easy to check that if $y \in R_{\beta}(S)$ and if $y_{j} \in \operatorname{spt} S_{j}$ with $y_{j} \rightarrow y$, then $y_{j} \in R_{\beta}\left(S_{j}\right)$ for all sufficiently large j. Because of this, and because of (2), (3) above, it is now straightforward to check that the hypotheses of Theorem A. 4 hold with (again in notation of Remark 35.4)

$$
F=\left\{\phi_{S}: S \in T\right\}
$$

and

$$
\operatorname{sing} \phi_{S}=\operatorname{spt} \Theta^{n}\left(\mu_{S}{ }^{\circ}\right) \cap U_{S} \sim R_{\beta}(S)
$$

(Notice that $R_{\beta}(S)$ is completely determined by $\theta^{n}\left(\mu_{S},{ }^{\circ}\right)$, and hence this makes sense.) In this case we claim that $d \leq n-2$. Indeed if $d>n-2$ (i.e. $d=n-1$) then $\exists s \in T$ such that

$$
\eta_{x, \lambda \#} s=s \quad \forall x \in L, \lambda>0, \text { and } L \subset \operatorname{sing} \phi_{S}
$$

where L is an ($n-1$)-dimensional subspace. Then, supposing without loss of generality that $L=\mathbb{R}^{\mathrm{n}-1} \times\{0\}$, we have by Lemma 35.5 that

$$
\begin{equation*}
S=\llbracket \mathbb{R}^{n-1} \rrbracket \times s_{0} \tag{3}
\end{equation*}
$$

where S_{0} is a 1-dimensional minimizing cone in \mathbb{R}^{k+1}. However it is easy to check that such a 1-dimensional minimizing cone necessarily has the form

$$
\mathrm{s}_{0}=\mathrm{m} \llbracket \ell \rrbracket
$$

where $m \in \mathbb{Z}$ and ℓ is a 1 -dimensional subspace of \mathbb{R}^{k+1}. Thus (3) gives that $S=m \llbracket L \rrbracket$ where L is an n-dimensional subspace and hence sing $\phi_{S}=\emptyset$, a contradiction, so $d \leq n-2$ as claimed.

We therefore conclude from Theorem A. 4 that for each $S \in T$

$$
H^{\mathrm{n}-2+\alpha}\left(\operatorname{spts} \sim \mathrm{R}_{\beta}(\mathrm{S}) \cap \mathrm{B}_{1}(0)\right)=0 \quad \forall \alpha>0
$$

If $\beta_{j} \psi 0$ we thus conclude in particular that

$$
\begin{equation*}
H^{n-2+\alpha}\left(\operatorname{spt} T \sim \bigcap_{j=1}^{\infty} R_{\beta_{j}}(T) \cap B_{1}(0)\right)=0 \quad \forall \alpha>0 \tag{4}
\end{equation*}
$$

However by (1) we see that

$$
x \in \bigcap_{j=1}^{\infty} R_{\beta}(T) \Leftrightarrow T \text { has a tangent plane at } x
$$

and therefore (4) gives (2) as required.
§36. SOME REGULARITY RESULTS (Arbitrary Codimension)

In this section, for $T \in D_{n}(U)$ any integer multiplicity current, we define a relatively closed subset sing T of U by
36.1 sing $T=$ spt $T \sim \operatorname{reg} T$,
where reg T denotes the set of points $\xi \in$ spt T such that for some $\rho>0$ there is an $m \in \mathbb{Z}$ and an embedded n-dimensional oriented C^{1} submanifold M of \mathbb{R}^{n+k} with $T=m[M]$ in $B_{\rho}(\xi)$.

Recently F.J. Almgren [A2] has proved the very important theorem that $H^{n-2+\alpha}$ (sing T) $=0 \quad \forall \alpha>0$ in case $\operatorname{spt} T \subset N, \partial T=0$ and T is minimizing in N, where N is a smooth embedded $\left(n+k_{1}\right)$-dimensional submanifold of \mathbb{R}^{n+k}. The proof is very non-trivial and requires development of a whole new range of results for minimizing currents. We here restrict ourselves to more elementary results.

Firstly, the following theorem is an immediate consequence of Theorem 24.4 and Lemma 33.2.
36.2 THEOREM Suppose $T \in D_{n}(U)$ is integer multiplicity and minimizing in $U \cap N$ for some embedded $C^{2}\left(n+k_{1}\right)$-dimensional submanifold N of \mathbb{R}^{n+k}, $(\bar{N} \sim N) \cap U=\emptyset$, and suppose $s p t T \subset U \cap N, \quad \partial T=0 \quad(i n U)$. Then reg T is dense in spt T.
(Note that by definition reg T is relatively open in spt T.).

The following is a useful fact; however its applicability is limited by the hypothesis that $\theta^{\mathrm{n}}\left(\mu_{\mathrm{T}}, y\right)=1$.
36.3 THEOREM Suppose $\left\{T_{i}\right\} \subset D_{n}(U), T \in D_{n}(U)$ are integer multiplicity currents with T_{i} minimizing in $U \cap N_{i}, T$ minimizing in $U \cap N, N, N_{i}$ embedded $\left(n+k_{1}\right)$-dimensional C^{2} submanifolds, and spt $T_{i} \subset N_{i}$, spt $T \subset N$, $\partial T_{i}=\partial T=0 \quad(i n U)$. Suppose also that N_{i} converges to N in the C^{2} sense in $U, T_{j} \rightarrow T$ in $D_{n}(U)$, and suppose $y \in N \cap U$ with $\Theta^{n}\left(\mu_{T}, Y\right)=1$, $y=\lim y_{j}$, where y_{j} is a sequence such that $y_{j} \in \operatorname{spt}_{o} T_{j} \forall j$. Then $y \in \operatorname{reg} T$ and $y_{j} \in$ reg T_{j} for all sufficiently large j.

Proof By virtue of the monotonicity formula 17.6(1) (which is applicable by 33.2) it is easily checked that

$$
\lim \sup \theta^{n}\left(\mu_{T_{j}}, y_{j}\right) \leq \theta^{n}\left(\mu_{T}, y\right)=1
$$

hence (since $\Theta^{n}\left(\mu_{T_{j}}, y_{j}\right) \geq 1$ by 17.8) we conclude $\theta^{n}\left(\mu_{T_{j}}, y_{j}\right) \rightarrow \theta^{n}\left(\mu_{T^{\prime}} y\right)=1$. Hence by Allard's theorem 24.2 we have $y \in r e g T$ and $y_{j} \in r e g T_{j}$ for all sufficiently large j. (33.2 justifies the use of 24.2.)

Next we have the following consequence of Theorem A. 4 of Appendix A.
36.4 THEOREM Suppose T is as in 36.2 , and in addition suppose $\xi \in$ spt T is such that $\theta^{n}\left(\mu_{\mathrm{T}}, \xi\right)<2$. Then there is a $\rho>0$ such that

$$
H^{\mathrm{n}-2+\alpha}\left(\text { sing } \mathrm{T} \cap \mathrm{~B}_{\rho}(\xi)\right)=0 \quad \forall \alpha>0 .
$$

Proof Let $\alpha=\frac{1}{2}\left(2-\Theta^{n}\left(\mu_{T^{\prime}} \xi\right)\right)$ and let $B_{\rho}(\xi)$ be such that $B_{2 \rho}(\xi) \subset U$ and

$$
\begin{equation*}
\frac{\mu_{T}\left(B_{\sigma}(\zeta)\right)}{\omega_{n} \sigma^{n}}<2(1-\alpha / 2) \tag{1}
\end{equation*}
$$

$\forall \zeta \in \operatorname{spt} T \cap B_{\rho}(\xi), 0<\sigma<\rho$. (Notice that such ρ exists by virtue of the monotonicity formula 17.6(1), which can be applied by 33.2.) Assume without loss of generality that $\xi=0, \rho=1$ and $U=B_{2}(0)$, and define T to be the set of weak limits S of sequences $\left\{S_{i}\right\}$ of the form $S_{i}=\eta_{x_{i}}, \lambda_{i} \#^{T},\left|x_{i}\right|<\left(1-\lambda_{i}\right), 0<\lambda_{i}<1$, where $\lim x_{i}$ and $\lim \lambda_{i} \equiv \lambda$ are assumed to exist. Notice that

$$
\lim \sup M_{W}\left(S_{i}\right)<\infty
$$

for each $W \subset \subset \eta_{x, \lambda}(U)$ in case $\lambda>0$ and for each $W \subset \subset \mathbb{R}^{n+k}$ in case $\lambda=0$. Hence by the compactness theorem 34.5 any such S is integer multiplicity in U_{S}

$$
\left(U_{S}=\eta_{x, \lambda} U \text { in case } \lambda>0, U_{S}=\mathbb{R}^{n+k} \text { in case } \lambda=0\right)
$$

and (Cf. the proof of $35.1(2)$)
(2)

$$
s \text { minimizes in } \eta_{x, \lambda} U \cap \eta_{x}, \lambda^{N} \text { in case } \lambda>0
$$

$$
\begin{equation*}
S \text { minimizes in } \mathbb{R}^{n+k} \text { in case } \lambda=0 \tag{3}
\end{equation*}
$$

One readily checks that, by definition of T,

$$
\begin{equation*}
\eta_{\mathrm{y}, \tau \#} T=T, 0<\tau<1,|\mathrm{y}|<1-\tau \tag{4}
\end{equation*}
$$

Furthermore we note that (by (1))

$$
\begin{equation*}
\theta^{n}\left(\mu_{S}, x\right)=1, \mu_{S}-a \cdot e \cdot x \in U_{S} \tag{5}
\end{equation*}
$$

and by Allard's theorem 24.2 there is $\delta>0$ such that

$$
\begin{equation*}
\text { sing } S=\left\{x \in U_{S}: \Theta^{n}\left(\mu_{S}, x\right) \geq 1+\delta\right\}, S \in T \tag{6}
\end{equation*}
$$

Now in view of (2), (3), (4), (5), (6) and the upper semi-continuity of θ^{n} as in (9) of the proof of $35.3(1)$, all the hypotheses of Theorem A. 4 of Appendix A are satisfied with $F=\left\{\phi_{S}: S \in T\right\}$ (notation as in Remark 35.4) and with sing $\phi_{S}=\left\{x \in U_{S}: \theta^{n}\left(\mu_{S}, x\right) \geq 1+\delta\right\}$ (\equiv sing S by (6)). In fact we claim that in this case we may take $d=n-2$, because if $d=n-1 \exists s \in T$ and $\eta_{x, \lambda \#} S=S \quad \forall x \in L, \lambda>0$, where $L C$ sing S is an ($n-1$) dimensional subspace of \mathbb{R}^{n+k}, then (Cf. the last part of the proof of $35.3(2)$) we have $\left.S=m \| Q\right]$ for some n-dimensional subspace Q. Hence sing $S=\emptyset$, a contradiction.

The following lemma is often useful:

36.5 THEOREM Suppose $c \in D_{n}\left(\mathbb{R}^{n+k}\right)$ is minimizing in $\mathbb{R}^{n+k}, \partial C=0$, and C is a cone: $\eta_{0, \lambda \#}=C \quad \forall \lambda>0$. Suppose further that spt $C \subset \bar{H}$ where H is an open $\frac{1}{2}$-space of $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ with $0 \in \partial \mathrm{H}$. Then spt $\mathrm{C} \subset \partial \mathrm{H}$.
36.6 REMARK The reader will see that the theorem here is actually valid with any stationary rectifiable varifold V in \mathbb{R}^{n+k} satisfying $\eta_{0, \lambda \#} V=V$ in place of C.

Proof of 36.5 Since the varifold V associated with C is stationary (by 33.2) in \mathbb{R}^{n+k} we have by 18.1 (since (Dr) ${ }^{\perp}=0$ by virtue of the fact that C is a cone),

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \rho}\left(\rho^{-\mathrm{n}} \int_{\mathbb{R}^{\mathrm{n}+\mathrm{k}}} \mathrm{~h} \mathrm{\phi}(r / \rho) d \mu_{\mathrm{C}}\right)=\rho^{-\mathrm{n}-1} \int_{\mathbb{R}^{\mathrm{n}+\mathrm{k}}} x \cdot\left(\nabla^{\mathrm{C}} \mathrm{~h}\right) \phi(x / \rho) d \mu_{C} \tag{1}
\end{equation*}
$$

for each $\rho>0$, where $r=|x|$ and ϕ is a non-negative C^{1} function on \mathbb{R} with compact support, and h is an arbitrary $C^{1}\left(\mathbb{R}^{n+k}\right)$ function. $\left(\nabla^{C} h(x)\right.$ denotes the orthogonal projection of grad $\mathbb{R}^{n+k} h(x)$ onto the tangent space $T_{x} V$ of V at X.)

Now suppose without loss of generality that $H=\left\{x=\left(x^{1}, \ldots, x^{n+k}\right): x^{1}>0\right\}$ and select $h(x) \equiv x^{1}$. Then $x \cdot \nabla^{C} h=e_{1}^{T} \cdot x=e_{1} \cdot x^{T}=r e_{1} \cdot \nabla^{C} r$, where v^{T} denotes orthogonal projection of V onto $\mathrm{T}_{\mathrm{x}} \mathrm{V}$. Thus the term on the right side of (1) can be written $-\int_{\mathbb{R}^{n+k}}\left(e_{1} \nabla^{C} r\right)(r \phi(r / \rho)) d \mu C$ which in turn can be written $-\int_{\mathbb{R}^{n+k}} e_{1} \cdot \nabla^{\mathrm{C}} \psi_{\rho} d \mu_{\mathrm{C}}$, where $\psi_{\rho}(x)=\int_{|x|}^{\infty} r \phi(r / \rho) d r$. (Thus ψ_{ρ} has compact support in \mathbb{R}^{n+k}.) But $e_{1} \cdot \nabla^{C} \psi_{\rho} \equiv \operatorname{div}_{V}\left(\psi_{\rho} e_{1}\right)$, and hence the term on the right of (1) actually vanishes by virtue of the fact that V is stationary. Thus (1) gives

$$
\rho^{-\mathrm{n}} \int_{\mathbb{R}^{\mathrm{n}+\mathrm{k}}} \mathrm{x}_{1} \phi(r / \rho) d \mu_{\mathrm{C}}=\text { const., } 0<\rho<\infty
$$

In view of the arbitrariness of ϕ, this implies

$$
\rho^{-n} \int_{B_{\rho}(0)} x_{1} d \mu_{C} \equiv \text { const. }
$$

However trivially we have $\lim _{\rho \nmid 0} \rho^{-n} \int_{B_{\rho}(0)} x_{1} d \mu_{C}=0$, and hence we deduce

$$
\rho^{-n} \int_{B_{\rho}(0)} x_{1} d \mu_{C}=0 \quad \forall \rho>0
$$

Thus since $x_{1} \geq 0$ on spt $C(C \bar{H})$, we conclude spt $C \subset \partial H$ $\left(=\left\{x: x^{1}=0\right\}\right)$.

The following corollary of 36.5 follows directly by combining 36.5 and 35.1(2).
36.6 COROLLARY If T is as in 36.2 , if $\xi \in \operatorname{spt} T$, if Q is a c^{1} hypersurface in \mathbb{R}^{n+k} such that $\xi \in 2$ and if spt T is locally on one side of Q near ξ, then all tangent cones C of T at ξ satisfy spt $C \subset T_{\xi} \cap \cap T_{\xi^{N}}$.
§37. CODIMENSION 1 MINIMIZING CURRENTS

We begin by looking at those integer multiplicity currents $T \in D_{n}(U)$ with spt $T \subset N \cap U, N$ an $(n+1)$-dimensional oriented embedded submanifold of $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ with $(\overline{\mathrm{N}} \sim \mathbb{N}) \cap U=\varnothing$ and such that

$$
\begin{equation*}
\partial T=\llbracket E \rrbracket \tag{*}
\end{equation*}
$$

(in U), where E is an H^{n+1}-measurable subset of N. (We know by $27.8,33.4$ that all minimizing currents $T \in D_{n}(U)$ with $\partial T=0$ and spt T in N can be locally decomposed into minimizing currents of this special form.)
37.1 REMARK The fact that T has the form (*) and T is integer multiplicity evidently is equivalent to the requirement that if $V \subset U$ is open, and if ϕ is a C^{2} diffeomorphism of V onto an open subset of \mathbb{R}^{n+k} such that $\phi(V \cap N)=G, G$ open in $\mathbb{R}^{\mathrm{n}+1}$, then $\phi(\mathrm{E})$ has locally finite perimeter in G. This is an easy consequence of Remark 26.28, and in fact we see from this and Theorem 14.3 that any T of the form (*) with $M_{W}(T)<\infty$ $\forall W \subset \subset U$ is automatically integer multiplicity with

$$
\theta^{n}(T, x)=1, \mu_{T}-\text { a.e. } x \in U
$$

We shall here develop the theory of minimizing currents of the form (*) : indeed we show this is naturally done using only the more elementary facts about currents. In particular we shall not in this section have any need for the compactness theorem 27.3 (instead we use only the elementary compactness theorem 6.3 for $B V$ functions), nor shall we need the deformation theorem and the subsequent material of Chapter 6 .

The following theorem could be derived from the general compactness theorem 34.5, but here (as we mentioned above) we can give a more elementary treatment. In this theorem, and subsequently, we take $U \subset \mathbb{R}^{n+k}$ to be open, and 0 will denote the collection of $(n+1)$-dimensional oriented embedded C^{2} submanifolds N of \mathbb{R}^{n+k} with $(\bar{N} \sim N) \cap U=\emptyset, N \cap U \neq \emptyset$. A sequence $\left\{N_{j}\right\} \subset O$ is said to converge to $N \in O$ in the C^{2} sense in U if there are orientation preserving C^{2} embeddings $\psi_{j}: N \cap U \rightarrow N_{j}$ with $\psi_{j} \rightarrow \frac{1}{=}$ N \cap locally relative to the C^{2} metric in $N \cap U$. In particular if $x \in N$ then $\eta_{x, \lambda} N$ converges to $T_{x} N$ in the C^{2} sense in W as $\lambda \not \psi 0$, for each $W \subset \subset \mathbb{R}^{n+k}$.

In the following theorem p is a proper C^{2} map $U \rightarrow N \cap U$ such that, in some neighbourhood $V \subset U$ of $N \cap U, P$ coincides with the nearest point projection of V onto N. (Since the nearest point projection is C^{2} in some neighbourhood of $N \cap U$ it is clear that such p exists.)

37.2 THEOREM (Compactness theorem for minimizing T as in (*))

Suppose $T_{j} \in D_{n}(U), T_{j}=\partial \llbracket E_{j} \rrbracket(i n U), E_{j} H^{n+1}$-measurable subsets of $N_{j} \cap U, N_{j} \in O, N_{j} \rightarrow N \in O$ in the C^{2} sense described above, and suppose T_{j} is integer multiplicity and minimizing in $\mathrm{U} \cap \mathrm{N}_{j}$.

Then there is a subsequence $\left\{T_{j},\right\}$ with $T_{j}, \rightarrow T$ in $D_{n}(U)$, T integer multiplicity, $T=\partial \llbracket E \rrbracket(i n U), X_{p\left(E_{j}\right)} \rightarrow X_{E}$ in $L_{l o c}^{1}\left(H^{n+1}, U\right), \mu_{T_{j}} \rightarrow \mu_{T}$ (in the usuat sense of Radon measures) in U, and T is minimizing in $\mathrm{n} \cap \mathrm{U}$ 。

37.3 REMARKS

(1) Recall (from Remark 37.1) that the hypothesis that T_{j} is integer multiplicity is automatic if we assume merely that ${\underset{M}{=}\left(T_{j}\right)<\infty \quad \forall W \subset C U}$.
(2) We make no α-priori assumptions on local boundedness of the mass of the T_{j} (we see in the proof that this is automatic for minimizing currents as in (*)).
(3) Let $h(x, t)=x+t(p(x)-x), x \in U, 0 \leq t \leq 1$. Using the homotopy formula 26.22 (and in particular the inequality 26.23) together with the fact that $N_{j} \rightarrow N$ in the C^{2} sense in U, it is straightforward to check that

$$
T_{j}-T=\partial R_{j}, R_{j}=h_{\#}\left(\llbracket(0,1) \rrbracket \times T_{j}\right)+p_{\#} \llbracket E_{j} \rrbracket-\llbracket E \rrbracket
$$

with

$$
M_{W}\left(R_{j}\right) \rightarrow 0 \quad \forall W \subset \subset U
$$

provided that $\left.X_{p\left(E_{j}\right)}\right) \rightarrow \chi_{E}$ as claimed in the theorem. Thus once we establish $\left.X_{p\left(E_{j}\right.}\right) \rightarrow X_{E}$ for some E, then we can use the argument of 34.5 (with $S_{j}=0$) in order to conclude
(1) T is minimizing in U
(2) $\quad \mu_{T_{j}} \rightarrow \mu_{T}$ in U.
(Notice we have not had to use the deformation theorem here.)

In the following proof we therefore concentrate on proving $X_{p\left(E{ }_{j 0}\right)} \rightarrow X_{E}$ in $L_{l o c}^{1}\left(H^{n+1}, N \cap U\right)$ for some subsequence $\left\{j^{\prime}\right\}$ and some E such that $\partial \llbracket E \rrbracket$ has locally finite mass in U. (T is then automatically integer multiplicity by Remark 37.1.)

Proof of 37.2 We first establish a local mass bound for the T_{j} in U : if $\xi \in \mathbb{N}$ and ${ }^{B}{ }_{\rho_{0}}(\xi) \subset U$, then

$$
\begin{equation*}
\underline{M}\left(T_{j} L B_{\rho}(\xi)\right) \leq \frac{1}{2} H^{n}\left(\partial B_{\rho}(\xi) \cap N\right), L^{1} \text { a.e. } \rho \in\left(0, \rho_{0}\right) \tag{1}
\end{equation*}
$$

This is proved by simple area comparison as follows:

With $r(x)=|x-\xi|$, by the elementary slicing theory of $28.5(1)$, (2) we have that, for $L^{1}-$ a.e. $\rho \in\left(0, \rho_{0}\right)$, the slice $\left\langle\llbracket E_{j} \rrbracket, r, p\right\rangle$ (i.e. the slice of $\llbracket E_{j} \rrbracket$ by $\partial B_{\rho}(\xi)$) is integer multiplicity, and (using $T_{j}=\partial \llbracket E_{j} \rrbracket$),

$$
\partial \llbracket E_{j} \cap B_{\rho}(\xi) \rrbracket=T_{j} L B_{\rho}(\xi)+\left\langle\llbracket E_{j} \rrbracket, r, \rho\right\rangle
$$

Hence (applying ∂ to this identity)

$$
\partial\left(T_{j} L B_{\rho}(\xi)\right)=-\partial\left\langle\llbracket E_{j} \rrbracket, x_{0} \rho\right\rangle, L^{1}-a \cdot e \cdot \rho \in\left(0, \rho_{0}\right)
$$

But by definition 33.1 of minimizing we then have

$$
M\left(T_{j} L B_{\rho}(\xi)\right) \leq \underline{M}\left\langle\llbracket E_{j} \rrbracket, r, \rho>, L^{1}-a . e . \quad \rho \in\left(0, \rho_{0}\right) .\right.
$$

Similarly, since $-T_{j}$ is also minimizing in $N \cap U$,

$$
\underline{\underline{M}}\left(T_{j} L B_{\rho}(\xi)\right) \leq \underline{\underline{M}}\left\langle\mathbb{I} \tilde{E}_{j} \rrbracket, r, \rho\right\rangle, L^{1}-a \cdot e \cdot p \in\left(0, \rho_{0}\right)
$$

where $\tilde{E}_{j}=N \cap U \sim E_{j}$. Thus
for L^{1}-a.e. $\rho \in\left(0, \rho_{0}\right)$. Now of course $\llbracket \tilde{E}_{j} \rrbracket+\llbracket E_{j} \rrbracket=\llbracket N \cap U \rrbracket$, so that
(for a.e. $\rho \in\left(0, \rho_{0}\right)$)

$$
\left.\left\langle\llbracket E_{j}\right], r, \rho\right\rangle+\left\langle\llbracket \tilde{E}_{j} \rrbracket, r, \rho\right\rangle=\langle N, r, \rho\rangle
$$

and hence (2) gives (1) as required (because $M(\langle N, r, \rho\rangle) \leq H^{n}\left(\mathbb{N} \cap \partial B_{\rho}(\xi)\right)$ by virtue of the fact that $|D r|=1$, hence $\left|\nabla^{N} r\right| \leq 1$).

Now by virtue of (1) and Remark 37.1 we deduce from the BV compactness theorem 6.3 that some subsequence $\left\{X_{p\left(E_{j \prime}\right)}\right\}$ of $\left\{X_{\left.p_{\left(E_{j}\right.}\right)}\right\}$ converges in $I_{10 C}^{1}\left(H^{n+1}, N \cap U\right)$ to X_{E}, where $E \subset N$ is H^{n+1}-measurable and such that $\partial \llbracket E \rrbracket$ is integer multiplicity (in U). The remainder of the theorem now follows as described in Remark 37.3(3).

37.4 THEOREM (Existence of tangent cones)

Suppose $T=\partial \llbracket E \rrbracket \in D_{n}(U)$ is integer multiplicity, with $E \subset N \cap U$,
$N \in O$, and T is minimizing in $U \cap N$. Then for each $x \in$ spt T and each sequence $\left\{\lambda_{j}\right\} \downarrow 0$ there is a subsequence $\left\{\lambda_{j}\right\}$ and an integer multiplicity $c \in D_{n}\left(\mathbb{R}^{n+k}\right)$ with C minimizing in $\mathbb{R}^{n+k}, 0 \in \operatorname{spt} C \subset T_{X} N$, $\Theta^{n}\left(\mu_{C}, 0\right)=\Theta^{n}\left(\mu_{T}, x\right), \quad C=\partial \llbracket F \rrbracket, F$ an $H^{n+1}-m e a s u r a b l e ~ s u b s e t$ of $T_{x} N$.
(1) $\left.\mu_{\eta_{x, ~} \lambda_{j}, \#^{T}} \rightarrow \mu_{C} i n \mathbb{R}^{n+k}, \chi_{p\left(\eta_{x, \lambda_{j}}\right.}(E)\right) \rightarrow \chi_{F} i n L_{l o c}^{1}\left(H^{n+1}, T_{x} N\right)$,
where p is the orthogonal projection of \mathbb{R}^{n+k} onto $T_{x} N$, and

$$
\begin{equation*}
\eta_{0, \lambda \#} c=c, \eta_{0, \lambda} F=F \quad \forall \lambda>0 . \tag{2}
\end{equation*}
$$

37.5 REMARK The proof given here is independent of the general tangent cone existence theorem 35.1.

Proof of Theorem 37.4 As we remarked prior to Theorem 37.2, $\eta_{x, ~} \lambda_{j}{ }^{N}$ converges to $T_{X} N$ in the C^{2} sense in W for each $W \subset \subset \mathbb{R}^{n+k}$. By the
compactness theorem 37.2 we then have a subsequence λ_{j}, such that all the required conclusions, except possibly for $37.4(2)$ and the fact that $0 \in$ spt C, hold. To check that $0 \in$ spt C and that $37.4(2)$ is valid, we first note by 33.2 that the varifold V associated with T is stationary in $N \cap U$ (and that V therefore has locally bounded generalized mean curvature H in $\mathrm{N} \cap \mathrm{U})$. Therefore by the monotonicity formula $17.6(1)$, and by 17.8 , we have

$$
\begin{equation*}
\theta^{n}\left(\mu_{V}, x\right) \text { exists and is } \geq 1 \tag{1}
\end{equation*}
$$

Since $\mu_{\eta_{x, \lambda_{j} \#^{T}}} \rightarrow \mu_{C}$, we then have $\theta^{n}\left(\mu_{C}, 0\right)=\theta^{n}\left(\mu_{T}, x\right) \geq 1$, so $0 \in$ spt C. and by 19.3 we deduce that the varifold V_{C} associated with C is a cone. Then in particular $x \wedge \vec{C}(x)=0$ for $\mu_{C}-$ a.e. $x \in \mathbb{R}^{n+k}$ and hence, if we let h be the homotopy $h(t, x)=t x+(1-t) \lambda x$, we have $h_{\#}(\llbracket(0,1) \rrbracket \times c)=0$, and then by the homotopy formula 26.22 (since $\partial C=0$) we have $\eta_{0, \lambda \#} C=C$ as required. Finally since spt C has locally finite $H^{\text {n }}$-measure (indeed by 17.8 spt C is the closed set $\left.\left\{y \in \mathbb{R}^{n+k}: \theta^{n}\left(\mu_{C}, y\right) \geq 1\right\}\right)$, we have

$$
\llbracket F \rrbracket=\llbracket \tilde{F} \rrbracket
$$

where \tilde{F} is the (open) set $\left\{y \in T_{X} N \sim \operatorname{spt} C: \Theta^{n+1}\left(H^{n+1}, T_{X} N, y\right)=1\right\}$. Evidently $\eta_{0, \lambda}(\tilde{F})=\tilde{F} \quad$ (because $\eta_{0, \lambda}($ spt $\left.C)=\operatorname{spt} C\right)$. Hence the required result is established with \tilde{F} in place of F.
37.6 COROLLARY* Suppose T is as in 37.4 and in addition suppose there is an n -dimensional submanifold \sum embedded in $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ with $\mathrm{x} \in \Sigma \subset \mathrm{N} \cap \mathrm{U}$ for some $\mathrm{x} \in \operatorname{spt} \mathrm{T}$, and suppose spt $\mathrm{T} \sim \sum$ Iies locally, near x , on one side of \sum. Then $x \in \operatorname{reg} T$ (reg T is as in 36.1.)

Proof Let $C=\partial \llbracket F \rrbracket\left(F \subset T_{x} N\right)$ be any tangent cone for T at x. By assumption, spt $\llbracket F \| \subset \bar{H}$, where H is an open $\frac{1}{2}$-space in $T_{x} N$ with $0 \in \partial H$. Then, by 36.5 , spt $C \subset \partial H$ and hence by the constancy theorem 26.27,

[^1]since C is integer multiplicity rectifiable, it follows that $C= \pm \partial \llbracket H \rrbracket$. However spt $\llbracket F] \subset \bar{H}$, hence $C=+\partial \llbracket H \rrbracket$. Then $\theta^{n}\left(\mu_{C}, y\right) \equiv 1$ for $y \in \partial H$, and in particular $\theta^{n}\left(\mu_{C}, 0\right)\left(=\theta^{n}\left(\mu_{T}, x\right)\right)=1$, so that $x \in$ reg T (by Allard's theorem 24.2) as required.

We next want to prove the main regularity theorem for codimension 1 currents. We continue to define sing T, reg T as in 36.1 .
37.7 THEOREM Suppose $T=\partial \llbracket E \rrbracket \in D_{n}(U)$ is integer multiplicity, with $E \subset N \cap U, N \in O$, and T minimizing in $N \cap U$. Then sing $T=\emptyset$ for $n \leq 6$, sing T is locally finite in U for $n=7$, and $H^{n-7+\alpha}($ sing $T)=0$ $\forall \alpha>0$ in case $n>7$.

Proof We are going to use the abstract dimension reducing argument of Appendix A (Cf. the proof of Theorem 36.4).

To begin we note that it is enough (by re-scaling, translation, and restriction) to assume that

$$
\begin{equation*}
\mathrm{U}=\mathrm{B}_{2}(0) \tag{1}
\end{equation*}
$$

and to prove that
(2) $\left\{\begin{array}{l}\text { sing } T \cap B_{1}(0)=\emptyset \text { if } n \leq 6, ~ s i n g T \cap B_{1}(0) \text { discrete if } n=7, \\ H^{n-7+\alpha}\left(\text { sing } T \cap B_{1}(0)\right)=0 \quad \forall \alpha>0 \text { if } n>7 .\end{array}\right.$

Let T be the set of currents as defined in the proof of 36.4 , and for each $S \in T$ let ϕ_{S} be the function $: \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n+1}$ associated with S as in Remark 35.4. Also, let

$$
F=\left\{\phi_{S}: S \in T\right\}
$$

and define

* We still have $\theta^{n}\left(\mu_{S}, x\right)=1$ for $\mu_{S}-$ a.e. $x \in U_{S}$, this time by 37.2 and 37.1 (**).

```
sing \mp@subsup{\phi}{S}{}= sing S .
```

(sing S as defined in 36.1.)

By Theorem A. 4 we then have either sing $S=\emptyset$ for all $S \in T$ (and hence sing $T=\varnothing$) or

$$
\begin{equation*}
\operatorname{dim} B_{1}(0) \cap \operatorname{sing} S \leq d \tag{3}
\end{equation*}
$$

where $d \in[0, n-1]$ is the integer such that

$$
\operatorname{dim} B_{1}(0) \cap \text { sing } S \leq d \text { for all } s \in T
$$

and such that there is $s \in T$ and a d-dimensional subspace L of \mathbb{R}^{n+k} such that

$$
\eta_{x, \lambda \#} s=s \quad \forall x \in L, \lambda>0
$$

and

$$
\begin{equation*}
\operatorname{sing} S=L . \tag{4}
\end{equation*}
$$

Supposing without loss of generality that $L=\mathbb{R}^{d} \times\{0\}$, we then (by Lemma 35.5) have

$$
\begin{equation*}
\mathrm{s}=\| \mathrm{R}^{\mathrm{d}} \rrbracket \times \mathrm{s}_{0} \tag{5}
\end{equation*}
$$

where $\partial S_{0}=0, S_{0}$ is minimizing in \mathbb{R}^{n+k-1}, and $\operatorname{sing} S_{0}=\{0\}$. (With S as in (5), $\left.\operatorname{sing} S_{0}=\{0\} \Leftrightarrow(4).\right)$ Also, by definition of T, spt S some $(n+1)$-dimensional subspace of \mathbb{R}^{n+k}, hence without loss of generality we have that S_{0} is an ($\left.n-d\right)$-dimensional minimizing cone in \mathbb{R}^{n-d+1} with sing $S_{0}=\{0\}$. Then by the result of J.Simons (see Appendix B) we have $n-d>6$; i.e. $d \leq n-7$. Notice that this contradicts $d \geq 0$ in case $n<7$.

Thus for $n<7$ we must have sing $T=\emptyset$ as required. If $n=7$, sing T is discrete by the last part of Theorem A. 4 .
37.8 COROLLARY If T is as in 37.7 , and if $T_{1} \in D_{n}(U)$ is obtained by equipping a component of reg T with multiplicity I and with the orientation of T , then $\partial \mathrm{T}_{1}=0$ (in U) and T_{1} is minimizing in $U \cap \mathbb{N}$.
37.9 REMARK Notice that this means we can write

$$
\begin{equation*}
T=\sum_{j=1}^{\infty} T_{j} \tag{*}
\end{equation*}
$$

where each T_{j} is obtained by equipping a component M_{j} of reg T with multiplicity 1 and with the orientation of T; then $M_{i} \cap M_{j}=\emptyset$ $\forall i \neq j, \quad \partial T_{j}=0$, and T_{j} is minimizing in $U \quad \forall j$. Furthermore (since $\mu_{T_{j}}\left(B_{\rho}(x)\right) \geq c \rho^{n}$ for $B_{\rho}(x) \subset U$ and $x \in \operatorname{spt} T_{j}$ by virtue of 33.2 and the monotonicity formula $17.6(1)$) only finitely many T_{j} can have support intersecting a given compact subset of U.

Proof of 37.8 The main point is to prove

$$
\begin{equation*}
\partial T_{1}=0 \text { in } U \tag{1}
\end{equation*}
$$

The fact that T_{1} is minimizing in U will then follow from 33.4 and the fact that $M_{W}\left(T_{1}\right)+M_{W}\left(T-T_{1}\right)=M_{W}(T) \quad \forall W \subset \subset U$.

To check (1) let $\omega \in D^{n-1}(U)$ be arbitrary and note that if $\zeta \equiv 0$ in some neighbourhood of spt $T \sim M_{1}$

$$
\begin{equation*}
T_{1}(d(\zeta \omega))=T(d(\zeta \omega))=\partial T(\zeta \omega)=0 \tag{2}
\end{equation*}
$$

Now corresponding to any $\varepsilon>0$ we construct ζ as follows: since $H^{n-1}($ sing $T)=0$ (by 37.7) and since sing $T \cap$ spt ω is compact, we can find a finite collection $\left\{B_{\rho_{j}}\left(\xi_{j}\right)\right\}_{j=1, \ldots, p}$ of balls with $\xi_{j} \in$ sing $T \cap$ spt ω
and $\sum_{j=1}^{P} \rho_{j}^{n-1}<\varepsilon$. For each $j=1, \ldots P$ let $\phi_{j} \in C_{C}^{\infty}\left(\mathbb{R}^{n+k}\right)$ be such that $\phi_{j} \equiv 1$ on $\bar{B}_{\rho_{j}}\left(\xi_{p}\right), \phi_{j}=0$ on $\mathbb{R}^{n+k} \sim B_{2 \rho_{j}}\left(\xi_{j}\right)$, and $0 \leq \phi_{j} \leq 1$ everywhere. Now choose $\zeta=\prod_{j=1} \phi_{j}$ in a neighbourhood of $\operatorname{spt}^{P} T_{1}$ and so that $\zeta \equiv 0$ in a neighbourhood of $\operatorname{spt} T \sim \operatorname{spt} T_{1}$. Then $d \zeta=\sum_{i=1}^{p} \prod_{j \neq i}^{P} \phi_{j} d \phi_{i}$ on spt T_{1}, and hence

$$
|d(\zeta \omega)-\zeta d \omega| \leq c|\omega| \sum_{j=1}^{P} \rho_{j}^{n-1} \leq c \varepsilon|\omega| \quad \text { on } \operatorname{spt} T_{1}
$$

Then letting $\varepsilon \downarrow 0$ in (2), and noting that $\zeta \mathrm{d} \omega \rightarrow \mathrm{d} \omega H^{\mathrm{n}}-\mathrm{a} . \mathrm{e}$. in $\operatorname{spt} \mathrm{T}_{1} \cap$ $N \cap$ spt ω (and using $|\zeta| \leq 1$), we conclude $T_{1}(d \omega)=0$. That is $\partial T_{1}=0$ in U as required.

Finally we have the following lemma.
37.10 LEMMA If $T_{1}=\partial \llbracket \mathrm{E}_{1} \rrbracket, \mathrm{~T}_{2}=\partial \llbracket \mathrm{E}_{2} \rrbracket \in D_{\mathrm{n}}(\mathrm{U})$, U bounded, $E_{1}, E_{2} \subset U \cap N, N$ of class $C^{4}, N \in O, T_{1}, T_{2}$ minimizing in $U \cap N$, reg T_{1}, reg T_{2} are connected, and $E_{1} \cap V \subset E_{2} \cap V$ for some neighbourhood V of ∂U, then $\operatorname{spt} \llbracket E_{1} \rrbracket \subset \operatorname{spt} \llbracket E_{2} \rrbracket$ and either $\llbracket E_{1} \rrbracket=\llbracket E_{2} \rrbracket$ or spt $T_{1} \cap \operatorname{spt} T_{2} \subset$ sing $T_{1} \cap$ sing T_{2}.

Proof Since $H^{n+1}\left(\operatorname{spt} T_{j}\right)=0$ (in fact spt T_{j} has locally finite H^{n}-measure in U by virtue of the fact that $\left.\theta^{n}\left(\mu_{T_{j}}, x\right) \geq 1 \quad \forall x \in \operatorname{spt} T_{j}\right)$, we may assume that E_{1} and E_{2} are open with $U \cap \partial E_{j}=U \cap \partial \bar{E}_{j}=\operatorname{spt} T_{j}$, $j=1,2$.

Let $S_{1}, S_{2} \in D_{n}(U)$ be the currents defined by

$$
S_{1}=\partial \llbracket E_{1} \cap E_{2} \rrbracket, S_{2}=\partial \llbracket E_{1} \cup E_{2} \rrbracket
$$

Using the hypothesis concerning V we have

$$
\begin{equation*}
S_{j} L(V \cap U)=T_{j} L(V \cap U), j=1,2 \tag{1}
\end{equation*}
$$

On the other hand we trivially have

$$
\llbracket \mathrm{E}_{1} \cap \mathrm{E}_{2} \rrbracket+\llbracket \mathrm{E}_{1} \cup \mathrm{E}_{2} \rrbracket=\llbracket \mathrm{E}_{1} \rrbracket+\llbracket \mathrm{E}_{2} \rrbracket
$$

so (applying ∂) we get
(2)

$$
S_{1}+S_{2}=T_{1}+T_{2}
$$

Furthermore $E_{1} \cap E_{2} \subset E_{1} \cup E_{2}$, so

$$
\begin{align*}
M_{W}\left(S_{1}\right)+M_{W}\left(S_{2}\right) & =M_{W}\left(S_{1}+S_{2}\right) \tag{3}\\
& =M_{W}\left(T_{1}+T_{2}\right) \quad \text { (by (2)) } \\
& \leq M_{W}\left(T_{1}\right)+M_{W}\left(T_{2}\right)
\end{align*}
$$

$\forall W \subset C U$. On the other hand, choosing an open V_{0} so that $\partial U \subset V_{0} \subset \subset V$, and using (1) together with the fact that T_{1} is minimizing, we have

$$
M_{W}\left(S_{1}\right) \geq M_{W}\left(T_{1}\right) \quad, W=U \sim \bar{V}_{0},
$$

and hence (combining this with (3))

$$
M_{W}\left(S_{2}\right) \leq M_{W}\left(T_{2}\right)
$$

for $W=U \sim \bar{V}_{0}$. Thus (using (1) with $j=2$) S_{2} is minimizing in U. Likewise S_{1} is minimizing in U.

We next want to prove that either $T_{1}=T_{2}$ or reg $T_{1} \cap$ reg $T_{2}=\varnothing$. Suppose reg $T_{1} \cap$ reg $T_{2} \neq \emptyset$. If the tangent spaces of reg T_{1} and reg T_{2} coincide at every point of their intersection, then using suitable local coordinates $(x, z) \in \mathbb{R}^{n} \times \mathbb{R}$ for N near a point $\xi \in \operatorname{reg} T_{1} \cap$ reg T_{2}, we can write

$$
\operatorname{reg} T_{j}=\operatorname{graph} u_{j}, j=1,2
$$

where $D u_{1}=D u_{2}$ at each point where $u_{1}=u_{2}$, and where both u_{1}, u_{2} are (weak) C^{1} solutions of the equation

$$
\frac{\partial}{\partial x_{i}}\left(\frac{\partial F}{\partial p_{i}}(x, u, D u)\right)-\frac{\partial F}{\partial z}(x, u, D u)=0
$$

where $F=F(x, z, p),(x, z, p) \in \mathbb{R}^{n} \times \mathbb{R}^{\times} \times \mathbb{R}^{n}$, is the area functional for graphs $z=u(x)$ relative to the local coordinates x, z for N. Since N is C^{4} we then deduce (from standard quasilinear elliptic theory - see e.g. [GT]) that u_{1}, u_{2} are $c^{3, \alpha}$. Now the difference $u_{1}-u_{2}$ of the solutions evidently satisfies an equation of the general form

$$
D_{j}\left(a_{i j} D_{i} u\right)+b_{i} D_{i} u+c u=0
$$

where $a_{i j}, b_{i}, c$ are $c^{2, \alpha}$. By standard unique continuation results (see e.g. [PM]) we then see that $D u_{1}=D u_{2}$ at each point where $u_{1}=u_{2}$ is impossible if $u_{1}-u_{2}$ changes sign. On the other hand the Harnack inequality ([GT]) tells us that either $u_{1} \equiv u_{2}$ or $\left|u_{1}-u_{2}\right|>0$ in case $u_{1}-u_{2}$ does not change sign. Thus we deduce that either $T_{1}=T_{2}$ or reg $T_{1} \cap$ reg $T_{2}=\emptyset$ or there is a point $\xi \in$ reg $T_{1} \cap$ reg T_{2} such that reg T_{1} and reg T_{2} intersect transversely at ξ. But then we would have H^{n-1} (sing $\partial\left\|E_{1} \cap \mathrm{E}_{2}\right\|$) >0, which by virtue of 37.7 contradicts the fact (established above) that $\partial \llbracket E_{1} \cap E_{2} \rrbracket$ is minimizing in U.

Thus either $T_{1}=T_{2}$ or reg $T_{1} \cap$ reg $T_{2}=\varnothing$, and it follows in either case that $E_{1} \subset E_{2}$. On the other hand we then have sing $T_{1} \cap$ reg $T_{2}=\varnothing$ and sing $T_{2} \cap$ reg $T_{1}=\varnothing$ by virtue of Corollary 37.6. Thus we conclude that $E_{1} \subset E_{2}$ and spt $T_{1} \cap \operatorname{spt} T_{2} \subset \operatorname{sing} T_{1} \cap \operatorname{sing} T_{2}$ as required.

[^0]: * Cf. Almgren [A2]

[^1]: * Cf. Miranda [MM1]

