CHAPTER 6
CURRENTS

This chapter provides an introduction to the basic theory of currents, with
particular emphasis on integer multiplicity rectifiable n-currents (brieflycalled
integer multiplicity currents), which are essentially just integer n-varifolds
equipped with an orientation.* The concept of such currents was introduced in
the historic paper [FF] of Federer and Fleming; their advantage is that they
are at once able to be represented as "generalized surfaces" (in terms of a
countably n-rectifiable set with an integer multiplicity) and at the same time

have nice compactness properties (see 27.3 below).

§25. PRELIMINARIES: VECTORS, CO-VECTORS, AND FORMS

. P 1
el,...,eP denote the standard orthonormal basis for R and ,...,wP

P

the dual basis for the dual space Al(F?) of R . An(mp),An(RP) denote

the spaces of n-vectors and n-covectors respectively. Thus v € An(RP) can

be represented

v = Z a, ;8 Aeeehey
1<i_ <...<i <P 1°"""n 1 n
1 n

3 " (O] ] 3 3 : = . s n: . 5 .
using "multi-index"™ notation in which o (ll’f"’ln) € Z+ = {(]l,...,jn) B

. . s . _ o . n
each Jg is a positive integer} and In = {o= (11,...,1n)€ Z+ :

P

1= i1<...<infEP} . Similarly any w € AD(R?) can be represented as

* These are precisely the currents called Llocally rectifiable in the
literature (see [FFl], [FH1]); we have adopted the present terminology
both because it seems more natural and also because it is consistent
with the varifold terminology of Allard (see Chapter 4, Chapter 8).
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where W =W A ... AW if o= (i ..,in) € In Such a v (respectively

10 P -
w) is called simple if it can be expressed v A ...AV ~ with vy ¢ B®

(respectively w, A cee AW with wj € /\l(RP)) . We assume An(RP) ’

1

An(RP) are equipped with the inner products < , > naturally induced from

=° (making {e_} , 1™} orthonormal bases) . Thus
o o€I a€I
n,P n,p
ko d P> T 4t
P P P
and
o a
océg "o v OLG% ba ? > ) OLGE "o boc ’
,P n,P n,P
For open U C RP R En(U) denotes the set of smooth n-forms
- i i
w= ] a, &" where a €cC (V) and ax’ = ax Ya...onax D if
Q€T . :
n,p
a = (il, ...,in) € In - dx?  as usual denotes the 1-form given by
] o
25.1 ade) = 2L £ e P
9x

I1f we make the usual identifications of Tx RP and Al(’I‘XRP) with RP and
1 _P , n o n_PpP
A (R ), we are able to interpret w € E (U) as an element of C (U;A R ) ;

we shall do this frequently in the sequel.

+
The exterior derivative En(U) hd En l(U) is defined as usual by

P Baa . o
25.2 aw= ) 7 — ax? A ax
=1 ocEIn,P 8{(
, 3%, 2%,
if w = Z aa dx . By direct computation (using T il " -
afI ax* 9x] 3x7 ax”
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and dxlA axJ = - deA dxl) one checks that
2 n
25.3 dw = 0 YVweéeE (U .
. a n Q
Given w= Z aa(y)dy € E(W), VSR open, and a smooth
a€L
n,Q

map £ : U+>V , we define the "pulled back” form f#w € En(U) by

25.4 £y = ) a of af Taoonas ™,
u=(11,...,1n)€In’Q
) 3 )
where dfJ is éé_i axt , 9 =1,...,0 .
i=1 23x

Notice that the exterior derivative commutes with pulling back:
25.5 at” = £'a .

We let Dn(U) denote the set of W = Z a@dxa € En(U) such that each aa

o€l
n,pP

has compact support. We topologize Dn(U) with the usual locally convex

o
topology, characterized by the assertion that wk= Z a&k)dx he
Q€T
n,p
o, . . (k)
w = Z ay dx if there is a fixed compact K € U such that spt a, c K
o€l

n,p
YV a€1 , k=1, and if lim DBa(k) = DBa Voaecr and every multi-

n,P o o n,P

index B . For any w € D™(U) , we define

25.6 lw| = sup, <w(x) w(x) >t

Notice that if £ : U » V is smooth (U,V open in RP, PQ) and if £ 1is
proper ({(i.e. f—l(K) is a compact subset of U whenever K is a compact

subset of V) then f#w el n(U) whenever ® € Dn(V) .
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§26. GENERAL CURRENTS
Throughout this section U is an open subset of R? .

26.1 DEFINITION aAn n-dimensional current (briefly called an n-current) in
U is a continuous linear functional on Dn(U) . The set of such n~currents

will be denoted Dn(U)

Note that in case n=0 the n-currents in U are just the Schwartz
distributions on U . More importantly though, the n-currents, n=1 , can
be interpreted as a generalization of the n-dimensional oriented submanifolds
M - having locally finite Hn-measure in U . Indeed given such an M C U
with orientation & (thus £ (x) is continuous on M with £ (x)= =% TlA ces A Tn

V x€ M, where Tl,...,Tn is an orthonormal basis for TXM)* ; then there

is a corresponding n-current [M] € Dn(U) defined by

26.2 [m] (w) =J <w(x),Ex>dH"(x) , weD W ,
M

where <, > denotes the dual pairing for An(RP) , An(RP) . (That is,

the n-current [M] is obtained by integration of n-forms over M in the

usual sense of differential geometry: [MJ(w) = J w in the usual notation of
M

differential geometry.)

Motivated by the classical Stokes' theorem ( fMd»= faMw if M is a
compact smooth manifold with smooth boundary) we are led (by 26.2) to guite

generally define the boundary JT of an n-current T € Un(U) by

26.3 3T (w) = T(dw) , w€ D™ (W)

*  Thus &(x) € An(TXM) ; notice this differs from the usual convention of

differential geometry where we would take £ (x) € An(TXM) .
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(and 3T = 0 if n = 0) ; thus 0T € Dn- (U) if T € Dn(U) . Here and

1

subsequently we define Dn_l(U) =0 in case n=0 .
Notice that 82T = 0 by 25.3

Again motivated by the special example T = [M] as in 26.2 we define

the mass of T , M(T) , for T ¢ Dn(U) by

26.4 M(T) T(w)

= SR =1, 0eD™ ()

(so that M(T) = H™(M) in case T = [M] as in 26.2). More generally for

any open W C U we define

26.5 B T (w)

SUP | <1, weD™ (u)
Sptwcw

26.6 REMARK  Notice that there is some flexibility in the definition of M ;

we would still get the "correct" value Hn(M) for the case T = [M] if we

ere to make the definition M(T) = su T(w)
” © A S B
weD™ (v)
provided only that || | is a norm for An(RP) with the properties:
(1) <w,£> =|w|| |E] whenever £ € An(JRP) is simple
and
(2) for each fixed simple & ¢ An(IgH , equality holds in (1) for some w #O0.
(Evidently || || = | | is one such norm.) Notice that the smallest possible

norm for An(RP) having these properties is defined by

”(U” = SuPEEAn(RP) Il£l=l<w,<§ >
£ simple

(I I is called the co-mass norm for An(RP).) There is a good argument to

say that one should adopt this norm in the definition of Q(T) (and indeed
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this is usually done - see e.g. [FF], [FH1l]) since, by virtue of the consequent
maximality of M(T) it is more likely to yield equality in the general
inequality M(T) < lim inf g(ﬁMjﬂ) , if {Mj} is a sequence of ct
submanifolds with weak limit T (see 26.12 below). Nevertheless we will here
stick to the definition 26.4, because it has certain advantages (e.g. the
application of the Riesz representation theorem - see below - is cleaner, and

26.4 does yield the "correct" value in the most important case when T is

an integer multiplicity current as in §27.)

Notice that by the Riesz Representation Theorem 4.1 we have that if

T € Un(U) satisfies =MW(T) < YV Wcc U, then there is a Radon measure
> P >
uT on U and uT—measurable function T with values in An(R Y. IT[ = 1
UT—a.e. , such that
-

26.7 T = | <0E),TX)>d,(x) .
UT (the total variation measure associated with T) is characterized by
26.8 UT(W) = SupwEDn(U),lwlil T (w) (:%(T))

SptwC W
for any open W C U . In particular

HT(U) = M(T) .

Notice that for such a T we can define, for any uT—measurable subset
A of U (and in particular for any Borel set A ¢ U) , a new current

T LAac¢ Dn(U) by
26.9 (TL &) (W) =J <w,T> any -
A

More generally, if ¢ is any locally uT—integrable function on U then we

can define TL ¢ € Dn(U) by
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26.10 (TL ¢) (w) = J¢< w, &> a,, -

Given T € Dn(U) we define the support spt T of T to be the

relatively closed subset of U defined by
26.11 spt T = U~Uw

where the union is over all open sets W such that T(w) = 0 whenever
w € D"(U) with spt w ¢ W . Notice that if M (T) < for each WCCU
and if UT is the corresponding total variation measure (as in 26.7, 26.8)
then

spt T = spt UT
where spt uT is the support of PT in the usual sense of Radon measures

in U .

Given a sequence {Tq} c Dn(U) , we write Tq ~ T in U (TE€ Dn(U)) if

{Tq} converges weakly to T 1in the usual sense of distributions:
26.12 Ty~ T > Lin T = Tw) Y we M) .
Notice that mass is trivially lower semi-continuous with respect to

weak convergence: if Tq -~ T in U then

26.13 gW(T) < lim inf Mw(Tq) Y open WCU.
q—yoo

Notice also that by applying the standard Banach-Alaoglu theorem [Roy]

(in the Banach spaces Mn(w) = {r¢ Dn(w): QW(T)<ZW} , W CcC U) we deduce

26.14 LEMMA 17 {Tq} c Dn(U) and Sup ) gw(Tq) <o for eaqch Wcc U,

then there is a subsequence {Tq,} and a T € D_(U) such that Tqr T in U

The following terminology will be used frequently:
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26.15 TERMINOLOGY  Given T, € Dn(Ul) P T, € Dn(UZ) and an open W C U, n U,

we say Tl =T in W if Tl(w) = Tz(w) whenever W 1is a smooth n-form

2

+
in Rn k with spt w ¢ W .

Next we want to describe the cartesian product of currents TlE Dr(Ul) ’
Py Py
T2€ Ds(U2) ’ Ul c IR P U2C R open. We are motivated by the case when

T, = HMlﬂ and T, = [Mzﬂ (Cf£. 26.2) where M,, M, are oriented submanifolds

of dimension r, s respectively. We want to define T ><T2€ Dr+s(U

« .
1 U2) in

1

such a way that for this special case (when Tj = [Mjﬂ) we get

ﬂMlﬂ X ﬂMzﬂ = HMIXMZH . We are thus inevitably led to the following

26.16 DEFINITION 1f w € vr“smlxuz) is written in the form

w = z aag(x,y)dflA dyB (using multi-index notation as in §26)
< .
(Q'B)elr‘,Pl Is‘,P

r'+s'=r+s

2

then we define

Bl . a
T, % T, (w) = Tl[.«gl TZ[BZ aqg (¥r¥) Ay ]dx ] .

. . . . . _ . r'
(Notice in particular this gives T, XT, (W Aw,) =0 if w, € D w)

w, € DS‘(UZ) with r'+s'=r+s but (r',s') # (r,s).)

One readily checks, using this definition and the definition of 9 (in
26.3) that

X
26.17 8(T1><¢2) = (3T) x T, + (-1) T, X 3T, .

(Notice this is valid also in case r or s=0 if we interpret the appropriate

terms as zero; e.g. if r=0 then B(Tlez) = Tlx 3T2 o)

An important special case of 26.17 occurs when we take T € Dn(U) ’
Ucr® , and we let [(0,1)] be the l-current defined as in 26.3 with

M= (0,1) ¢ R ((04) having its usual orientation). Then 26.17 gives
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26.18 ([0, 1I*T) ({1}-{oh) xT - [(0,1)] x oT

I

{1}xT - {o}x - [(0,1)]x oT .

Here and subsequently {p} , for a point p € U , means the

O-current € DO(U) defined by

26.19 Pt = wm , wed’@ (=cm) .

Next we want to discuss the notion of "pushing forward" a current T
. p ) . C s
via a smooth map £ : U»>V, UCR , VCR open. The main restriction
needed is that f|spt T is proper; that is f_l(K) | spt T is a compact
subset of U whenever K is a compact subset of V . Assuming this, we

can define
26.20 £,T (W) = 1 (z£tw) Vowe DMy ,

o0
where ¢ is any function ¢€ CC(U) such that C = 1 in a neighbourhood of
spt T N spt f#w . One easily checks that the definition of f#T in 26.20

is independent of ¢ . (Of course such { exist and §f#w € Un(U) because

flspt T 1is proper and spt W 1is a compact subset of V .)

26.21 REMARKS

(1) Notice that Bf#T = f#BT whenever £, T are as in 26.20.

(2) 1I1f MW(T) < o for each W CZ U, so that T has a representation
as in 26.7, then it is straightforward to check that f#T is given explicitly
by
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<f# +>
f#T (w) w,T duT

*

J< W (E (%)) ,dfx#¥(x) > auy (%)

Notice that we can thus make sense of f#T in case f is merely C1 (with

f|spt T proper).

(3) 1If T = [M] as in 26.2, then the above remark (2) tells us that
if £] (MNU) is proper,

n
(*) f#T(w) = JM< w(x),dfx#g(x)> aH (x)

where £ is the orientation for M . Notice that this makes sense if f is
only Lipschitz (by virtue of Radeﬁacher's Theorem 5.2). If f is 1:1 and if
Jf is the Jacobian of f as in 8.3, then the area formula evidently tells us
that (since dfx#g(x) = JE(x)T(f(x)) , where T is the orientation for

£mM) , M= {x€M: Jf(x) > 0}, induced by £ )

£,T(w) = <wly), T(y) > &™) .

o -
£(u,)

(Which confirms that our definition of f#T is "correct".)

By using the above notions we can derive the important homotopy formula

for currents as follows:

If £f,9 : U+ V are smooth (VC RQ) and h : [0,1]1 XU >V is smooth

*  For a linear map % : R + R° and for v = ) ae, € An(R?) we define
€T
n,P
Q - -
Lyv€ A (R®) by z#v-ueg a fye = i ) L a fie, )/\.../\,Q,(ein) .
n,P o ll,...,ln) In,P 1 ¥

Then <w,%,v>= <0, v> ,we A (89)

#
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with h(0,x) = £(x) , h(l,x) = g(x) , if T € Dn(U), and if h] [0,1] X spt T
is proper, then (by the above discussion) h#( [to, 1)l x™ is well defined

(€ Dn+l(v)) and

I

Bh#( [co,Ixm h#B([[(O,l)ﬂ X )

h#({l} xT-{0}xT~- [(0,1)] x 1)

Hi

9T - f#T - h#([[(o,l)]]x aT)

Thus we obtain the homotopy formula

26.22 g,T - £,T = Bh#(ﬂ(o,l)]!XT) + h#(ﬂ(O,l)]] X 9T)

Notice that an important case of the above is given by
(*) h(t,x) = tg(x) + (I-t)f(x) = £(x) + t(g(x) - £(x))

(i.e. h is an "affine homotopy" from £ to g ). In this case we note that

by using the integral representation 26.7 and Remark 26.21(2) above that

26.23 M, 0, D] xm) = SUP_ ¢ lf—g[-suprSptT(lde]+|ng|)nza(T)

—_—

(Indeed [(0, )] xT =e; AT and Uy ypuq

Hy

= LlXuT , so by Remark 26.21(2)

we have

h#(H(O,l)]] xT) (w) = J (wh(t,x)),daf e A%(x)> i, (x)dt

(,x)# 1

>
= J <w(h(t,x) ) (g(X)-£(x)) A (tdfx+(l—t)dfx) #T(X)>
duT(x)dt

and 26.23 follows immediately.)
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We now give a couple of important applications of the above homotopy

formula.

26.24 LEMMA If T ¢ Dn(U) P ML(T) QW(BT) <o Ywccu and if £,g:U>V
are c' with £] spt T=g| spt T proper , then f#T = g,T . (Note that
f#T B g#T ‘are well-defined by 26.21(2).)

Proof By the homotopy formula 26.22 we have, with h(t,x)= tg(x) + (1-t)£(x) ,

9,TW) - £,7(w) Sh#ﬂw,hﬂXT)W)+h¢ﬂﬂhDHXBN(M

h#([[(O,l)]lX T)(dw)'*-h#([[(oll)]lx aT) (W)

so that, by 26.23,

[fgum—ggwn[chwudq+gwm|M)m%&@ﬂJﬂﬂ

=0, since £f=g on sptT.

The homotopy formula also enables us to define f#T in case f is merely

Lipschitz, provided f]spt T is proper and gw(T) , QW(BT) <o VY wccu.

In the following lemma we let £(0) = £ by by 00 = o0y, with ¢

a mollifier as in §6.

26.25 LEMA  If T € D (0 , M (T) , M (OT) < VWccuU, andif

£ : U=V 1is Lipschitz with £ | spt T proper, then lim f;O)T(w) exists
o¥0

for each w € vy f#T(w) is defined to be this limit; then

spt £ [og])"u 1

(W) £ 7w

(T) YVWcovVv .

#

Tc f(spt T) and gw(f#T) < (ess sup 1
£

Proof If o, T are sufficiently small (depending on w ) then the homotopy

formula gives
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£yT W) - £, T(w) = h#(l{(o,l)]]xm (dw) + h#([[(o,l)]] X 9T) (w)

where h : [0,1]1 XU + VvV is defined by h(t,x) = t fo(x) + (l~t)fT(x) .

Then by 26.23, for sufficiently small 0, T , we have

£ ,T(w) - £_,T(w)] = c sup £ ~£ | evip £,
o# T# £ 1(K)ﬂsptT
where K 1is a compact subset of V with spt w C interior (K) . Since
fc + £ uniformly on compact subsets of U , the result now clearly follows.

Next we want to define the notion of the cone over a given current
T € Dn(U) . We want to define this in such a way that if T = [M] where M
. . P-1 P . .
is a submanifold of S ¢ R then the cone over T is Jjust HCMH '
Cy = {Ax: x€ M,0<\A<1} . We are thus led generally to make the definition that

the cone over T , denoted 0 X T, is defined by
26.26 0X T =nh,([(,1]xT)

whenever T € Dn(U) with U star-shaped relative to 0 and spt T compact,
where h : R XIJ)+ Ig) is defined by h(t,x) = tx . Thus O X T € Dn+l(U)

and (by the homotopy formula)
30XT = T -0XOT .
The following Constancy Theorem is very useful:

26.27 THEOREM If U <s open in R'(i.e.P =n), if U 18 connected, 1if
T € Dn(U) and dT=0 , then there is a constant c such that T = c[[u]
(using the notation of 26.2 in the special case n=P, M=U; U s of

course equipped with the standard orientation ejh.eahe) .

Proof We are given

(1) T(dw) = 0 whenever w € Un_l(U) .
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Let ¢ (x) = o™ ¢(5'x) , with ¢ a mollifier as in 56, and define

T by
T (W) = T * w)

if  dist(spt w,00) >0 . (¢ *® means (¢, % a) ax A L. n @™ if
1 n o . n -
w=ada& A...Adx , a€C(U); since P=n, any w € D (U) has this

form.)

Now if W cCc U and 0 < dist(W,9U) , we claim there is a constant

c = ¢(T,W,0) such that
(2) Iz ] = cj |w]al™ .
U

Indeed this follows directly from the fact that for fixed 0, W the set

S = {¢0*(u: we D (W , spt WC W, j lwIdLnE 1} is compact in D™ (u) , relative
U

to ‘the nonmj l . By the Riesz Representation Theorem 4.1, we see that (1)
implies
3) To(w)=Ja60 al™, w=aar...nax",
e Leed
a CC(W) .

On the other hand if spt WCW , wWE Dn—l(U) , then

T (W) = T(b x dw) = T(AP  *w) = IT(Y *w) = O

j+1

by (1) . In particular, taking w = a dxlA oo A dxj_lA dx A oo ax® ; SO

that dw =#a/dx7axl .. A ax® , and using (3) we have

JDja 85 at*=0, 3=1,...,n,

for a ¢ C:(U) with spt ac W . This evidently implies that 90 = constant
(depending on 0) on each component of W . The required result now follows

from (3) by letting ¢ ¥ 0 and W 1t U .



143

26.28 REMARK  Notice that if we merely have M(3T) < ® then the cbvious
modifications of the above argument (note that (3) still holds) give first

that
| j D,a 6 al™| < ¢ suplal M (9T)

(o]
with ¢ independent of ¢ , for a € CC (U) such that dist(spt a, 9U) > 0.

Thus (see §6 and in particular Theorem 6.3) we deduce that 60 +~ 0 in
k
1 .
Lloc(U) (for some sequence Ok v 0), with 6 ¢ Bvloc (Uy , and (from (3))

(*) Tw=Ja8dLn, w=a dxiA ... A& e D)

Using the definition of E(BT) , we easily then check that _EIW(ST) = [D6| (W)

for each open W C U (and __N_lw(T) = J lel dLn) . Indeed in the present case
n-1 w 2 ‘ 1 -1

n="P,any w¢€?7D (U) can be written w = Z (-1) Jajdx A...ndx? A

=1

1 =)
A L nax™  for suitable aj € C_() , and & = diva axtA LA ax®

ol

for such w (3 = (al,...,an)) . Therefore by (*) above we have

OT(w) = T(dw) = j diva 0 aL”

and the assertion l*=dw(8‘1‘) = |DB| (W) then follows directly from the definition

of M_(3T) and [D8| (in §6).

In the following lemma, for o = (ij,...,i) € zZ" with
1= il< i2< RS in =P, we let pa denote the orthogonal projection of
RP onto R" given by

i i
(xl,..-,xP) P (x l,...,x .

26.29 LEMMA  Suppose E is a closed subset of U , U open in = , with

n _ .- = (3 . < . .
L (P (E)) =0 for each multi-index o (Agr-eeri)) 1< i< dy<e.a<d =

P.

Then T L E =0 whenever T € Dn(U) with I*=4w(T) , gW(BT) <o forevery W CC U .
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i
(@]

26.30 REMARK  The hypothesis Ln(pu(E)) is trivially satisfied if

HYE) = 0, so in particular we deduce T L E 0 if T € Dr(U) with
1

Mo (T, M (T) <@ ¥V wccu and HYE) =0 .

Proof of 26.29 Let w € D"(U) . Then we can write w= | o d ,

fe~)
W€
ma 3 CC(U) , so that

]

Tw =] T,a®) = ] (rle) @™
o4

Qa

#
L (TLo)p] dy
o

(dy = dylA ceu A dyn B yl,...,yn the standard coordinate functions in R" )

Thus
1) T(w) = g Pa#(TL w,) (ay)

{(which makes sense because spt TL wa < spt wu = compact subset of U ).

On the other hand

=
>
e}
3=
=]
—
&
It
=

(P, 3 (TLw )

1A

H(TLo)) <=,

{because for any T € ﬁn_l(U) ’

]

S(TL.wu)(T) (Tl.ma)(df)

T{w_dar)
Q&

i

T(d(w T)) - T(dw AT

= BT(waT) - T(dﬁxﬂ )

thus in fact
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M B (TLw)) = gw(aT)]ma|
+ M) [aw | )

Therefore by Remark 26.28 we have Ga € BV(pOL(U)) such that pd#(TL wa) (1) =

n
< =
J Tregheein en> eadi_ , and hence Poc#(TL wa) L pa(E) 0 because
p(U)
o
Ln(pcx (E)) = 0 . Then, assuming without loss of generality that E 1is closed
< n~
(2) Mip y(TLw))) = Mlp  (TLw)) L (R~p (E)))

= Moy, ((TLw) L (R~p 'p ()

A

P -1
Mrbw)) L (R ~ P, P,E))

=M (rL (R~ p&lpaE)) . monl

=M (Tl (B~ E)) wa]
for any W such that spt WCW C U .
Combining (1) and (2) we then have

M (T) = c Mo (TL (R~ E))

so that in particular
(3) M (TLE) =c M (TL (R~ E)) .
Letting K be an arbitrary compact subset of E , we can choose {Wq} so that
Wy CCU L W CW qoﬁl W, =K using (3) with W=T¥_ then gives
M(TLK) = 0 . Thus 1*__4(TL E) = 0 as required.
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§27. INTEGER MULTIPLICITY RECTIFIABLE CURRENTS

In this section we want to develop the theory of integer multiplicity
currents T € Dn(U) ;, which, roughly speaking are those currents obtained
by assigning (in a H™-measurable fashion) an orientation to the tangent spaces

TXV of an integer multiplicity varifold V . (See Chapter 4 for terminology.)

These currents are precisely those called locally rectifiable by

Federer and Fleming [FF], [FH1].

Throughout this section n =2 1, k =2 1 are integers and U is an open

subset of Rn+k.

27.1 DEFINITION 1f T ¢ Dn(U) we say fhat T is an integer multiplicity

rectifiable n-current (briefly an integer multiplicity current) if it can be

expressed

(*) T (w) =J <w(x),E(x)> 8x)#H (x) , we€ DU ,
M «

where M is an Hn—measurable countably n-rectifiable subset of U , 0 is

a locally H"-integrable positive integer-valued function, and & :M-*An(Rn+k)
is a H'-measurable fupction such that for H"-a.e. point x € M, £E(x) can
be expressed in the form TlA oo A Tn , where Tl,...,Tn form an orthonormal
basis for the approximate tangent space T.M . (See Chapter 3,4.) Thus &£(= %)

orients the approximate tangent spaces of M in an H"-measurable way. The
function © in (*) is called the multiplicity and & is called the
orientation for T . If T is as in (*) we shall often write T= ;(M,@,S).
Notice that there is associated with any such T the integer multiplicity

varifold V = X(M,e) in U -
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27 .2 REMARKS

(1) If T1' T € Dn(U) are integer multiplicity, then so is

2

pT, + P, T, v By P, €&

(2) 1If

3

- - Q
= ;(Ml,el,gl) € Dr(U) , T, o= ;(MZ,GZ,EZ) € Ds(v) (VC R* open) ,

1 2

then T, X T_ €7D
2 r

1 s(U><V) is also integer multiplicity, and in fact

+

T XT =;(M1XM2,6162,£1A£2) .

(3 1If f£:U >V is Lipschitz, T = 1(M,0,§) € Dn(U) (McU) and

f| spt T is proper, then we can define £,T € Dn(V) by

#
M n
(*) f#T(w) =J <w(f(x)),df #E(X)>6(X) aH™ (%)
M x
Since ]deX# E(x)l = JMf(x) (as in §12) by the area formula this can be
written
M
d fx#g(x) n
(*%) £,T(w) = wly) ) 0x) ———— S (v)
# £(M) -1 | e
x€f (y)ﬂM+ xX#
where M _ = {xem: JMf(x)> 0} . Furthermore at points y where the approximate

tangent space Ty(f(M)) exists (which is H' - a.e. y by virtue of the fact
that £(M) is countably n-rectifiable) and where TXM y deX exist

-1 ; . . n M_ - .
VYV x € £ " (y) (which is again for H -a.e. y because TxM , d fx exist

for H%-a.e. x¢ M+), we have

M
d fx#g(x)
(*%%) ._EZ——~————— = TlA e A Tn r
[d°f, £ () |
where Tl,...,Tn is an orthonormal basis for Ty(f(M)) . Hence (**) gives

£, T () = J <wly) , n(y) >N(y) & (y)
£ (M)
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where n(y) is a suitable orientation for the approximate tangent space

Ty(f(M)) and N(y) is a non-negative integer. N, 1 in fact satisfy
M
d fX#E (x)

) B(x) ———— =N(y) n(y) ,
xef_l(y)ﬂM+ la fx#g(x)l

so that for H%-a.e. y € £(M) we have

N(y) = ) B (x)
xef'l(y)ﬂM+

and

th

s 6(x) (mod 2) .
x€£ 1 (y) M,

N(y)

Notice that, in case f is C1 B f#T agrees with the previous
definition in 26.20 (see also 26.21(2)). Notice also that if f : U+ W
is Lipschitz and if V = X(M,G) is the varifold associated with

T = ;(Mlelg) , then

(in the sense of measures) with equality if and only if, for HY - a.e.
y € £(M) , the sign in (***) above remains constant as X varies over

f—l(y) n M+ . In particular we have uf T = uf v in case f is 1:1 .

# #
A fact of central importance concerning integer multiplicity currents

is the following compactness theorem, first proved by Federer and Fleming [FF].

27.3 THEOREM If {Tj} c D (0 1is a sequence of integer multiplicity currents

with
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supjzl(gw(Tj) + gw(aTj)) <o Ywccu,

then there is an integer multiplicity T € Dn(U) and a subsequence {Tj'}

such that Tj, ~T in U.

We shall give the proof of this in Chapter 8. Notice that the existence
of a T € Dn(U) and a subsequence {Tj,} with Tj' -~ T 1is a consequence of
the elementary lemma 26.14; only the fact that T is an integer multiplicity

current is non-trivial.

27 .4 REMARK Note that the proof of 27.3 in the codimension 1 case (when
P=n+l) is a direct consequence of the Remark 26.28 and the compactness

theorem 6.3 for BV functions.

In contrast to the difficulty in proving 27.3, it is quite straight-
forward to prove that if Tj converges to T in the strong sense that
lim Mw(Tj—T) =0 Y wccu, and if Tj are integer multiplicity Vj ,

then T is integer multiplicity. Indeed we have the following lemma.

27.5 LEMMA  The set of integer multiplicity currents in Dn(U) 18 complete

} of semi-norms.

with respect to the topology given by the family {gw Weey

Proof ©rLet {qg} be a sequence of integer multiplicity currents in Dn(U) ,
and {TQ} is Cauchy with respect to the semi-norms EW , W CC U . Suppose

T =1M_,0_, 6 ositive integer-valued on M M countabl
0 Il 0% EQ) ( o P g b My y

n-rectifiable, Hn(MQﬂW) < o for each W cC U.) Then
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- n
(1) M (To=Tp) = jw |9PgP—ngQ|dH < g, Q)

YV P=2Q, where ew(Q) ¥+ 0 as Q » « and where we adopt the convention

£P= 0, GP= 0 on U~ MP . In particular, since ]EPI =1 on MP , we get
(2) J leP-eQ!dHn < g, (@ Vepz2oq,
W

and hence GP converges in Ll(Hn) locally in U to an integer-valued

function 6 . Of course (2) implies
n
(3) HECC, ~ M) U (M~ M) W) < e ()
where M _ = {x€u:0(x)>0} . (1), (2) also imply
D
(4) Jw eP\gP—ngdH = 26,(Q) Yep=9,

and hence by (3) &P converges in Ll(Hn) locally in U to a function §

with values in An(Rn+k) with l£l= 1 and £ simple on M.

Now & (x) € An(T M), H'-a.e. x €M_, and (by (3)) TM =TM

Q xQ Q X Q
except for a set of measure = ew(Q) in M+f1w . It follows that

n
E(x) € An(T M+) for H -a.e. x € M+ and we have shown that gw(TP—T) -0,

x
where T = I(M+,6,E) is an integer n-current in U .

Finally, we shall need the following useful decomposition theorem

for codimension 1 integer multiplicity currents.
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27 .6 THEOREM  Suppose P = n+l (i.e. U 1is open in ") and R is an
integer multiplicity current in Dn+1(U) with M (OR) < YVweccu. Then
T = 3R 18 integer multiplicity, and in fact we can find a decreasing

of locally finite perimeter in

[ee]
sequence of L®* peqsurable sets {Uj}j=~w

U such that (in U )

o 0 '
R= ) [u.0 -} [v.], v.=u~u,, j<O,
jm1 ) oo 3 b j
= )  9fu.l,
L 3j
5=
and
b= ) M ;
T :
in particular
= . Y .
M (T) . gw(aﬂujll) Wccu

j=-

27.7 REMARK  Let * : C:(U;Rn+l) + D™ (u) be defined by

n+1 . . .
sg= § (-1 g axta cooaaxd A add A Lo @™, so that

=1 J

+
d*g = div g dxlA A ax™ 1 . Then for any Ln+1-measurable A C U we have
ala] (*g) = [a] (d*g)
= J Xa div g d ntl ’
18)

and hence by definition of |DXAI (in §6) and M(T) (in §26) we see that
(*) A has locally finite perimeter in U < MW(BHAH)<IW VWwccu,

and in this case
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(**) Mo laD = J DX, | Vwecu
\
> )
ofa] = *\)A , |DXA| a.e. in U .
Here \)A is the inward unit normal function for A (defined on the reduced
boundary 9*A as in 14.3).
Proof of 27.6 R must have the form
R = l(v’e E)

+
where V is an " l—measurable subset of U and &£(x) = te A ... A e,

1 +1

for each x € V . Thus letting

0(x) when x€V and E&(x)

+e. A ...Ne
1

n+1
B(x) =1 -8(x) when x€V and £(x) = —eA...Ae
0 when x¢ v,
we have
(1) R(w) = j ab a™t,
v
w=adca.ondadt e "Ny and  (cf. 26.28)
(2) (R) = 18] at™t , m (m) = | |bd] Vwecou
S W L W

(and 6 € BVlOC(U))

Define

(xeu:0(x)z3}, j€=

(=
]

<
It

{xeU: 6(x)<-1-4}, jz 0

"

c
14

(=}
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Then one checks directly that

fee) (oo}
(3) b= Z Xy, ~ .Z Xy
(XA = characteristic function of A , A c U ) , and hence by (1)

(4)

o
1]

o~ 8

I [od -

[Vjﬂ in U .
j=1 j

0 -

Since T(w) = dR(w) = R(dw) , € D™(U) , we then have

(5) T=3r= ) o3lu.l - } slv.]
1 2 320
= jg_m alus] .

so we have the required decomposition, and it remains only to prove that
each Uj has locally finite perimeter in U and that the corresponding

measures add.
To check this, take wj € Cl(IU with

wj(t) =0 for t = j-1+€ , wj(t) =1, t=z j-¢

o=V, =<1, sup|V!] s 1+43¢ ,
J J
foe] + 1 [ee)
where € € (0,%) . Then if a € C_(U) and g = (gl,...,gn L, gle c () ,
with Ig] = a , we have (since XU = wj o 8 V¥ j) that for any M = N
J
N N
+ x +

(6) J divg ) X, dU‘1=J divg )} ¥, o 8 a®?

U =M j U =M 3

N -
= lim J divg ) . o 6@ gntl
o¥0 ‘U j=M

= -lim J gograad Py g @yan*?
avo ‘u J

1A

(1+3€) lim J a| graan (@ | a ™t
U

ovo
= (1+3¢) { a|pB| = (1+3¢) J ady,,
U U
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by Lemma 6.2 and (2). (Here é(c) are the mollified functions corresponding

to 6 as in 6.2.)

Then, taking M = N , we deduce that each Uj has locally finite
perimeter in U . On the other hand taking M = -N and defining

’E

ﬂVjB we see that (with g as in 27.7) (6) implies
j=0

Ig
= [[U-II"
- L

|RN(d*g)| < (1+3g) JU adu,, ,

and hence, with TN = BRN P

(7) j ady < J ady YN=z21,
U TN U -T
a>0, ac¢t C:(U) . On the other hand by 14.1 we have
N
(8) R (d*q) = ) j aiv g x.. al™*?
N . U.
j=-N ‘U 3
N n
= ‘.Z J « V39 aH™
j=-N ‘9 Uj

where vj is the inward unit normal for Uj and 3*Uj is the reduced

boundary for Uj (see 814 and in particular Lemma 14.3). By virtue of the

fact that U. C U. we see from 14.3(2) that V. = Vv on o*y. N 3*vu
j+1 3 j k 3 k

Y j,k . Hence (8) can be written

T (+g) = -JU veg h aH" ,

N oo
. . *
where hN = .Z Xy #y . and where Vv 1is defined on .E 9 Uj by Vv = Vj
J=-N J © j=-o
on 9*y. . since |V|E1 on U 3*u. this evidently gives
J j=..oo
la & = a dHn
H Py
N
N
= Z J a aH”
j==N < 3*U.
J J
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Letting N = © we thus have (by (7))
b,z Jow .
T . ofu.
o Moluy ]

Since the reverse inequality follows directly from (5), the proof is complete.

27.8 COROLLARY  Iet R be integer multiplicity € D (0) , UC R, Pz nl,
and suppose there is an  (nt+l)-~dimensional ct submanifold N of B with
spt RCNNU . Suppose further that T = 3R and M (T) < Vwccu.

Then T (€ Dn(U)) 18 integer multiplicity and for each point y € NONU  there

is wy ccu,vE€ wy , and HYY easurable subsets {Uj} with

j=_oo

Uj+l c Uj c NNU , gwy(aﬁujﬂ) < Vi, and with the following identities

holding in wy :

o
il

lo.] -
jzlj 3

)

. HU~U~jH

o

) 8ﬂUjB

j=_oo

L]
1]

o

wp = 1 ”aﬂujﬂ :

Jj=—-

Proof The proof is an easy consequence of 27.6 using local coordinate

representations for N .

§28. SLICING

We first want to define the notion of slice for integer multiplicity

currents. Preparatory to this we have the following lemma:
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28.1 LEMMA If M is H'-measurable, countably n-rectifiable, £ <is Lipschitz
on R and M = {xem: [VMf(x) | >0} , then for Ll-glmost all teR the

following statements hold:

(1) M = £ Ny is countably H Y pectifiable

(2) For H ' _ae. xc¢ M_, TM and TM both exist, T.M_ 1S an

(n-1) ~dimensional subspace of M, and in fact

- M .
(*) TxM = {y+AV £(x) : y€ TxMt' AERI.

Furthermore for any non-negative H -measurable function g on M we
have
w 1
J ( J g a* Hyat = j |W™Me| g aH™ .
e Mt M
Proof  In fact (1) is just a restatement of Remark 12.8(2), and (2) follows

from 11.6 together with the facts that for Ll -a.e. t € R and Hn_l—a.e.

x €M
(1) ) € T M (by definition of V'f in §12)
and

(2) <Mex),™> = 0 Ve M .

(This last follows for example from the definition 12.1 of VMf (x) .)

The last part of the lemma is just a restatement of the appropriate version

of the co-area formula (discussed in §12).

28.2 REMARK Note that by replacing g (in 28.1 above) by g X characteristic

function of {x: f(x) <t} we get the identity
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t
|| g aH® = J J g a" tas
-0 JM

S

JMﬂ{f (x)<t}

so that the left side as an absolutely continuous function of t and

d ( [VMf]g aH™ = J' g dHn—l , a.e. £t € R.

9 Jun{s (x) <t} M,

Now let T = L(M,G,E) be an integer multiplicity current in U
. n+k . . . .
(U open in R MCU) , let £ be Lipschitz in U and let 6+ be defined

HM-a.e. in M by

[o ir Ve =o0

0 (x) =
* o e e #0 .

For the (Ll—almost all) t € R such that TXM ; TxMt exist for
Hn—l—a.e. x € M and such that (*) of 28.1 holds, we have

M . . _
28.3 £ L We)/|Ve@)| i simple € A (T M) cA (T M)

and has unit length (for e, xe M) . Here we use the notation

that if v € A (T M) and wé€ T M, then v L w¢éA (T_ M) is defined by
n'ox b4 n-1""x

<vbLw,a> = <v,waa>, a € A (T M) .
n-1"x

Using this notation we can now define the notion of a slice of T by

£ ; we continue to assume T € Dr\(U) is given by T = ;(M,G,E) as above.

28.4 DEFINITION For the (L'-almost all) t ¢ R since that TM , T,
exist and 28.1{(*) holds Hnnl-a.e. X € M, with the notation introduced

above (and bearing in mind 28.3) we define the integer multiplicity current

<Lr,£,t> €D {(U) by

n-1
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where

£ () = £(0) L M /| e ] 6, =0, |m, .

So defined, <T,f,t> is called the slice of T by £ at t .

The main facts concerning the slices <T,f,t> are given in the following

lemma:

28.5 LEMMA
(1) For each open W C U

M n
M _(<T,£,t>)dt =J |Mg|0aH™ < (ess sup . |VE|)mM () .
J.: = MOW MOw S

(2) If %(BT) <o VY wccu, then for Ll—a.e. t € R

<p,f,£ = 3Tl {£<t}] - (dT) L {£<t} .
(3) If 93T <s integer multiplicity in Dn—l(U) , then for 1-a.e. ter
<dT,f,t2> = -<T,£,> .
Proof (1) is a direct consequence of the last part of Lemma 28.1 (with g= G+ ).

To prove (2) we first recall that, since M is countably n-rectifiable,
we can write (see Remark 11.7)

o0
(1) M= U M.,
=0
_ . . n - . . )
where MiﬂMj-—Q YVid#jg, H(MO) 0, and MjCNj =21, with N]
an embedded C1 submanifold of Rn+k . By virtue of this decomposition and
the definition of VM (in §12) it easily follows that if h is Lipschitz

n+k (0)

on R and if h are the mollified functions (as in 8§6) then, as

gy 0,



159

{ M
(2) vath‘g) + vV h {weak convergence in LZ(UT))

. - N n . . n+ki
for anyv fixed bounded H -measurable v with values in R . (Indeed to

check this, we have merely to check that (2) holds with Ni in place of Mﬁ

.. R n+k . . .
and with v wvanishing on = ~ Mﬁ ; since Nj is Cl this follows

fairly easily by approximating v by smooth functions and using the fact

(o)

that h converges to h uniformly.)

Next let € > 0 and let vy be the Lipschitz function on R defined

by
1 ; s<t-g
v(s) = linear , t-g<sst
4] A s>t

and apply the above to h = Yof . Then letting w € Un(U) we have

(O)m

3y = ramPuw))

) (o

T(dh(c )dw) i

Aw) + T(h

Then using the integral representations of the form 26.7 for 3T we see that

(3) (3TL h) (W) = Llim 7(an'®

o+0

Aw) + (TL h)(dw) .

Since &£(x) orients T,M , we have

)

(4) <Ex),an' A = <ty (@9 )T A >

O T w>

]

<E(x), (dn

(where ( )T denotes the orthogonal projection of Aq(}gﬁk) onto Aq(TxM)) .
Thus

(o) A }

T (dh W) = J <Ex), (@' ()T A w0 aH®
M

<) LR (x>0 aH”
M
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so that by (2)

(5) lim T(an‘? A w) = J <E(x) L Vh(x), > 8 aH™ .
fep 0] M

By definition 12.1 of VMh and by the chain rule for the composition of

Lipschitz functions we have
M. ' M n
(6) Vh=vy(E)VE H - a.e. on M

(where we set 7Y'(f) = 0 when f takes the "bad" values t or t-¢£ ;
M M n .
note that V h(x) = V £(x) = 0 for H -a.e. in {xeéM: f(x)=c} ,

¢ any given constant).

Using (5), (6) in (3), we thus deduce

(3TL h) () = -~ <L e,w> 8 @

]
M {t-e<f<t}

+ (TL h) (dw) .

Finally we let € ¢ O and we use Remark 28.2 with g = 0 <gL V"'&/|Wg|,w>
in order to complete the proof of (2); by considering a countable dense set
of w € Dn(U) one can of course show that 28.2 is applicable with

M VM R . 1
g=06<LV f/{ f]mu> except for a set F of t having L -measure zero,

with F independent of w .

Finally to prove part (3)‘of the theorem, we first apply part (2) with

9T in place of T . Since 82T = 0 , this gives

<3T,£,£> = 3[(3T) L {£<t}1 .

On the other hand, applying 3 to each side of the original identity

(for T) of (2), we get
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30T L {£<t}1 = -8<T,£,t>

and hence (3) is established.

Motivated by the above discussion we are led to define slices for an
arbitrary current € Dn(U) which, together with its boundary, has locally
finite mass in U . Specifically, suppose gW(T) + EW(BT) < YVWccu.

Then we define "slices"

28.6 < £, > = 9(T L{f<t}) - (1) L{f<t}
and
28.7 <T,f,t,> = =T L{f>th) + QDL (>t} .

Of course <T,f,t+> = <7,f,t_> (and the common value is denoted <T,f,t>)
for all but the countably many values of t such that M(T L{f=th

+ M((dT) L{f=t}) > 0 .

The important properties of the above slices are that if £ is Lipschitz

on U (and if we continue to assume gw(T) + gw(BT) < ¥ W ccU) , then
28.8 spt <T,£,t,> c spt T N {x: f(x)=t}
and, Y open W c U,

M (<T,£,t.>) < ess sup [Df| lim inf nt M (T L{t<f<t+h})
B ht0 -
28.9

gw(<T,f,t_>) < ess supW[Df[ lim inf h-1

= Mo (T L{t-h<f<e]) .
hi{o

Notice that gW(T L{f<t}) is increasing in t , hence is differentiable
for Ll~ a.e t € R and fb 4 (T L{f<that < (7 L{a<f<b}) Thus
T a dt l\=’1W ’ - gw .

28.9 gives
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*b
28.10 I M, (<T,£,£,>) dt < ess Supwlnf! r=4W(TL {a<£<b})
A +

for every open W C U .
1

To prove 28.8 and 28.9 we consider first the case when £ is C and

take any smooth increasing function Y : R +]R+ and note that

(*) I(TL yof) (W) = ((AT) L yof) (w)

(TLoyef) (aw) - ((3T)L yo£) (w)

T(yefdw) - T(d(Yofw))

- T(y'"(£)df Aw) .
Now let € > 0 be arbitrary and choose Y such that
1+€
Y(t)=0 for t<a , Y(t)=1 for t>b , OSY'(t)S-];_; for a<t<b .

Then the left side of (*) converges to <T,f,a+> if we let b ¥ a , and
hence 28.8 follows because spt y' C [a,b] . Furthermore the right side R

of (*) evidently satisfies

1+€
|r| = (SqulDfl)(E) Mo (TL {a<f<p})|w|  (spt waw)
and so we also conclude the first part of 28.9 for f ¢ C:l . We similarly
establish the second part for £ € Cl . To handle general Lipschitz f we

simply use f(o) in place of £ in 28.6, 28.7 and in the above proof, then

let o0 ¥ 0 where appropriate.

§29. THE DEFORMATION THEOREM

The deformation theorem, given below in Theorem 29.1 and Corollary 29.3
is a central result in the theory of currents, and was first proved by

Federer and Fleming [FF].
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The special notation for this section is as follows:

C= [0,11 X ...% [0,1] (Standard unit cube in R F)

+ + j
an= {z=(zl,...,zn k) i 20 € Z} (CIRn+k)
Lj = j-skeleton of the decomposition 8] (z+C)
ze%n+k
of Rn+k.
Lj = collection of j-faces in Lj

+k . .
{z+F:z¢ %n , F is a closed j-~face of c}

]

L. = : FEL.} , >0
50 {pF : F j} p >

(N= (n+k) = [n+k)) denote the

SqpreeerB n+1 k-1

N

+ .
(n+1) ~dimensional subspaces of ]Rn Kk which contain an {n+1)-face of the

standard cube C .

. . +! .
Pj denotes the orthogonal projection of an k onto Sj , J=1,...,n.

29.1 THEOREM (Deformation Theorem, unscaled version)

+k k

Suppose T 1is an n-current in r" (i.e. TE€ Dn(JRth ))  with

M(T) + M(3T) < o . Then we can write
T -P=23R +8 ,

where P, R, S satisfy

with
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n=
=
A

= cM(T) ,

[1}=4

(3P) = cM(3T)

=
z
A

= cM(T) , M(S) < cM(3T)
(c=c(n,k)) , and

spt P U spt R ¢ {x : dist(x,sptT) <2v/n+k}

spt P U spt S ¢ {x : dist(x,sptdT)<2/n+k} .

In case T <8 an integer multiplicity current, then P, R can be

chosen to be integer multiplicity currents (and the B_ appearing in the

F
definition of P are integers). If in addition 3T <s integer

multiplicity*, then S can be chosen to be integer multiplicity.

29.2 REMARKS
(1) Note that this is slightly sharper than the corresponding theorem
in [FF], [FH1], because there is no term involving M(9T) in the bound for

M(P) .

(2) It follows automatically from the other conclusions of the theorem

that M(9S) = cM(9T) . Also, it follows from the inequalities\

=2

(BP),Q(S) < cg(BT) that S =0 and 3P =0 when 3T = 0 .

The following "scaled version" of 29.1 is obtained from the above by
first changing scale x = p—lx , then applying 29.1, then changing scale

back by x =+ px .

* Actually dT automatically is integer multiplicity if T is integer

multiplicity and Q(ST) < © , see Theorem 30.3.
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29.3 CORCLLARY (Deformation Theorem, scaled version)

Suppose T, dT are as in 29.1, and p > 0 . Then
T~-P=23R+ 38,
where P, R, S satisfy

p= L  B[F] (€ R)
FeLj(p) F F

=
I
"

CM(T) , M(P) = cM(3T)

Iz
z
A

S coM(T) , M(S)

A

comM(3T)

and

spt P U spt R ¢ {x : dist(x,spt T)< 2/n+k p}
spt 0P U spt S ¢ {x : dist(x,sptdT)< 2/n+k p} .

As in 29.1, in case T <is integer multiplicity, so are P, R ; Lf

3T 1s integer multiplicity then so is S .

The main step in the proof of the deformation theorem will involve "pushing"
T onto the n-skeleton Ln via a certain retraction map Y . We first have
to establish the existence of a suitable class of retraction maps. This is

done in the following lemma, in which we use the notation:

centre point of C = (},%,...,%) ,

Q
I

1, (a) = a + Lk—l (a a given point in B%(q)) '

[

n+k . , <
L, (aip) {x¢ R : dist(x,L__ (@) o} (pe (0,3)) .

Note that dist(Lk_l(a), Ln) > % for any point a € B%(q) .
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29.4 LEMMA  For every a € B*(q) there is a locally Lipschita map

v ]Rn+k~ I"k-l(a) N Rn+k~ Lk_l(a)

such that

ve~n _ @) =cnL ., 1p|ann =1 o

Dy(x)| <e/p, Ln+k—a.e. X€C ~ L (a;p) , p€ (0,%) ,
k-1

(c=c(n,k)) , and such that

D(z4x) = z4P(x) , x€ ROTE~ L, (@, z ¢ z™tk

Proof We first construct a locally Lipschitz retraction wo : C~L (a)

k-1

onto the n-faces of C . This is done as follows:

Firstly for each j~face F of C,j =2 ntl , let ag € F denote the
orthogonal projection of a onto F , and let \PF denote the retraction of
F~ {aF} onto OF which takes a point x € F ~ v{aF} to the point vy € 3F

such that x € {aF+ A(y—aF) : A€ (0,11} . (Thus ¢ is the "radial

retraction” of F with a, as origin.) Of course lpF|Z)F = ABF . Notice
also that for any Jj-face F of C , j = n+l , the line segment aaF is
contained in Lk_l(a) ; in fact if JF denotes the set of { such that SQ

(see notation prior to 29.1) is parallel to an (n+l)-face of F , then

(because aaF is orthogonal to F , hence orthogonal to each S,Q, , 2 EJF )
we have
(1) @, < N p e, )
F L L !
JZ,EJF

and this is contained in Lk_l(a) ; because (by definition)

2) L@ = U U (e @) .

2=1 z€Zn+k
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Next, for each j = n+l , define

w‘j’ : U{F_‘~{aF} : F is a j-face of C}
+ U{G:G6 is a (j-1)-face of cC}
by setting
P Fata ) =y,

(Notice that then w(J) is locally Lipschitz on its domain by virtue of the

fact that each WF is the identity on 0oF , F any j-face of C.)

Then the composite w(nfl)o w(n+2)° cee © w(n+k) makes sense on
C ~ Lk_l(a) (by (1)), so we can set
_ g (ntl) o {n+2) o g (ntk)
wo = U} e Y | C Lk_l(a) .

Notice that wo has the additional property that if

z€ Zn+k and x, z+x€ C , then wo(z+x) = z+wo(x) .

(Indeed x, z+x€ C means that either x, z+x are in Ln (where wo is the

identity) or else lie in the interior of parallel j-faces Fl, F2 = z+F1

(jzn+l) of C with =z orthogonal to Fl and aF = z+aF o) It follows
2 1

that we can then define a retraction ¢ of all of C~»Lk_l(a) onto Ln

by setting

Viztx) = 24y (x) , x€C~L _ (a) , z€ z

We now claim that
nt+k

(3) sup|Dw] <c/p on R ~ Lk_l(a,p) , ¢=c(n,k) .

(This will evidently complete the proof of the lemma.)
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We can prove (3) by induction on k as follows. First note that (3)
is evident from construction in case k=1. Hence assume k = 2 and assume
(3) holds in case k-1 replaces k in the above construction. Let x be
any point of interior (C) ~ I _(a;p) , let y = PR @™ is the

radial retraction of C ~ {a} onto 9C) , and let F be any closed

(ntk-1)~-face of C which contains y .

+k-1 +
Suppose now new coordinates are selected so that F C R x {0} ¢ R" k,

n+k-1

and also let Ek_2(a) =1 (&) N mw x {0}) . By virtue of (1) we have

k-1

aF € Lk—l(a) , hence

(4) |y-aF[ z dist(y,L,_; (@) .

+k -

Let Py be the orthogonal projection of Rr" onto Rp+k e {o} (=om ,
. . -1

so that ap = pF(a) . Evidently lpF(x)-aFlz dlst(x,pF (pF(a))) and hence

by (2) we deduce

(5) lpp o) —ap| = dist(x,L,_ (a)) .

Furthermore by definition of y we know that y-a =

hence, applying P+ we have

_ ly-al

T xa| Pp(x-a) .
Hence since |y-a| = 3/4 , we have
(6) ly-a,| = (3/4) |p,(x-a) |/ |x-a]
Now let @ be the retraction of F ~ ik_z(a) onto the n-faces of F
(@ defined as for Y but with (k-~1) in place of k , ag in place of a ,
&L i place of ®™F and ik-z(a) = L,_,(ay) in place of I (a)) .

By the inductive hypothesis, together with (4), (5), (6) we have
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(7 By ] = = , {5&;(y)] = lim sup ’y(z>—y(y)lj
dist(y,L,_,(a)) oy z-y|

—C  (a/3) c.___!.x_’f‘l___
lv-ag| |pF(x—a)[

|x-a|
dist(x,I, (a))

1A

(4/3)¢c

+
Also, by the definition of l[)n k we have that

. ~ n+k itk
@) By x| = T§§5T 5™ 0| = Lim sup LY (T;_i[ el
yrx
Since Y(x) = J)o \pn+k(x) , we have by (7), (8) and the chain rule that

n+k c |x-a]
(x)| = [x-a] dist(x,L,_,(a))

[Bye)| = D v | By

1A

c
dist(x,Lk_l(a))

Proof of Deformation Theorem

We use the subspaces S_,...,S

g N and projections PiseeesPy introdu

at the beginning of the section. Let Fj =CNn Sj (so that Fj is a clo

(n+1)-dimensional face of C ), let xj be the central point of Fj ,

for each j=1,...,N define a "good" subset Gj C Fj n Bl(xj) by
4

g€ Gj = g€ anBi(Xj) and

(T L U p (B (g+z))) = "t
n+k J P
z€Z ﬂSj

(1)

=
=

(T) Ype€ (0,%)

(B to be chosen, Gj = Gj B

ced

sed

and
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We now claim that the "bad" set Bj = Fj(WB (xj) ~ G. in fact has

3 ]

Ln+1-measure (taken in Sj) small; in fact we claim

Ln+1 n+l —lw n+1l Ln+1

(2) (Bj) =20 7B (1) (w .= (B,(0))

n+1 n+l

-

which is indeed small if we choose large [ . To see (2), we argue as follows.

For each b € Bj there is (by definition) a pb€ (0,4) such that

-1 n+l
(3) M(Tk u pj (Bp (btz))) = pr M(T) ,

z€Zn+kﬂSj b

and by the covering theorem 3.3 there is a pairwise disjoint subcollection

{sz(bg)}zﬂlz.“(pz=pbﬂ) of the collection {pr(b)}bEBj such that

(4) B.cUB (b,) .

But then, setting b = b in (3) and summing, we get

2
n+1 n+1 -1 )
B(Z pp' ") M(T) < M(T) (i.e. ] p," =B ),
2 2
(using the fact that {p.'B_ (b +2)} _ is a pairwise disjoint
3 pl 2 2=1,2,...
ZEZn+kﬂsj

collection for fixed j) . Thus by (4) we conclude

n+1 -1 _n+1
L (Bj)sB 55w g

which after trivial re-arrangement gives (2) as required. Thus we have

n+l n+l -1 n+1
L (Gj) > (1-20 B )wnﬂ(%) '

and it follows that

n+k

€3] '

[1 _ gm'-l 20+ 11

n+k, -1
(5) L (pj. (Gj)ﬂBi(q)) > o }wm—k

where g is the centre point (},...,3) of C . (so pj(q)= xj.)

(*) We of course assume T#O0.
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n+1l ~1
i +]
Then selecting f large enough so that 20 wn+1NB < mn+k/(n k) . we
N
see from (5) that we can choose a point a € (1 pj (Gj) n B%(q) . Next let
=1

k

(a)=a+L, . L (a;p) = {xe R™: dist(x,L, . (a)) <p} (as in the proof

Lz
of 29.4) and note that in fact

_ -1
L,_q(aip) = U Py (Bp(pj(a)+z)) .

Then since pj(a) € Gj we have (by definition of Gj)

(6) M(rlrn _, (a;p)) = NB pn+1§(T) Vpe€ (0,3 .

1

Indeed let us suppose that we take B such that 20™" w4 N B_l < wn+k/2(n+k) .

N
Then more than half the ball B%(q) is in the set n pjl(Gj) and hence,
j=1

repeating the whole argument above with 0T in place of T , we can actually

select a so that, in addition to (6), we also have

n+l

(7) M@TL L, (a;0)) = NBp" "M(3T) Vpe (0,%) .
. n+k . .
Now let Y be the retraction of R ~ Lk—l(a) onto L = given in

Lemma 29.4, and let

(8) T TLL j(@ip) » ), = TLL _,(a:p)

so that by (6), (7)

n+l n+l
(9) g(Tp) scp TM(T) ., g((BT)p) = cp  "M(IT) .

Furthermore by 28.10 we know that for each p € (0,%) we can find

p* € (p/2,p) such that

A

(10) M(<T,d,0™>) 55 (T cpM(T) ,

p_Tp/Z) =
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where d is the (Lipschitz) distance function to Lk_i(a)

(d(x) = dist(x,Lk;l(a)), Lip(d)=1) and <T,d,0*> is the slice of T by
d at p* . (Notice that we can choose p* such that (10) holds and such
that <T,d,p*> is integer multiplicity in case T is integer multiplicity

see Lemma 28.5 and the following discussion.)

We now want to apply the homotopy formula 26.22 to the case when

h(x,t) = xbt(P(x)-x) , x € BTH~ L,_,(2i0) , 0>0 . Notice that h is only

Lipschitz on Rn+k<~ Lk_l(a;o) , so we define h# . w# as in Lemma 26.25.

(We shall apply h# ’ w# only to currents supported away from [0,1] X Lk—l

and Lk_l(a) respectively.)

Keeping this in mind we note that by 29.4, (6) and (7) we have

1
(11) MW, -7 ) << o™ = comm
=""#""p "p/2 pn = =
and
[¢] n+1
(12) l‘__'_i(w#((BT)p - (BT)p/z)) = 1 P "M(3T) = cpM(3T) .

Similarly by the homotopy formula 26.22, together with 26.23 and (6), (7)

above, we have

(13) M(hy, ([(0,1)] X (T =T, .))) < cpM(T)
and
(14) g(h#(ﬂ(o,l)ﬂ X ((BT)p - (BT)p/z)) = cpg(BT) .

Notice also that by (6), (10) and 26.23 we have

(15) M(V,<T,d,0*>) < coM(T)

and
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(16) g(h#([[(o,l)]]x <T,d,p*>)) = cpM(T)
Next note that by iteration (11), (12) imply

M@, (Tp—Tp/z\)) ) = 2cpM(T)
(17)

g(w#((BT)p-(BT) V}) = 2cpM(3T)

p/2

for each integer Vv =2 1 , where c¢ is as in (11), (12) (c independent of
V ). Selecting p = 4 and using the arbitrariness of Vv , it follows that
et <
MY, (T-T ) = cM(T)

(18)
B, (3T-(3T) ) = cU(3T)

for each 0 € (0,1) (with ¢ independent of o0 ) .

Now select p = p = 2™V ana ol 1277127V such that (10), (15),

(16) hold with p\*) in place of p* ; then by (15), (16), (17), (18) we

have that

T-T ), h,([(0,1)]x (T-T .
Uy ps) # S 1 p3))

w#(aT—ans) , h#([[O,l)]] x B(T_TQG))

are Cauchy sequences relative to M, and §(<T,d,p3>) + g(w#<T,d,pc )y -0 .

+
Hence there are currents Q, sl € Dn(JRn k) and R1 € Dn+1(Rn+k) such that

( lim M(Q=Yy (T-T ) = 0

o
(19) Lim M(s,-h, ([(0,1)] x3(T-T ,))) = 0

V

lim r__d(Rl—h#([I(o,l)]] X(T_Tp\*))) =0 .

Furthermore by the homotopy formula and 26.23 we have for each Vv



174

(20) T-T - U, (T-T )
p¥ # Py

=2 (h#(l[(O, nJ x (T-Tps))

- h#(II(O,l)]] X B(T—Tp\,;)) .

Since BTp* = (BT)p* - <T,d,p3> (by the definition 28.6, 28.7 of slice) we
v v
thus get that

(21) T-Q = 3R1+Sl .
(Notice that @, R1 are integer multiplicity by (19), 28.4, 28.5 and 27.5
in case T 1is integer multiplicity; similarly S1 is integer multiplicity

if 9T is.)

+
Using the fact that Y retracts Rn k. Lk—l(a) onto Ln we know

(by 26.23) that spt w#(T—T ) € Ln , and hence

o3
(22) spt Q C Ln .
k

We also have (since Y(z+C) C z+C ¥z e 2z ) that

spt R, Uspt 9 € {x: dist(x,spt T) < V/n+k }
(23)

spt S, {x : dist(x,spt 9T) < Vn+k }

and, by (18), (19), we have
M(Q) = cM(T) , M(R;) = cM(T)
(24)

M(S;) = cM(3T) .

Also by (18) and the semi-continuity of M under weak convergence, we have
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(25) M(3Q) = Lim inf M(3Y, (T-T )
\Y

lim inf M(y,0 (T_Tp*))
v

IA

cg(BT) .

Now let F be a given face of Ln(i.e. F€ Ln) and let ﬁ = interior of
‘ n n+k
F . Assume for the moment that F c R®"x{0} (c® } , and let p be the
orthogonal projection onto RD'X{O} . By construction of Y we know that

peY = Y in a neighbourhood of any point y¢€ F . We therefore have (since

Q is given by (18)) that
(26) : p#(QLi’*) =olLF .

It then follows, by the obvious modifications of the arguments in the proof

of the constancy theorem (Theorem 26.27) and in Remark 26.28, that

o _ n
(27) QL) (w) = Jo< el A e en,w(x)>-6F(x)dL (x)
F

(IJ“ function SF , and

YV we Dn(Rn+k), for some BV
_ loc

[l
S
=l
D

ol

(28) M(QLF) = J lo lal™ , M((3Q) L #)
F F

Furthermore, since

(QL F-B[F]D (w) = j (6,-B) < e A ... A en,u)(x)>dLn(x)
F

(by (27)), we have (again using the reasoning of 26.28)

ML #- B[F]) = J [eF-B|dL“
(29) P
M@ (QL F - BIF]) =f Ip(x, (0 =81 &
n F
R

where X = characteristic function of F .
F
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Thus taking B = BF such that

(30) min{L™{x¢ F: 6_z g}, L {x€ F: 0 (x) <6} 2

N

{(which we can do because Ln(%) = 1 ; notice that we can take BF € % if

GF is integer-valued), we have by 6.4, 6.6, (28) and (29) that

g@Lﬁ-BpmScJ hﬁﬂ=c§@Lﬁ

(31) F

M3 QL F-B[E])

1A

cj [po | =cttoL #)
#

We also have by 26.30

(32) gLaar=0.
Then summing over F € Ln andusing (31), (32) wehave, with P = z BFHFH ’
Fel
n
that
M

(Q-P) = cM(3Q)
(33) ‘
M(3Q-3P) = cM(3Q)

Actually by (30) we have

(34) |8l =<2 j T
P

and hence (using again the first part of (28)), since M(P) = Z !BFl R
F

(35) M(P) < cM(Q)

Notice that the second part of (33) gives

(36) M(3P) < cM(3Q) .
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Finally we note that (21) can be written
(37) T-P = BRl + (Sl+(Q—P)) .

Setting R = R s =8, + (Q-P) , the theorem now follows immediately from

1’ 1
(23), (24), (25) and (33), (35), (36), (37); the fact that P, R are integer
multiplicity if T is should be evident from the remarks during the course

of the above proof, as should be the fact that S is integer multiplicity

if T, 9T are.

§30. APPLICATIONS OF THE DEFORMATION THEOREM

We here establish a couple of simple (but very important) applications
of the deformation theorem, namely the isoperimetric theorem and the weak
polyhedral approximation theorem. This latter theorem, when combined with
the compactness theorem 27.3 implies the important "boundary rectifiability
theorem" (30.3 below), which asserts that if T is an integer multiplicity
current in Un(U) and if §W(3T) <o Y Wccu, then 03T(€ Dn—l(U)) is
integer mutiplicity. (Notice that in the case k=0 , this has already

been established in 27.6.)

30.1 THEOREM (Isoperimetric Theorem)

n+k

Suppose T € Dn_l(Iz ) 18 integer multiplicity, n = 2 , spt T <& compact
and 08T=0 . Then there is an integer multiplicity current R € Dn(Rn+k)
with spt R compact, OR =T , and
n-1
MR T s cM(T)

where c¢ = c(n,k) .
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Proof The case T = 0 is trivial, so assume T # 0 . Let P, R, S be

integer multiplicity currents as in 29.3, where for the moment p > 0 is

arbitrary, and note that S=0 because 3T=0 . Evidently {since
" ey = o™ vre F__,() we have

-1
(*) M(e) = N(p)p"

for some non-negative integer N{p) . But since M(P) = c M(T) (from 29.3)
- - 1
. L . -1
we see that necessarily N(p) = 0 in (*) if we choose p= (ZCQ(T)) .  Then
P =0, and 29.3 gives T = oR for some integer multiplicity current R
1

with spt R compact and M(R) = cpM(T) = c‘(g(T))n'l.

30.2 THEOREM (Weak polyhedral approximation theorem)
Given any integer multiplicity T € Dn(U) with ¥ (0T) < VWweccu,

there is a sequence {Pk} of currents of the form

(%%) P, = z Bék)ﬂF] ’ (Bék)e z)y Py ¥ 0,
F€ Fn<pk)

such that P, ~ T (and hence also aPk ~93T) in U (in the sense of 26.12).

k
. . +.
Proof First consider the case U =.Rn k and M(T) , M(dT) < e ., 1In this
case we simply use the deformation theorem: for any sequence pk ¥y 0,

the scaled version of the deformation theorem (with p= pk) gives Pk as

in {**) such that
(1) T - P, = 0R,_ + S

for some Rk ’ Sk such that

N

cpkg(T) > 0
(2)

=
©w
T
A

< cp, M(3T) > 0

and
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) = cM(T) , M(3P) = cM(dT)

Evidently {1), (2) give Pk(w) +~Tk(w) YV w € Dn(RF+k), and apk =0

if 9T = 0 , so the theorem is proved in case U = Rn+k and T, T are
of finite mass.
In the general case we take any Lipschitz function ¢ on Rn+k such

that ¢ >0 in U, ¢=0 in RV

~U and such that {x=¢(x)>A} cc U
¥A>0. For L'-a.e. A>0, 28.5 implies that T, 2T L {x: ¢x) >0
is such that Q(BTA) < © , Since spt TA CC U , we can apply the argument

above to approximate T for any such A . Taking a suitable sequence

A

Aj ¥ 0 , the required approximation then immediately follows.

30.3 THEOREM (Boundary rectifiability theorem)
Suppose T 1is an integer multiplicity current in Dn(U) with
M (9T) <@ Ywccu. Then 09T(¢ Dn—l(U)) is an integer multiplicity

current.
Proof A direct consequence of 30.2 above and the compactness theorem 27.3.

30.4 REMARK Notice that only the case BTj= 0 Vi of 27.3 is needed in

the above proof.

§31. THE FLAT METRIC'™ TOPOLOGY

The main result to be proved here is the equivalence of weak convergence

and "flat metric" convergence (see below for terminology) for a sequence of

(¥} DNote that the word "flat" here has #no physical or geometric significance,
but relates rather to Whitney's use of the symbol b (the "flat" symbol
in musical notation) in his work. We mention this because it is often a
source of cenfusion.
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integer multiplicity currents {Tj} c Dn(U) such that
) H M . < © YWccu.
supjzl(gw(Tj) QW(BTJ))

n+k
We let U denote (as usual) an arbitrary open subset of R ,

I ={T¢ Dn(U) : T is integer multiplicity and
M, (T) <@ Y W cc ul},
and
I, =1{T€l : spt TCW, M(T) +M(T) = M}

for any M > 0 and WcCCU .

on I we define a family of pseudometrics {dw}wCCu by

31.1 dw(Tl,T2) = inf{réw(s) +1;1W(R) : T, -T, = dR+ S ,

where R¢ Un+l(U) , S€ Dn(u) are integer multiplicity}

We henceforth assume ] is equipped with the topology given (in the

usual way) by the family {dw} of pseudometrics. This topology is

WccUu
called the "flat metric topology"™ for [ : there is a countable base of

neighbourhoods at each point, and Tj - T in this topology if and only if

dw(Tj,T) + 0 VWccouU.

31.2 THEOREM  Let T, {Tj} c D (U) be integer multiplicity with
1 1 o 7 -~ J 7 »
SLszl{ﬁw(Tj)-fgw(aTj), < VWcCU . Then T, ~ T (in the sense of

26.12) 1if and only +f dw(Tj,T) + 0 for each W cc U .

31.3 REMARK  Notice that no use is made of the compactness thecrem 27.3 in
this theorem; however if we combine the compactness theorem with it, then we

get the statement that for any family of positive (finite) constants
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{c(W)-}WCCU the set {T€¢ I F MM + M (3T) S c@) VW ce Ul is sequentially

compact when equipped with the flat metric topology.

Proof of 31.2 First note that the "if" part of the theorem is trivial
(indeed for a given W <C U , the statement dW(Tj,T) + 0 evidently implies

(T,-T) @) > 0 for any fixed w ¢ DM (U)  with spt wCwW) ..

For the "only if" part of the theorem, the main difficulty is to

establish the appropriate “total boundedness” property; specifically we show

that for any given € > 0 and W CC Wcc U , we can find N==N(€,W,W,M) and
integer multiplicity currents Pl""’PN € Dn(U) such that

N

c ~(P.

(1) IM,W .Z Be 5Py -

j=1
where, for any P € I , B€ ﬁ(P) = {sel: dW(S,P)< €} . This is an easy

¢

consequence of the deformation theorem: in fact for any o > 0 , 29.3

guarantees that for T € IM we can find integer multiplicity P, R, S

W
such that
(2) T-P = 3R+ S
(3) p= 7 BIF] , B, € =
FeF_(p) F ¥
n
(4) spt P C {x: dist(x,spt T) < 2/n+k p}
(5) M(P) (= z ]BF|pn) < cM(T) < oM
FEFn(p) :
spt R U spt S ¢ {x: dist(x,spt T) < 2/n+k p}
(6)
M(R) + M(S) = cpM(T) = cpM .
Then for p small enough to ensure 2/nt+k p < dist(W,aﬁ) , we see from (2),

(6) that
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dﬁ(T,P) < cpM .

Hence, since there are only finitely many Pl,...,PN currents P as in

(3), (4), (5) (N depends only on M,W,n,k,p) , we have (1) as required.

Next note that (by 28.5 (1), (2) and an argument as in 10.7(2)) we

can find a subseguence {Tj,} c {Tj} and a sequence {Wi} ) W CCW, L cCcU,

1
o
191 W, =U, such that supj,zlg(B(Tj,L.Wi)) < © ¥i . Thus from now on

we can assume without loss of generality that W CC U and
(7) spt T © W vy .

Then take any W such that W <C § <€ U and apply (1) with

e=1,%,% etc. to extract a subsequence (T.

} from {T.} such
Jr r=1,2,... J

that
detr. r.) <2
r+l Jr
and hence
(8) T. -T. =93R_+ S
Jr+1 ]r o o

where Rr ’ Sr are integer multiplicity,

cw
spt R U spt S, CW

L

g(Rr) + Q(Sr) =7 -
2
Therefore by 27.5 we can define integer multiplicity R(l) ’ S(Q) by the
M - absolutely convergent series
w _ 3 w _ 7
R = Yy R ,877 =7 s _;
r r
r=4, r=4,

then
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uE®) L ue®) <A

and (from (8))

p-r, =™ +sg®

I

Thus we have a subsequence {Tj } of {T.} such that dW(T'Tj ) »~ 0 .

J
2 2
Ssince we can thus extract a subsequence converging relative to dﬁ from
any given subsequence of {Tj} , we then have dW(T'Tj) + Q ; since this
can be repeated with W = Wi ; W= Wi+l Vi (Wi as above), the required

result evidently follows.

§32. RECTIFIABILITY THEOREM, AND PROOF OF THE COMPACTNESS THEOREM.

Here we prove the important rectifiability theorem for currents T
which, together with 0T , have locally finite mass and which have the
additional property that O*n(pT,x) > 0 for uT-a.e. X . The main tool
of the proof is the structure theorem 13.2. Having established the
rectifiability theorem, we show (in 32.2, 32.3) that it is then straight-
forward to establish the compactness theorem 27.3. Although this proof of
compactness theorem has the advantage of being conceptually straightforward,
it is rather lengthy if one takes into account the effort needed to prove
the structure theorem. Recently B. Solomon [SB] showed that it is possible
to prove the compactness theorem (and to develop the whole theory of integer

multiplicity currents) without use of the structure theorm.

32.1 THEOREM (Rectifiability Theorem)
Suppose T € D_(U) is such that Mo (T) + Mo(3T) < @ Ywccu, and

G*n(uT,x) > 0 for Up-a.e. X €U . Then T is rectifiable ; that is
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T=1m0,8 )

where M is countably n-rectifiable, H -measurable, 6 is a positive
locally H"-integrable function on M , and E(x) orients the approximate

tangent space T.M of M for H'-a.e.x € M.
Proof First note that (by Theorem 3.2(1))

(1) HMxew: 0 0>k} s Km0
for W cc U, and hence

(2) HMx€euU: O*n(uT,x)='w} =0 .

Notice that the same argument applies with 9T in place of T in order to

give

(3) H™Mxeu: @*“(uaT,x>=°°} =0.

(Notice we could also conclude Hd{xé U: O*d(uaT,x)=(n} =0 for any 4 >0

by 3.2(1).)

Next notice that, because gW(T)i-gw(ST) < VWccUu, we know

from 26.29 (see in particular Remark 26.30) that (by (2))

(4) ulx€u: e*“(uT,x) =w} =0,

and (by (3))

(5) up{xeus e*“(uaT,}n =w} =0 .

(*) The notation here is as for integer multiplicity rectifiable currents (§27):

IM,0,8) (W) = J <g,w>8 af”
M

although of course 6O is not assumed to be integer-valued here.
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Now let
M= {x€uU;: @*n(uT,x) > 0}

and note by (1) that M is the countable union of sets of finite Hn-measure.
Furthermore by 26.29 we know that uT(P) = 0 for each purely unrectifiable

subset of M , and hence
(6) Hn(P) =0 Y purely unrectifiable P c M

*
by virtue of 3.2(1) and the fact that © n(uT,x) >0 for every x € M (by

definition of M). Then by the structure theorem 13.2 we deduce that
(7) M s countably n-rectifiable.

Furthermore (since O*n(uT,x) > 0 for uT-a.e. X € U Dby assumption), we

have
(8) T=TLM.
Next we note that HT is absolutely continuous with respect to H™
{by (4) and 3.2(2)) , and hence by the differentiation theorem 4.7 we have
up=H L@

where 6 is a positive locally Hn—integrable function on M and 6 = 0

on U ~M . Then by the Riesz representation theorem 4.1 we have
n
(9) T(w) = J <E,w>6 aH" ,
U
n n+k .
for some H -measurable, AnCR )-valued function § , |g| =1 .

It thus remains only to prove that §&(x) orients TxM for H"- a.e. xXeEM.

(i.e. E(X)=FT_A ...A Tn for H"-a.e. X€M , where Tl,...,Tn is any

1

orthonormal basis for the approximate tangent space TXM of M.) To see
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fos]
this, write M= U M. , M. pairwise disjoint, Hn(MO)
=0 3 j
k

-+ .
a c' submanifold of B, j =1 . Now, by 3.5, if 3

0O, M. CN., N,
J J J

v

1 we have, for

H' - a.e. x € Mj ’

*I

(10) 0" (u, U M .x)=0.
r#]
- +
Hence, writing as usual nx }\(y) = A 1(y—x) , we have for any w € Dn (Rn k)
’

that, for all x € M:.| such that (10) holds, and for A small enough to

ensure that spt w C N (o

X, A

_ #
nx,}\#T (W) =T (”x,)\‘*’)

]

J <gm<%>ew“+em),
N. ! -
J

where €(A) - 0 as A ¥+ O . (e()A) depending on x and ® .) That is

T(w) = J <E(x+Az) ;0 (2)>0 (x+Az) H (2) + £ ()
”x,x<Nj)

Nk, A

for all x ¢ Mj such that (10) holds. Since Nj is C1 ’ ;his gives

(11) lim

T = 8(x) j <E(x) . w(z)> aH" (2)
AY0 ! P

for Hn—a.e. x € Mj (independent of w ) , where P is the tangent space
TxNj of Nj at x . Thus (by definition of TxM - see §12) we have (11)

with P = TxM for Hn— a.e. x € Mj . On the other hand by (5) we have

T (w)

o) = aT(n, fu)

My, rt Ny, A#

o (A) as A+ 0

for Hn—a.e. % € Mj (independent of ) . Thus for such x
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(12) lim(3n. .,T) (@) = 0.
o XM

+
On the other hand for UT-— a.e. x € U, for any W cc ]Rn k , we have by (4)
that

(13) lim sup D=4W (nx

T) < o .

Thus (by (11), (12), (13))., for Hn—a.e. x€M , we can find a sequence

)\}Z ¥ 0 such that

T~ 8 , 0s_ =0,

nx,)\ # X X

2
n+k . .
where s _ € Dn (R ) is defined by

(14) s, (@) = 8(x) J <Ex) , wz)> dH ()
P

w € Dn(Rn+k) , P = TxM . We now claim that (14), taken together with the

fact that E)sx = 0 , implies that £&(x) orients P . To see this, assume

(without loss of generality) that P = ]RnX {0} ¢ ]Rn+k and select
. . i i
- + —
w € Dn 1(:IRn k) so that w(y) = yjcb(y)dy l/\ ... N dy n-1 ;, where
1 n+k . . .
V= (Y seeesy Y , 3 = ntl , {11,...,1n_1}C{l,...,n+k} , and
n+k

o € C:(JR } . Then since Yy =0 on R" x{0} we deduce, from (14) and

the fact that BSX =0,

. i i
-1
0 = asx(w) = sx(dw) = 0 (x) j ¢(y)<€(x),dy]/\dy l/\ ...Ady nmts
P
=GM)j PWEM (eghe; A...ne, ) (¥)
P 1 : n-1
. . o n+k . .
That is, since ¢ € CC(IR ) is arbitrary, we deduce that
E(x)e(e.Ne, AN...Ae, ) = 0 whenever Jj = n+l and
114 th-1
{il,...,in_l} c {1,...,n+tk} . Thus we must have (since IE(X)I =1) ,

E(x) = ¢ e A...Ae as required.
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We can now give the proof of the compactness theorem 27.3.

convenience we first re-state the theorem in a slightly weaker form.

For

(See

the remark (2) following the statement for the proof that the previous version

27.3 follows.)

32.2 THEOREM  Suppose {7,} < D_(u) ,

multiplicity for each 3 ,
(*)

and suppose Tj =~ T € Dn(U) Then T

32.3 REMARKS
(1) Note that the general case of

case when U = RP and spt Tj c K for
Tj are as in the theorem and if & € U
argument like that in Remark 10.7(2) we
8(Tj,L Br(E)) are integer multiplicity

place of Tj for some subsequence

(2)

theorem follows by using 30.3.

supjzl(gw(Tj)+~§W(3Tj)) <

{3} < {3}

suppose Tj’ aTj are integer

YVWwccu,

is an integer multiplicity current.

the theorem follows from the special
some fixed compact K ; in fact if
, then by 28.5 (1), (2) and an

know that, for Ll—-a.e. r>0,

and (*) holds with Tj,L Br(g) in

(depending on r) .

The previous (formally slightly stronger) version 27.3 of the above

(Note that the proof of 30.3 needed only the

weaker version of the compactness theorem given above in 32.2; indeed, as

mentioned in Remark 30.4,

Proof of 32.2

independent of n) .

Then assume n = 1 and suppose the theorem is true with n-1

it used only the case

We shall use induction on n with U C RP

BTj =0 of 27.3.

(u,p fixed

First note that the theorem is trivial in case n=0 .

in place of n.

By the above remark (1) we shall assume without loss of generality that

spt Tj C K for some fixed compact K ,

and that U = RP .  Furthermore, by
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remark (1) in combination with the inductive hypothesis, for each £ ¢ RP

we have

(1) (Tl Br(i)) 18 an integer multiplicity current

(in D (®)) for L'-a.e. r>0.

From the above assumptions U =.RP , spt Tj C K we know that 0 X 9T -7
zero boundary and is the weak limit of 0 ¥ STj- Tj ; since O X 0T is
integer multiplicity (by the inductive hypothesis) we thus see that the
general case of the theorem follows from the special case when 9T = 0 . We

shall therefore henceforth also assume 0T = 0 .
Next, define (for §& € Ig) fixed)
£(r) = M(rLB (£)) , £ >0 .
By virtue of 28.9 we have (since JT= 0)
(2) MG LB (£) £ () , L'-a.e. r>0.

(Notice that £f'(r) exists a.e. r > 0 Dbecause £f(r) is increasing.)

On the other hand if O*n(uT,E) <n (n >0 a given constant), then

lim sup f(p; < n, and hence for each § > 0 we can arrange
pYo wnp
a 1/n 1/n
(3) ar (f (r)) = an n

for a set of r € (0,8) of positive Ll—measure. (Because

= B(ry)dr < 6 6) = w’™n for all sufficiently small &>0.)

§
571 J d (fl/ < 5L gl/n 1/
o dr n

Now by (1) and the isoperimetric theorem, we can find an integer

multiplicity S_ € Dn(mp) such that 3s_ = 3(rLB_(£)) and



190

n-1

(4) Ms) " seM@(Tle (8)

n-1

n

scnM(TL B_(£)) (by (2),(3))

for a set of r of positive Ll—measure in (0,68) .* since & was arbitrary
we then have both (1), (4) for a sequence of r + 0 . But then (since we
can repeat this for any £ such that @*n (UT,E) <nn) if C 1is any compact
subset of {x¢ r: @*n(uT,x) <n} , by Remark 4.5(2) we get for each given

0 > 0 a pairwise disjoint family B:.| = ﬁr (gj) of closed balls covering

j
uT—almost all of C , with
(5) U Bj c {x:dist(x,C) < p}
j
and with
) ue?) s el sy

for some integer multiplicity S]Fp) with

(P)

3s." = Le.) .
(7) sJ 9 (T BJ)

(P)

Now because of (7) we have Sj - Tl Bj = 3({5].} X (S:.(ip) - 7L Bj)) , and

hence (by 26.23, 26.26) we have for w € D" (]RP)

) ()

Py _ -
(8) | Ch Tl Bj) @) | = COH (S TL By) | dw]

< coM(TL Bj)[dwl (by (6)).

(p)

Therefore we have Z(Sj

-TLBj)-*O as p ¥ 0, and hence
3

(9) T+ Z(Sj(p) -TlBy) ~T

J

as p ¥ 0 . However since the series I Sgp) and I TLB. are M-absolutely

J J }
convergent (by (6) and the fact that the B:.| are disjoint), we deduce that

the left side in (9) can be written T L (RP~U B.) + % Sgp) and hence
3 ]

* In case n=1, (1), (2), (3) (for n< %) imply 3 (TL Br(g)) = 0, hence we get, in
place of (4), M(s,) sl‘g(TLBr(E)) trivially by taking s, = 0.
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(using (6) again, together with the lower-semicontinuity of gw(w open)

under weak convergence)
uT({x: dist(x,C) <ph) = uT({x : dist(x,C) < pl~C) +

cnuT({x: dist(x,C) < pl) .

N

Choosing 1n such that c¢cn = , this gives

uT({x: dist(x,C) <p) = zuT({x: dist(x,C) <p} ~cC} .
Letting p ¥ 0 , we get UT(C) =0 .

Thus we have shown that G*n(uT,x) > 0 for uT-a.e. X € Ig). We
can therefore apply 32.1 in order to conclude that T = 1(M,8,£) as in 32.1.
It thus remains only to prove that 6 is integer-valued. This is achieved

as follows:

First note that for Ln-a.e. x € M we have (cf. the argument leading

to (11) in the proof of 32.1)

(10) T -~ e(x)[TXM] as A Y 0,

N, A

where ﬂTxMB is oriented by £&(x) . Assuming without loss of generality
that T M = R"x {0} ¢ R and setting d(y) = dist(y,R™x {0}) ,
by 28.5(1) we can find a sequence Xj + 0 and a p > 0 such that

<nx A.#T,d,p> is integer multiplicity with
"3
< > i i
QQ( nx,Aj#T'd'p ) = c¢ (independent of j )

where 0 = BT (0) x R c B . Then by 28.5(2) we have

P._
Sj = (nx A #T) L {y:da(y)<p} is such that, writing @ = Bi(O) X R n C R?,
AL
J

(11) sup (D;IQ(SJ-) + gQ(BSj)) < ® o,

j=1
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Now let p denote the restriction to ! of the orthogonal projection
of ]RP onto :Rn; and let §j be the current in Dn(Q) obtained by
setting §j(w) = sj(&)) , weD@ , ®¢D™®) such that & = in
Q and W = 0 on ]RPN Q2 . Then we have p#gj € Un(Bi(O)) , and hence, by

26.28 and (11) above,

p#gj(w) = J aejdLn , W= adxl/\ L..Aax", a ¢ C:(]Rn) ’
n
B, (0)

for some integer-valued Bvloc(Brll(o)) function Gj with

~ _ n
M (pySy) = J |8]aL
B (@ 8" (0)
(12) 1
M (3p,S.) =J Do, | .
=Bn(0) Py 3j a I Jl
1 B, (0)
1
Then by (11), (12) we deduce J N [Dej[ + j |ej|dl_“ <c,
B, () B} (0)

¢ independent of j , and hence by the compactness theorem 6.3 we know ©
converges strongly in Ll in B;‘(O) to an integer-valued BV function 8
Oon the other hand Sj ~ 8(x)[R™ {0}] by (10), and hence

pyS; ~ 0GR, IR" x {0}] = 80IR"] in B, (0) . We thus deduce that

&l

% 0(x) in Bx]:‘(O) ; thus 6(x) € Z as required.



