
CHAPTER 6 

CURRENTS 

This chapter provides an introduction to the basic theory of currents, with 

particular emphasis on integer multiplicity rectifiable n-currents {brieflycalled 

integer multiplicity currents), which are essentially just integer n-varifolds 

equipped with an orientation. ·k The concept of such currents was introduced in 

the historic paper [FF] of Federer and FlerniEg; their advantage is that they 

are at once able to be represented as "generalized surfaces" (in terms of a 

countably n-rectifiable set with an integer multiplicity) and at the same time 

have nice compactness properties (see 27.3 below). 

§25. PRELIMINARIES: VECTORS, CO-VECTORS, AND FORMS 
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Similarly any w E 1\n (RP) can be represented as 

'' These are precisely 'che currents called loca?..ly rectifiable in the 
literature (see [FF], [FHl]); we have adopted the present terminology 
both because it seems more natural and also because it is consistent 
wi'ch the varifold terminology of Allard (see Chapter 4, Chapter 8). 
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w) is called simple if it can be expressed with v. E 
J 

(respectively with w. E /\1 (RP)) 
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denotes the set of smooth n-forms 

00 dxa 
i1 in 

c (U) and dx 1\ ••• /\dx 

a (i1, ... 'in) E I n,P., 
dxj as usual denotes the 1-form given by 

25.1 dxj (f) 
()f 00 

. , f E C (U) 
()xJ 

if 

If we make the usual identifications of T RP and A1 (T :RP) with :RP and 
X X 

we are able to interpret w E En(U) as an element of 
co n P 

C (U; !\ :R ) ; 

we shall do this frequently in the sequel. 

The exterior derivative En(U) 7 En+1 (U) is defined as usual by 

25.2 

if i)j = I 
cxEI 

n,P 

a 
a 

dw 

('~ 
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By direct computation (using 
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dxj II dxi) one checks that 

w = I 
aEI 

n,Q 

0 

open, and a smooth 

map f u + v we define the "pulled back" fm:-rn f#cu E En(U) by 

25.4 

where 

25.5 

p 

is I 
i=l 

I 
a= ( i 1 , ... , i ) E I 

n n,Q 

i i 
a of df 1 11 ••• f, df n 

()( 

1, ... ,Q . 

Notice that the exterior derivative commutes with pulling back: 

We let Vn(U) deno·te the set of w I a dxa E En(U) such that each 
('( 

aEI 
n,P 

has compact support. ~~e topologize vn (U) with the usual locally convex 

topology, characterized by the assertion that 

w I 
aEI n,P 

a 
a 

if there is a fixed compact 

k " w = ~ 
aEI 

n;rP 

K c U such that spt 
(k) 

a 
()( 

c K 

'tJ aEI ,k":l, 
n,P 

and if 'tj a. E I 
n,P 

and every multi-

index [3 • For any w E Vn(U) , we define 

25.6 1 
lwl = supxEU <w(x) ,cu(x)> 

a 
a 

Notice that if f : U + V is smooth (U,V open in 1l, RQ) and if f is 

proper is a compact subset of U ~'enever K is a compact 

subset of V) then f#w E V n (U) whenever w E Vn (V) . 
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§26, GENERAL CURRENTS 

Throughout this section U is an open subse-t of 1l . 

26.1 DEFINITION An n-dimensional current (briefly called an n-curren·t) in 

U is ii continuous linear functional on Vn (U) . The set. of such n-currents 

will be denoted (U) • 

Note that in c<tse n = 0 the n-currents in U are just the Schwartz 

distributions on U More importantly though, the n-currents, n =:: 1 , can 

be interpreted as a generalization of the n-dimensional oriented submanifolds 

M having locally finite Hn-measure in U . Indeed given such an M c U 

with orientation ~ (thus ~ (x) is continuous on M with ~ (x) = ± T 1 t\ ••• 11 T n 

'tj X E M ' \<lfuere is an orthonormal basis for 

is a corresponding n-current [M] E Vn(U) defined by 

T M) * 
X 

26.2 [M] (w) J n n 
M <w(x),~(x)>dH (x) , wE V (U) , 

where <, > denotes the dual pairing 

then there 

(That is, 

the n-current [M] is obtained by integration of n-forms over M in the 

usual sense of differential geometry: [M] (w) = J w 
M 

in the usual notation of 

differential geometry.) 

Motivated by t.11e classical Stokes' theorem ( J MdW= J ClMw if M is a 

compact smooth manifold with smooth boundary) we are led (by 26.2) to quite 

generally define the boundary CJT of an n-current T E V (U) 
n 

by 

26.3 CJT(w) 

* Thus ~ {x) E I\n (TxM) ; notice this differs from the usual convention of 

differential geometry where we would take 



(and dT = 0 if n = 0) 

subsequently we defi.IJ.e v 

Notice t.1>at CJ2T 0 

thus ClT E 

1 (U) = 0 
n-_ 

by 25.3 
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v n-1 (U) 

in case 

if T E V (U) 
n 

n = 0 • 

Here and 

Again mot.ivated by 'che special example T [ME as in 26.2 we define 

the mass of T , !1(T) for 'r E V n (U) by 

26.4 

(so ·that ~(T) = Hn(M) in case T [M] as in 26.2). More generally for 

any open W c U we def.ine 

26.5 suplwjsl,wEVn(U) T(w) 

sptwcw 

26.6 REMARK Notice that there is some flexibility in the definition of M 

we would still get the "correct" value Hn(M) for the case T = [Mll if we 

were to make the definition ~(T) supllw (x) II Sl T (W) ' 

wEVn(U) 

provided only that II II is a norm for An(Jrl) with the properties: 

(l) 

and 

(2) 

<w,E> s llwll lsi whenever i; E A cnlJ is simple 
n 

for each fixed simple i; E A o:l) 
n 

equality holds in (1) for some w f 0. 

(Evidently II II = I j is one such norm.) Notice that the smallest possible 

norm for An(:RP) having these properties is defined by 

llwll supi;EA (RPJ,Isl=l<w,i; > 
n 

i; simple 

<II II is called the co-mass norm for l\_n(J!l). ) There is a good argument to 

say that one should adopt this norm in the definition of ~(T) (and indeed 
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this is usually done- see e.g. [FF], [FHl]) since, by virtue of the consequent 

maximaZity of ~(T) it is more likely to yield equality in the general 

inequality ~(T) ~lim inf ~([Mj]) , if {Mj} is a sequence of c1 

submanifolds with weak limit T (see 26.12 below). Nevertheless we will here 

stick to the definition 26.4, because it has certain advantages (e.g. the 

application of the Riesz representation theorem - see below - is cleaner, and 

26.4 does yield the "correct" value in the most important case when T is 

an integer multiplicity current as in §27.) 

Notice that by the Riesz Representation Theorem 4.1 we have that if 

T E Vn(U) satisfies ~(T) < 00 ~ W cc U , then there is a Radon measure 

on u 

~T-a.e., 

26.7 

+ 
and ~T-measurable function T 

such that 

with values in 

T(W) = J < w(x) ,T(x) > d~T(x) 

p + 
A (R ) I ITI = 1 

n 

~T (the total variation measure associated with T) is characterized by 

26.8 ~T(W) supwEVn(U)' lwl~l T(w) ( = ~(T)) 
sptwc w 

for any open W c U . In particular 

~T(U) ~(T) 

Notice that for such a T we can define, for any ~T-measurable subset 

A of U (and in particular for any Borel set A c U) , a new current 

T l A E Vn (U) by 

26.9 (TL A:) (w) = t < w,T> d~T . 

More generally, if ~ is any locally ~T-integrable function on U then we 

can define T L ~ E V n (U) by 



135 

26.10 (Tl ¢) (W) J ¢ < w , E;, > dj.JT . 

Given T E Vn(U) we define the suppoPt spt T of T to be the 

relatively closed subset of U defined by 

26.11 spt T 

where the union is over all open sets W such that T(W) = 0 whenever 

with spt w c W • Notice that if < co for each w cc u 

and if is the corresponding total variation measure (as in 26.7, 26.8) 

then 

spt T 

where spt llT is the support of ].lT in the usual sense of Radon measures 

in U 

Given a sequence {T } c V (U) , 
q n 

we write T _... T 
q 

in U (TED (U)) if 

{T } converges weakly to T in the usual sense of distributions: 
q 

26.12 T 
q 

T <=> lim T (W) 
q 

T(W) 

n 

Notice that mass is trivially lower semi-continuous with respect to 

weak convergence: 

26.13 

if T 
q 

T in U then 

< lim inf ~(Tq) 
q-+= 

l;f open w c u . 

Notice also that by applying the standard Banach-Alaoglu theorem [Roy] 

(in the Banach spaces Mn(W) = {TE Vn(W): £:1w(T) <co} , W cc U) we deduce 

26.14 LEMMA If {T} c V (U) and 
q n 

then thePe is a subsequence {T ,} 
q 

sup 1 M (T ) < 
q::: =w q 

and a T E V (U) 
n 

foP each 

such that 

The following terminology will be used frequently: 

w cc u ' 

T in u . 
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26.15 TERMINOLOGY Given T 1 E v n (Ul) ' T 2 E Vn(U2 ) and an open w c u1 n 

we say Tl = T2 in w if Tl (W) = T 2 (w) whenever w is a smooth n-form 

in Rn+k with spt w c w 

Next we want to describe the cartesian product of currents T 1 E Vr(U1 ) , 

open. We are motivated by the case when 

of dime:ns.i.on r F s re_spectively o ~r.Je "~~'Jant to define T X T E V fU xu ) 
1 2 r+s· 1 2 

in 

such a way that for this special case (when = [ M .] ) we get 
J 

26.16 DEFINITION r+s 
If w E V (U 1xu 2 ) is written in the form 

u2' 

w :::; aa[3 (x, y) dxa 1\ dyf3 (using multi-index notation as in §26) 

r'+s'=r+s 

then we define 

(Notice in particular this gives T1 x T 2 (w1 /\ w2 ) = 0 if 

s' 
w2 EV (U 2) with r'+s' = r+s but (r',s') 1- (r,s).) 

One readily checks, using this definition and the definition of 3 (in 

26.3) that 

26.17 

(Notice this is valid also in case r or s = 0 if we interpret the appropriate 

terms as zero; e.g. if r= 0 then 3(T1xT 2) 

An important special case of 26.17 occurs when we take T E Vn(U) , 

U c RP, and we let [(O,ll] be the 1-current defined as in 26.3 with 

M (0, 1) c R ( (O,l) having its usual orien·tation) . Then 26.17 gives 



137 

26.18 d { [ (0, l)]XT) ({1}-{0}) X T - [{0,1)] X dT 

- {1} X T -· {O} X T - [ (0, 1)] X dT • 

Here and subsequently {p} , for a point p E U means the 

0-current E V 0 (U ) defined by 

26.19 {p} (CD) W(p) 
co 

(C:Cc{U)) 

Next we want to discuss the notion of "pushing forward" a curren·t T 

via a smooth map f : u ...,. v , u c Il v c RQ open. The main restriction 

needed is that fjspt T is p:Poper; that is f-l(K) n spt T is a compact 

subset of U whenever K is a compact subset of V • Assuming this, we 

can define 

26.20 

where is any function E 
00 

C (U) 
c 

'rJ w E Vn(V) , 

such that z;; = 1 in a neighbourhood of 

# spt T n spt f W . One easily checks that the definition of f#T in 26.20 

is independent of z;; • (Of course such z;; exist and l;;f#tll E Vn{U) because 

fjspt T is proper and spt w is a compact subset of V .) 

26.21 REMARKS 

(1) Notice that Clf#T = f#ClT whenever f, T are as in 26.20. 

( 2) If < co for each W c-c u , so that T has a representation 

as in 26.7, then it is straightforward to check that f#T is given explicitly 

by 
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Notice that we can thus make sense of f#T in case f is merely c1 (with 

flspt T proper) o 

(3) If T = [M] as in 26.2, then the above remark (2) tells us that 

if £1 (Mnu) is proper, 

(*) J < w (x), dfx#E; (x) > dHn (x) , 
M 

where s is the orientation for M . Notice that this makes sense if f is 

only Lipschitz (by virtue of Rademacher's Theorem 5.2). If f is 1:1 and if 

Jf is the Jacobian of f as in 8. 3, then the area formula evidently tells us 

that (since dfx#E;(x) = Jf(x)T(f(x)) , where T is the orientation for 

{x E M : Jf (x) > 0}, induced by f ) 

f#T(W) = f < W(y), T(y) > dJ-/n(y) . 
'f(M+) 

(Which confirms that our definition of f#T is "correct".) 

By using the above notions we can derive the important homotopy formula 

for currents as follows: 

If f, g U + V are smooth (V c JRQ) and h [0,1] xu+ V is smooth 

For a linear map 

by 

Then <w 1 

a £ e = ()( # ()( 

v I 
aEI 

n,P 

we define 

a £(e. )A ... A£(e. ) 
()( ll ~ 
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with h(O,x) = f(x) , h(1,x) = g(x) , if T E V (U), and if hI [0,1] x spt T 
n 

is proper, then (by the above discussion) h#( [(0,1)] x T) is well defined 

( E V 1 (V) ) and 
n+~ 

h#({l}XT-{O}XT- [(O,l)]X()T) 

Thus we obtain the homotopy formula 

26.22 

Notice that an important case of the above is given by 

(*) h(t,x) tg(x) + (1-t)f(x) f(x) + t(g(x)- f(x)) 

(i.e. h is an "affine homotopy" from f to g ) . In this case we note that 

by using the integral representation 26.7 and Remark 26.21(2) above that 

26.23 <sup lf-gl•sup E <ldf l+ldg llM(T). 
spt T X sptT X X = 

-+ 
e 1 1\ T and )l [(O, 1 )]XT so by Remark 26.21(2) (Indeed [(0,1)]xT 

we have 

and 26.23 follows immediately.) 
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we now give a couple of important applications of the above homotopy 

formula. 

26.24 LEMMA If T E Vn(U) , ~(T) , ~(3T) < 00 I;J w cc u and if f,g:U+V 

are f I spt T = g I spt T proper , then (Note that 

f#T , g#T are well-defined by 26.21(2) .) 

Proof By the homotopy formula 26.22 we have, with h(t,x) = tg(x) + (1-t)f(x) , 

3h# ([ (0,1)] X T) (W) + h#([ (0,1)] X dT) (W) 

h#([ (0,1)] X T) (dW) + h#([(O,l)] X dT) (W) , 

so that, by 26.23, 

0 , since f g on spt T • 

The homotopy formula also enables us to define f#T in case f is m~rely 

Lipschitz, provided f I spt T is proper and 

In the following lemma we let f(a) = f * ~a , 

a mollifier as in §6. 

26.25 LEMMA If T E V n(U) , ~w(Tl I ~(3T) 

f : U+V is Lipschitz with f I spt T proper~ 

for each w E Vn(V) ; f#T(W) is defined to be 

< 

< 00 I;J w cc u 

-n -1 
~a(x) =a ~(a x) , 

00 I;J w cc u , and 

then lim f (a)T (W) 
a+o # 

this limit; then 

with ~ 

if 

exists 

spt f#Tc f(spt T) and ~(f#T)::: (ess sup _1 lnflln~ _1 (T) 
f (W) f (W) 

I;J w cc v . 

Proof If a, T are sufficiently small (depending on w ) then the homotopy 

formula gives 
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where h: [O,l]XU-+V isdefinedby h(t,x) = ·tf0 (x) + (1-t)fT(x). 

Then by 26.23, for sufficient.ly small 0, T , ~~e have 

::: c sup 1 I f -f I • Lip f 1 

f- (K) flsptT 0 T 

where K is a compac·t subset of V with spt w c interior (K l . Since 

f 0 -+ f unifornuy on compact subsets of u , the result now clearly follows. 

Next 'lle want to define the notion of the cone over a given current 

We want to define this in such a way that if •r = [M] where M 

is a submanifold of sP-l c B.P then the cone over T is just 

CM {A.x: x E M 1 0<A.:::l} . We are thus led generally to make the definition that 

the cone over T 1 denoted 0 ~ T, is defined by 

26.26 

whenever T E Vn(U) with U star-shaped relative to 0 and spt T compact, 

where h : R x:~:l-+ RP is defined by h(t,x) = tx . 

and (by the homotopy formula) 

ao ~ T T - 0 ~ CiT • 

The following Constancy Theorem is very useful: 

Thus 0 ~ T E V l (U) n+ 

26.27 THEOREM If u is open w Rn (i.e. P = n), if u is connected, if 

T E Vn(U) and 3T= 0, then there is a constant c such that T = c[u] 

(using the notation of 26.2 -in the special case n = P , M u ; u is of 

course equipped with the standard orientation e 1 11 ••• 11 en) 

Proof We are given 

(1) T(dw) 0 whenever w E Vn-l(U) . 
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-n -1 § 0 ¢(0 x) , with ¢ a mo1lifier as in 6, and define 

if dist(spt w,CJU) > 0 

a E C00 (U) 
c 

since P = n any w E Vn(U) has this 

form.) 

Now if W cc U and 0 < dist(W,CJU) , we claim there is a constant 

c = c(T,W,0) such that 

(2) 

Indeed this follows directly from the fact that for fixed 0, W the set 

S = {¢0 * w: wE Vn(U), spt we W, J)w\ dLn::: 1} is compact in Vn(U) , relative 

to the nm::;m\ \ By the Riesz Representation Theorem 4.1, we see that (1) 

impLies 

(3) 

a E C 00 (W) 
c 

On the other hand if 

w 

n-1 
spt w c W , w E V ( U) , then 

by (1) • In particular, taking w = a ctx 1 /\ ••• 1\ dxj-l/\ dxj+l 1\ ••• 11 dxn , 

that dw =±Cla/Clxjdx1 11 ••• 11 dxn , and using {3) we have 

0 , j 

so 

for a E c:(U) with spt ac W . This evidently implies that 80 = constant 

(depending on 0) on each component of W The required result now follows 

from (3) by letting 0 + 0 and W t U 
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26.28 REMARK Notice ·that if we merely have ~(ClT) < 00 then the obvious 

modifications of the above argument (note that (3) si:ill holds) give first 

that 

r D.a 8 dL n [ s c sup[a[ ~(3T) 
j J 0 

co 
with c independent of 0 ' for a E· Cc(U) such that dist(spt a, 3U) > 0. 

8 ->- 8 in 
0k 

Thus (see §6 and in particular Theorem 6.3) we deduce that 

L~0c(U) (for some sequence 0k + 0), with 8 E BV10c(U) , and (from (3)) 

(*) 

Using the definition of !::!(3T) , we easily ·then check that ~(ClT) = [ne[ (W) 

for each open W c U (and ~(T) = J [8[ dL 11 ) • 

W n 
n = P, any wE vn-l(U) can be written w = L 

j=l 
j+l n 

dx 11 ••• /\dx for suitable 
00 

a. E C (U) , 
J c 

and 

Indeed in the presen·t case 

( -1) ja. dx 1 11 ••• 1\ dxj-l/\ 
J 

dw = div a dx 1 11 ••• 11 dxn 

for such w (a Therefore by (*) above we have 

3T(w) T(dW) J div ~ 8 dL n 

and the assertion ~(3T) = [ne[ (W) then follows directly from the definition 

of ~w(3T) and [n8[ (in §6). 

In the following lemma, for a 

l S i 1 < i 2 < ... < in S P , 

RP onto Rn given by 

we let denote the orthogonal projection of 

26.29 LEMMA Suppose E is a closed subset of u , u open in with 

L n (pa (E)) 

Then T l E 0 whenever T E Vn (U) With ~(T) , ~W(3T) < 00 for every W cc U . 
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26.30 REMARK The hypothesis Ln(pa(E)) 0 is trivially satisfied if 

Hn(E) = 0 , so in particular we deduce T L E = 0 if T E V (U) with 
n 

~(T) , M (ClT) =w < 00 v w cc u and Hn(E) 0 . 

Proof of 26.29 Let w E Vn(U) . Then we can write w = L w dxa , a 
aEin,P 

l(Tlw)p#dy 
a a 

( dy = dy1 11 ••• II dyn , y 1 , ••• , yn the standard coordinate functions in Rn • ) 

Thus 

(1) T(w) = L p #(Tlw )(dy) 
a a a 

(which makes sense because spt T L wa c spt wa = compact subset of U ) • 

On the other hand 

n-1 (because for any T E V (U) , 

thus i.n fact 

T(W dT) a 

T(d(w(XT)) - T(dwo:/1 T) 

ClT(W T) - T(d!,J !1 T) 
a a 
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Therefore by Remark 26.28 we have 8a E BV(pa(U)) such t.hat pa#(Tl Wa) (T) ~ 

( n J <T, e 1 1\ ••• i\e >8 dL , and hence pa#(Tlwa) L pa(E) ~ 0 because 
pa(U) n a 

L n(p (E)) 
()( 

0 . Then, assuming without loss of generality that E is close~ 

(2) 

s M (TL (JRP~E)) • lw I 
~w a 

for any W such that spt we W c U . 

Combining (1) and (2) we then have 

~(T) s c ~(T L (Rp~ E)) 

so G~at in particular 

(3) 

Letting K be an arbitrary compact subset of E , 

wq cc u , 

~(TL K) 

w cw 
q+l q 

0 . Thus 

00 

n W ~ K ; using (3) with 
q=l q 

~(T L E) = 0 as required. 

we can choose {w } 
q 

w = w 
q 

then gives 

so that 
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§27. INTEGER MULTIPLICITY RECTIFIABLE CURRENTS 

In this section we want to develop ti<e theory of integer multiplicity 

currents T E V n (U) , which, roughly speaking are those currents obtained 

by assigning (in a Hn-measurable fashion) an orientation to the tangent spaces 

T V 
X 

of an integer multiplicity varifold V (See Chapter 4 for terminology.) 

These currents are precisely those called locally rectifiable by 

Federer and Fleming [FF], [FHl]. 

Throughout this section n :::: 1 , k :::: 1 are integers and U is an open 

subset of Rn+k 

27.1 DEFINITION If T E Vn(U) we say that T is an integer multiplicity 

rectifiable n-current (briefly an integer multiplicity current) if it can be 

expressed 

(*) T(W) 

where M is an Hn-measurable countably n-rectifiable subset of u , 8 is 

a locally Hn-integrable positive integer-valued function, and 

is a Hn-measurable function such that for Hn- a.e. point x E M s (x) can 

be expressed in the form T 1 II ••• II Tn , where Tl,. •. ,Tn form an orthonormal 

+ 
T M (See Chapter 3,4.) Thus s<; T l 

X 
basis for the approximate tangent space 

orients the approximate tangent spaces of M in an Hn-measurable way. The 

function 8 in (*) is called the multiplicity and s is called the 

orientation for T • If T is as in (*) we shall often write T; I(M,8,1;) 

Notice ·that there is associated with any such T the integer multiplicity 

varifold V ,)[(M,8) in U . 
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27.2 REMARKS 

(1) If T1 , ·r 2 E Vn(U) are integer multiplicity, then so is 

then E v (U XV) 
r+s 

is also integer multiplicity, and in fact 

(3) If f:U-+V isLipschitz, T=J,(M,8,i;)EVn(U) (MCU) and 

f I sp-i: T is proper, then we can define f #T E V n (V) by 

(*) f#T(w) = J < w(f(x)), dMfx#i;(x) > 8{x) dHn(x) . 
t4 

Since I dMfx# !; (x) I JM.f(x) (as in § 12) by the area formula this can be 

writ·ten 

M 

(* *) f#T(w) J <w(y) I e (x) 
d fx#i;(x) 

) dHn(y) 
' I dMfx#s (x) I ' 

f(M) -1 
xEf (y) ntvi+ 

where M+ = {x E M: JMf (x) > 0} • Furthermore at points y where the approximate 

tangen'c space 

that f(M) is 

\f X E f-l(y) 

for Hn- a.e. 

(***) 

where 

T (f (lv!)) 
y 

countably 

(which is 

X EM ) ' + 

exists (which is Hn- a. e. y by virtue of the fact 

n-rectifiable) and where T M 
X ' 

dMf exist 
X 

again for Hn- a.e. y because T M , dMf exist 
X X 

we have 

±Tl/\ .... 1\Tn 

is an orthonormal basis for Hence (**) gives 

J < w (y) , T1 (y) > N {y) dHn (y) 
f(M) 
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where n(y) is a suitable orientation for the approximate tangent space 

T (f(M)) and N(y) is a non-negative in·teger. N, n in fact satisfy 
y 

M 
d fx#s(x) 

I dMfx#s (x) I 
N(y) n<yl , 

sothatfor Hn-a.e. yEf(M) wehave 

N (y) ::': 8(x) 

and 

N (y) 8(x) (mod 2) • 

Notice that, in case f is c1 , f#T agrees with the previous 

definition in 26.20 (see also 26.21(2)). Notice also that if f : U + W 

is Lipschitz and if V ~(M,8) is the varifold associated with 

T = ~(M,8,i;:) , then 

\lf T ::: llf V 
# # 

(in the sense of measures) with equality if and only if, for Hn- a.e. 

the sign in (***) above remains constant as x varies over 

In particular we have llf T 
# 

11 f v 
# 

in case f is 1:1 . 

A fact of central importance concerning integer multiplicity currents 

is the following compactness theorem, first proved by Federer and Fleming [FF] . 

27.3 THEOREM If V (U) 
n 

is a sequence of integer multiplicity currents 

with 



then there is an integer multiplicity 

such that T in u 0 
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< 00 v w cc u ' 

T E V (U) 
n 

and a subsequence 

We shall give the proof of this in Chapter 8. Notice that the existence 

and a subsequence with is a consequence of 

the elementary lemma 26.14; only the fact that T is an b!teger multiplicity 

current is non-trivial. 

27.4 REMARK No·te that the proof of 27.3 ill the codimension 1 case (when 

P = n+l) is a direct consequence of the Remark 26.28 and the compactness 

theorem 6. 3 for BV functions. 

In contrast to ·the difficulty in proving 27.3, it is quite straight-

forward to prove that if ~ converges to T in the strong sense that . j 

v w cc u ' and if T. are integer multiplicity Vj , 
J 

then T is integer multiplicity. Indeed we have ·the followillg lemma. 

27.5 LEMMA The set of integer multiplicity currents in Vn(U) is complete 

with respect to the topology given by the family {~w}wccu of semi-norms. 

Proof Let {TQ} be a sequence of integer multiplicity currents in Vn(U) , 

and {TQ} is Cauchy with respect to the semi-norms ~ 1 W cc U Suppose 

(8Q positive integer-valued on MQ 1 MQ countably 

n-rectifiable, Hn(MQnw) < oo for each W cc u.) Then 
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(1) 

\;/ P ::: Q , where sw(Q) 4- 0 as Q ->- co and where we adop·t the convention 

;;P = o , eP = o on 

(2) 

U ~ M 
p In particular, since 

and hence BP conver_ges in L1 (Hn) locally in U to an integer-valued 

function 6 . Of course (2) implies 

(3) 

{xE U: 6(x)>O} (1), (2) also imply 

(4) 

andhenceby(3) t;P convergesin L1 (Hn) locallyin U to a function 

with values in A (1Rn+k) with I c I = 1 and " · 1 n s s s~mp e on 

and (by (3)) T M 
X + 

except for a set of measure ::: sw(Q) in M+n W • It follows that 

l;(x) E li.n(TxM+) for Hn-a.e. x EM+ and we have shown that ~W(TP-T)->- 0, 

where T = ~(M+,6,i;) is an integer n-current in U . 

Finally, we shall need the following useful decomposition theorem 

fo:r· codimension 1 integer multiplicity currents. 
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27.6 THEOREM Suppose P = n+1 (i.e. . . -.nn+l ) u 1A3i open 1.-n """ and R is an 

integer multiplicity current in Vn+1 (U) with ~(3R) <"" '<I w cc u 

T = 3R is integer multiplicity. and in fact we can find a decreasing 

sequence of Ln+1-measurable sets {uj}~=~ of locally finite perimeter in 

u such tr.at (in u 

00 0 
R = I [uj] - I [v .n 

j=1 j=-oo J 
v. u~u., j:so, 

J J 

00 

T \ 3[u .] L. ' j=-00 J 

and 
00 

in particular 

~(T) ) ~w<Cl[uj]l 
]=-co 

'<I w cc u . 

27.7 REMARK 

n~1 j-1 1 j-1 j+l n+l 
*g = t., (-1) g.dx i\ • •• i\ dx i\ dx i\ • •• i\ dx , so that 

j=1 J 

Then 

d * g = div g dx 1 i\ ••• i\ dxn+ 1 Then for any L n+1 - measurable A c U we have 

3[A] (*g) [A] (d*g) 

and hence by definition of [DXA[ (in §6) and ~(T) (in §26) we see that 

(*) A has locally finite perimeter in U ~(Cl[A]) < oo 'tj w cc u , 

and in this case 
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(**) 

{ 
~~lA]) - f.ioxAI v w cc u 

3[A] = *VA , lnxAI a.e. in U . 

Here VA is the inward unit normal function for A (defined on the reduced 

boundary 3*A as in 14.3). 

Proof of 27.6 R must have the form 

where V is an L n+l_measurable subset of U and t;, (x) 

for each x E V Thus letting 

{ 
e (x) when 

B(x) -6(x) when 

0 when 

we have 

(1) R(w) 

xE V and t;,(x) 

xE V and t;,(x) 

xf V , 

J ae dLn+l , 

v 

+e1 A 

-e1 A 

w =a dxlA ••. A dxn+l E Vn+l(U) and (cf. 26.28) 

(2) 

(and 6 E BVloc(U)) . 

Define 

u. 
J 

v. 
J 

{x E U: e (x) ::: j} , j E ~ 

{xE U: S(x) :S-1-j}, j;::O 

u~u . l . 
-J 

•.• A en+l 

.•• A en+l 

v w cc u 



Then one checks directly that 

-
(3) e E 

j=l 

(XA characteristic function of 

00 

(4) R = E [ujn -
j=l 

Xu. 
J 

A 

I 
j=O 
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L Xv 
j=O j 

A c U 

[V .] in 
J 

and hence by (1) 

u 

Since T(W) dR(W) R(dW) w E Vn(U) we then have 

(5) T 3R = E 
j=l 

co 

E 
j=-oo 

d [ u.] 
J 

a[u.] , 
J 

I 
j=O 

a [v .] 
J 

so we have the :r·equired decomposition, and it remains only to pro•re ·that 

each U. has locally finite perimeter in U and that the corresponding 
J 

measures add. 

To check this, take \)jj E c1 (JR) with 

where E: 

with I gJ 

(6) 

E 

::: 

(0,~) 

a 

J div 
u 

t ::: j-l+E: 1/! . ( t) 
J 

1 I t ::: j-E: 

Then if a E 

we have (since 

N 

g L X 
j=M uj 

00 1 , .•. ,gn+ll gjE C00 (U) C (U) and g = (g , 
c c 

xu. 1/Jj 0 8 l;j j) that for any 

J 

I N 
div g L 1/!. o 8 dLn+l 

U j=M J 

lim J div g I 1/!. 0 e (0 ) dL n+l 
0+0 u j=M J 

-lim J g•gradG (0 )1/1 ~ (El (CJ)) dL n+l 
0+0 u J 

< (1+3E:) lim f a\grad](0 )\dLn+l 
0+0 u 

M S N 

(1+3s) Iu aJoeJ = (1+3s) fu ad~T 

I 
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by Lemma. 6.2 and (2). (Here e(O) are the mollified functions corresponding 

Then, taking M = N , we deduce that each U, has locally finite 
J 

perimeter in U On the other hand taking M = -N and defining 

N N 
I [u,]- I [v,] 

j=l J j=O J 
we see that (with g as in 27 o 7) (6) implies 

and hence, wi'th TN 

(7) 

00 

a :: 0 ' a E C (U) 
c 

I~ ( d*g) I :S ( 1+3E:) t ad)J.T ' 

()~' 

Ju ad)J. :S f adllT If N 
TN u :::: 1 I 

On the other hand by 14.1 we have 

N 

fu div 
dLn+l (8) ~(d*g) I g Xu, 

j=-N J 

I J V o •g dHn 
j=-N 3*u 0 J 

J 

where vo is the inward unit normal for Uo and a*uo is the reduced 
J J J 

boundary for Uo (see §14 and in particular Lemma 14.3). 
J 

By virtue of the 

fact that we see from l4o3(2) that on 3*u 0 n a*u 
J k 

If j,k . Hence (8) can be written 

N 00 

where hN OL x3 *u, and where \) is defined on u 3*u 0 by \) = \)0 

j=-co J J J=-N J co 

on <l*u, Since I vI = 1 on u a*u 0 this evidently gives 
J j=-00 J 

fa d)l 
TN fa ~ dHn 

N 

I J a dHn 
j=-N (J*U, 

J 
N 

fa I dvarr u J 
j=-N J 
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Letting N + 00 we thus have (by (7)) 

00 

Since the reverse inequality follows direc·tly from (5), t..h.e proof is complete. 

27.8 COROLLARY Let R be integer multiplicity E Vn+l (U) , U c Rp P ~ n+l • 

and suppose there is an (n+l) -dimensional c1 submanifold N of lRP with 

spt R c Nnu , Suppose further that T = ClR < 00 'tj w cc u 

Then T ( E Vn (U) l is integer multiplicity and for each point y E Nnu there 

is W CC U r y E ~~ 
y y 

and Hn+l measurable subsets {u. }''" 
J j=....OO 

with 

and with the following identities ~ <a[u.Til 
- y J 

< 00 'if j , 

holding in w 
y 

R 

T 

00 

I 
j=l 

00 

I 
j=-00 

I 
j=-00 

00 

[u. n I [u~u . n 
J j=O 

-J 

a[u.] 
J 

Proof The proof is an easy consequence of 27.6 using local coordinate 

representations for N . 

§28. SLICING 

We first want to define the notion of slice for integer multiplicity 

currents. Preparatory to this we have the following 16lli~a: 
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28.1 LEMMA If M is Hn~measurable, countably n-rectifiabZe, f is Lipschitz 

on JRn+k and M + - {x E M: I V1f (x) I > o} , then for L 1-aZmost aZZ t E JR the 

following statements hold: 

(1) Mt - f- 1 ct> n M+ is countably Hn-1 ·r bl -rect1- ·1-a e 

(2) For Hn-1 - a.e. X E Mt , TxMt and T M both exist, TxMt is an 
X 

(n-1)-dimensional subspace of TM and in fact 
X 

(*) 

Furthermore for any non-negative Hn-measurable function g on M we 

have 

Proof In fact (1) is just a restatement of Remark 12.8(2), and (2) follows 

from 11.6 together with the facts that for L 1 -a.e. t E JR and Hn-1 - a.e. 

(1) 

and 

(2) 

V11f(x) E T M 
X 

(by definition of '1/Mf in §12) 

1;1 T E T M 
X t 

(This last follows for example from the definition 12.1 of V1f(x) . ) 

The last part of the lemma is just a restatement of the appropriate version 

of the co-area formula (discussed in §12). 

28.2 REMARK Note that by replacing g (in 28.1 above) by g x characteristic 

function of {x: f (x) < t} we get the identity 
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J
··t 

-00 

so that the left side as an absolutely continuous function of t and 

d f 
dt J Yiil{f (x) <t}' 

a.e. t E :JR. 

.. . . n+k 
( U open :en R cUi let. f 1>2 Lipschit:.z: in U and lei: be defined 

f-£ n ~- a " e .. in Ivl by 

if V!Ylf (x) ,, 
u 

8 (x) 
-i-

(1c) if (x} =l 0 

For t.he 

- a.e. xE IYit and such that (*) of 28.1 holds, '"e have 

28.3 

and r~s unit length (for Hn-1 - a.e. X E Mt) Here we use the notation 

t.hat if v E and w E ·then v L Y.T E !\ (T !'!) 
n-1 x 

is defined by 

<vlw,a> 

Using ·this nr.Ytation. ":;'ie. can nov; define ·the notiori of a slice of T by 

f 1rJe cont.i.nue sco assume 'T i: 

28.4 DE FIN IT ION 
1 

For the (L ""- -almos·t a.ll 

exist and 28 "1 ("k} holds -a,e~ xE \"li i:.h i:he nota·tion int1:-oduced. 

above (an.d bearing in mind 28 .,3) v.re define t:he integer mul·tiplicii:y curren·t 
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where 

So defined, <T,f,t> is called the sliae of T by f at t . 

The main facts concerning the slices <T,f,t> are given in the following 

lemma: 

28.5 LEMMA 

(1) For eaah open w c u 

(2) If ~(ClT) < oo 'tJ w cc u, then for L1 -a.e. t E :R 

(3) If 

<T,f,t> = Cl[Tl {f<t}] - (ClT) L {f<t} • 

ClT is integer multiplicity in V 1 (u) , then for n-

<aT,f,t> = -a<T,f,t> • 

Proof (1) is a direct consequence of the last part of Lemma 28.1 (with g= 6+ ) • 

To prove (2) we first recall that, since M is countably n-rectifiable, 

we can write (see Remark 11.7) 

(1) 

where Mi n Mj = 0 

an embedded c1 

00 

M = U Mj , 
j=O 

'tJ i ;I j , 0 , and M. c N. 
J J 

j ::: 1 , 

submanifold of 
n+k 

:R • By virtue of this decomposition and 

the definition of VM (in §12) it easily follows that if h is Lipschitz 

on Rn+k and if are the mollified functions (as in §6) then, as 

(j + 0 , 



(2)· 

that ' (0) 
11 h 

and let. 

y 8) 
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') 

("t,Ic.ah: cvr1\7e:cge:t\c~::: in L-~ 

since N. is 
J 

(Incit:ed l:o 

in place of 

by smooth funct:ions and usin9 the fact 

1 

linear 

0 

and appl]t' ·::1:~:: above t.o h y.f . Then letting w E 

'T'd'' (0 )· '\ . '- '\.n w,~; 

T(dh (o) Awl + T(h (0 ) dtu) 

1~hen usin9 the int.e~rraJ. representatiox1s of "che form 26 .. 7 for 3~1~ vJe see tha·t 

(3) (3T L h) (w) 
(0'~ 

lim'r(dh '11w) + ('.rlh)(d'.!J). 

o+o 

Since t; (x) orients TxM , 'de have 

(4) 

(where 

Thus 

<,- ( ' dh (0) ' -t; X) 1 "' !\ 0)/ <"~:"( ) idh(o) ( , , T T) ·,s x , .. XJ) 1\ w 

T(dh (O) fl W) 

<t; (x), (dh ( 0 ) (x)) T fl w> 

r 
J <t; (x), (dh (O) (x)) T 1\ w> 8 dH0 

M 

r <t; (x) L V'1h (O) (x) ,w> 8 dHn 

JM 
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so that by ( 2) 

(5) lim. T (dh (G) 1\ W) = J <~ (x) L Vlh(x) ,w> 8 aHn • 
a+o M 

By definition 12.1 of VMh and by the chain rule for the composition of 

Lipschitz functions we have 

(6) on M 

(where we set y' (f) = 0 when f takes ·the "bad" values t or t-s 

note that 17Mh(x) = lll"lf(x) = 0 for Hn- a.e. in {xE M: f(x) = c} , 

c any given constant) . 

Using (5), (6) in (3), we thus deduce 

(ClT L h) (W) -1 J -s M <s L Vlf,w> 8 clHn 
{t-s<f<t} 

+ (TL h) (dw) 

Finally we let s + 0 and we use Remark 28.2 with g = 8 <~L Vlt;jVMfj ,w> 

in order to complete the proof of (2); by considering a countable dense set 

of wE Vn(U) one can of course show that 28.2 is applicable with 

g = 8 <~L llMf/jTfj,tu> except for a set F of t having L1-measure zero, 

with F independent of ttl • 

Finally to prove part (3) of the Lheorem, we first apply part (2) with 

3T in place of T . Since Cl 2T = 0 , this gives 

<3T,f,t> Cl [ (ClT) L {f<t}l . 

On the other hand, applying 8 to each side of the original identity 

(for T) of (2) , we get 
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3 [ (ClT) L {f<t}] -a< 'r,f,t> 

and hence (3) is established. 

t<>!otiva·ted by 'che above discussion we are led to define slices for an 

arbitrary current E Vn (U) which, together with its boundary, has locally 

finite mass in U Specifically, suppose !1w(T) + £1r.v(aT) < co if w cc u . 

Then \Ve define u slices" 

and 

28.7 

<T,f,t_) 

('I',f,t > 
+ 

a <T L {f<t} J - <aTl L{f<·t} 

-3(T L{f>t}) + (3T)L {f>t} . 

(ccnd the corrunon value is deno1:ed (T, f, t> ) 

for all but the couni:ably many values of 'c such that ~(T L {f=t}) 

+ ~( (C)T) L{f=t}) > 0 . 

The importan·t properties of ·the above slices are tha'c if f is Lipschitz 

on U (and if we continue to assume ~W(T) + ~W(3T) < 00 'if W cc U) , then 

28.8 spt (T,f,t±> c spt T n {x: f(x)=t} 

and, 'if open W c U , 

1 
ess supwlnfl 

-1 
£1w(<T,f,t+>l s lim inf h £1w<T L{t<f<t+h}) 

h+O 
28.9 

l £1w ( <T, f, t _>) s ess supwlnfl lim inf h-l M (T L { t-h<f<t} l 
MO 

=W 

Notice that M (T L{f<t}) 
=W 

is increasing in hence is differentiable 

for ·t E JR and ~ £1w<T L{f<t})dt s £1w<T L{a<f<b}) . Thus 

28.9 gives 



28.10 

162 

rb ~(<T,f,t±>)dt ::': ess supWJofJ ~(Tl {a<f<b}) 
a 

for every open W c U . 

To prove 28.8 and 28.9 we consider first the case when f 

take any smooth increasing function y : R -+ R+ and note that 

(*) a (Tt yo f) (W) - ( (dT) L yo f) (w) 

(T L yo f) (do) - ( (dT) L yo f) (W) 

T(yofdJ.l) - T(d(yofW)) 

- T (y I (f) df A W) • 

Now let E > 0 be arbitrary and choose y such that 

y(t) = 0 for t < a , y (t) = 1 for 
l+E 

t> b , o:::y• (t) :::b-a for 

is 1 c 

a< t< b • 

Then the left side of (*) converges to < T,f,a+> if we let b -1- a , and 

hence 28.8 follow.s because spt y' c [a,b] . Furthermore the right side R 

of (*) evidently .satisfies 

(spt WCW) 

and so we also conclude the first part of 28.9 for f E c1 we similarly 

establish the second part for f E c1 . To handle general Lipschitz f we 

simply use f(O) in place of f in 28.6, 28.7 and in the above proof, then 

let a -1- 0 where appropriate. 

§29. THE DEFORMATION THEOREM 

The deformation theorem, given below in Theorem 29.1 and Corollary 29.3 

is a central result in the theory of currents, and was first proved by 

Federer and Fleming [FF] • 
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The special notation for this sect.ion is as follows: 

lSn.,l~k, 

C = [0,1] '<, •• X [0,1] (Standard unit Clilie in 1Rn+k) 

z;::;n+k = {z = ( n+k 
I ••qZ l 

L. 
J 

j-skele·ton of the decomposition 

collec'cion of j-·faces in Li 
J 

I' u (z+C) 

{z + F: z E F is a closed j-face of C} 

{ pF ' F E L .} F p > 0 
J 

denote the 

(n+l) -dimensional sub spaces of Rn+k which contain an (n+l) -face of the 

standard cube C . 

denotes the orthogonal projection of 

29.1 THEOREM (Deformation Theorem, unsealed version) 

Rn+k onto S., j=l, .. ql1-
J 

Suppose T is an n-·cv;rrent in 1Rn+k (i.e. T E V (Rn+k)) with 
n 

~(T) + ~(3T) < oo Then we can write 

T - p 3R + S , 

where P , R , s satisfy 

p 

with 
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!';!(R) S C!';!(T) , !':J(S) S c~(()T) 

(c=c(n,k)), and 

spt P U spt R c {x dist (x, sptT) < 2/n+k} 

spt ()p U spt S c {x dist (x, sptClT) < 2 ln+k } 

In case T is an integer multiplicity current, then P, R can be 

chosen to be integer multiplicity currents (and the SF appearing in the 

definition of P are integers). If in addition 3T ~s integer 

* multiplicity , then s can be chosen to be integer multiplicity. 

29.2 REMARKS 

(1) Note that this is slightly sharper than the corresponding theorem 

in [FF], [FHl], because there is no term involving ~(3T) in the bound for 

~(P) 

(2) It follows automatically from the other conclusions of the theorem 

that !':J(3S) S C!':J(3T) Also, it follows from the inequalities 

~(3P),!':J(S) ::: c~(3T) that S = 0 and ()p = 0 when 3T = 0. 

The following "scaled version" of 29.1 is obtained from the above by 

first changing scale 
-1 

X + p X 1 then applying 29.1, then changing scale 

back by x + px . 

* Actually (JT automatically is integer multiplicity if T is integer 

multiplicity and ~(3T) < oo see Theorem 30.3. 
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29,3 COROLLARY (DefOl~mation Theorem, scaled version) 

Suppose T , ClT woe as in 29, 1, and p > 0 • Then 

T - p 3R + S ; 

vJher•e P , R , s satisfy 

p 

llt(P) :S c~(T) 1;:\ (CJP) < (CJT) 

t!(R) < cp!;:f(T) 1;:\(Sl < cp!J(ClT) 

and 

sp·t P U spt R c {x dist. (x, spt 'l') < 2 v'n+k p} 

spt 3P U spt S c {x dist(x,sptClT) < 2Mk p} 

As 1:n 29 .1, ·in case T is integeP muZUpZiaii;y, so are P, R _; if 

CJT is integer multiplicity then so ·is s , 

The main step in the proof of the deformation ·theorem IN"ill involve "pushing" 

T onto the n-skeleton Ln via a certain re·traction map ~! • We first have 

·to establish the existence of a suitable class of retraction maps. This is 

done in the follorN"ing lemma, in vThich we use the notation: 

q centre point of C = (!,1, ... ,!) , 

Lk-1 (a) a+ ~-1 

Lk-1 (a;p) = {x E JRn+k 

(a a given point in B 1 (q)) 
;;: 

dist(x,Lk (a))< p} (pE (0,;!)) . 
-1 

Note that dist(Lk-l (a) , Ln) ::: ! for any point a E Bi (q) . 
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29.4 LEMMA For every a E s 1(q) there is a ZoaaZZy Lipsahitz map 

n+k n+k 
1/J : lR - ~-l (a) + E. - ~-l (a) 

suah that 

jDlJ!(x)j::; c/p, Ln+k_a.e. xEC- ~-l(a;p), pE (O,l), 

(c = c (n,k)) , a:nd suah that 

1/J (z+x) = z+l/J (x) , x E E.n+k- ~-l (a) , z E ~n+k 

Proof We first construct a locally Lipschitz retraction 1/!0 c- Lk-l (a) 

onto the n-faces of C • This is done as follows: 

Firstly for each j-face F of C , j ::: n+l , let aF E F denote the 

orthogonal projection of a onto F , and let 1/JF denote the retraction of 

onto which takes a point 

suchthat xE{aF+A(y-aF) :A.E(O,l]} 

x E F- - {a } 
. F to the point y E oF 

(Thus 1/JF is the "radial 

retraction" of F with aF as origin.) Of course 1/JFjoF = J;0F • Notice 

also that for any j-face F of C , j ::: n+l , the line segment aaF is 

contained in Lk_1 (a) ; in fact if JF denotes the set of ~ such that S~ 

(see notation prior to 29.1) is parallel to an (n+l)-face of F , then 

(because aaF is orthogonal to F , hence orthogonal to each S~, i E JF 

we have 

(1) c 

and this is contained in Lk_1 (a) 

(2) ~-l(a) 
N 
u 

i=l 

because (by definition) 



tp ( j) ,- { 1 
U-[F ~ aFJ F is a j-face of c} 

-l- u {(;: G is a (j-1) -face of c} 

by setting 

i) 1-lj! - F '" {a_} = ~J • 
l:'' F 

(Notice tha·t ·then is locally Lipschitz on i·ts domain by virtue of ·the 

fac·t that each lj!F is the identi'cy on 3F , F any j-face of C • ) 

Then the composite tp (n+l) _, lj! (n+2 ) o ••• o l/1 (n+k) makes sense on 

·~ Lk-l (a) (by (1)), so we can set 

w, 
0 

_ ,1 (n+l) ,1, (n+2) U (n+k) I C •. ( , - -f o ., o ••• o \ ,_ '"'k-1 a, 

No·tice that ljJ 0 has 'che additional property 1:hat if 

z E zzn+k and x, z+x E C , then 1)!0 (z+x) = z+l)!0 (x) • 

(Indeed x , z+x E C means that either x , z+x are in Ln (where 1)!0 is ·the 

identity) or else lie in the interior of parallel j-faces F1 , F 2 = z+F1 

(j 0:: n+l) of c •.vith z orthogonal to and a"P = z+aF . ) It follows 
- 2 -1 

·that we can then define a re'craction lj! of all of C ~ Lk-l (a) onto Ln 

by setting 

\j!(z+x) z+1)!0 (x) , xE c~~_1 (a) , zE zzn+k 

We now claim that 

(3) 
n+k 

on JR ~ Lk_1 (a,p) , c=c(n,k) 

(This will evidently complete the proof of the lemma.) 
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We can prove (3) by induction on k as follows. First note that (3) 

is evident from construction in case k = 1 • Hence assume k ::: 2 and assume 

(3) holds in case k- 1 replaces k in the above construction. Let x be 

· f · · (C) L. ( ) 1 t y -- ,,,n+k (x) ("'n+k 1.· s the any po1.nt o 1.nter1.or - k-l a;p , e ~ ~ 

radial retraction of c - {a} onto ac) , and let F be any closed 

(n+k-1)-face of C which contains y • 

Suppose now new coordinates are selectE!d so that F c JRn+k-l x {O} c JRn+k, 

and also let ~-2 (a) = Lk-l (a) n lRn+k-l X {0}) • By virtue of (1) we have 

aF E ~-l(a) , hence 

Let be the orthogonal projection of 

so that aF = pF(a) 

by (2) we deduce 

(5) 

onto ( ::J F) I 

Furthermore by definition of y 
ly-al 

we know that y-a = lx-al (x-a) and 

hence, applying pF , we have 

y-a = ~ p (x-a) 
F 1x-a1 F 

Hence since I y-a I ::: 3/4 , we have 

(6) 

-Now let 1jJ be the retraction of F - ~-2 (a) onto the n-faces of F 

-
( \j.l defined as for 1jJ but with (k-1) in place of k aF in place of a , 

n+k-1 . R 1.n place of in place of ~-l(a)) 

By the inductive hypothesis, together with (4), (5), (6) we have 
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(7) 16~ <Y> I ::: c , (n~ <Y> I 
dist(y,Lk_2 (a)) 

:S c (4 / 3 ) c lx-al 
_Jy-aF I I Pp (x-a) I 

:S (4 / 3 )c . lx-al 
d1.st(x,Lk:_l (a)) 

Also, by the definition of ~n+k we have that 

(8) I D~n+k (x) I :S _c_ , I D~n+k (x) I 
1x-a1 

Since ~(x) ~ o ~n+k (x) , we have by (7) , (8) and the chain rule that 

ln~<x> I ::: 16 ~(y) I ln~n+k(x) I < _c_ lx-al 
- lx-al dist(x,Lk-l (a)) 

c 
dist(x,Lk-l (a)) 

Proof of Deformation Theorem 

We use the subspaces SJ., ••• ,SN and projections p 1 , ... ,pN introduced 

at the beginning of the section. Let F. = C n S. 
J J 

(so that F. 
J 

is a closed 

(n+l)-dimensional face of C), let xj be the central point of Fj , and 

for each j = 1, ••• ,N define a "good" subset 

and 

(1) ~(T l 
-1 U p. (B (g+z))) 

n+k J p 
zE:?Z ns. 

J 

(S to be chosen, G.=G.(S)) 
J J 

G . c F . n B 1 (x . ) 
J J • J 

by 

'<I pE (0,!) 
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We now claim that the "bad" set Bj = FjnB1(xj) ~ Gj 

Ln+l_measure (taken in Sj) small; in fact we claim 

in fact has 

(2) 

which is indeed small if we choose large S. To see (2), we argue as follows. 

For each b E Bj there is (by definition) a pb E (O,i) such that 

(3) ~(Tl 
-1 

U p. (B (J::tt,z))} ::: 
n+k J Pb 

zE:iZ ns. 
J 

and by the covering theorem 3.3 there is a pairwise disjoint subcollection 

of the collection such that 

(4) 

But then, setting b = b~ in (3) and summing, we get 

\ n+l < 0 -1) 
(i.e. L p ~ - "' , 

~ 

(*) 

{p:~ OJn+z}}n=l 2 is a pairwise disjoint 
] p~ "' "' , , ••• 

zE :;zn+kns . 
J 

(using the fact that 

collection for fixed j ) • Thus by {4) we conclude 

Ln+l(B.) < 0 -1 5n+lw 
J - "' n+l ' 

which after trivial re-arrangement gives (2) as required. Thus we have 

and it follows that 

(5) 

where q is the centre point (i, ... ,i) of C . (So p. (q) =X •• ) 
J J 

( *) We of course assume T 'I 0 • 
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Then selecting S large enough so that 

see from (5) that we can choose a point a E 

{ n+k 
Lk-l (a)= a+Lk~l, ~-l (a;p) = xE R : dist(x,Lk-l (a))< p} (as in the proof 

of 29.4) and note that in fact 

~-l(a;p) 
-1 U , p. (B (p. (a) +z)) 

N 
u 

j=l n+k J p J 
zE~ ns. 

J 

Then since p. (a) E G. 
J J 

we have (by definition of 

(6) 'rJ p E (0,!) 

Indeed let us suppose that we take s such that 
n+l -1 

20 wn+l N S 

Then more than half the ball B!(q) is in the set 
N -1 n P. <G.> 

j=l J J 

< w /2 (n+k) 
n+k 

and hence, 

repeating the whole argument above with 3T in place of T , we can actually 

select a so that, in addition to (6), we also have 

(7) 'rJ p E (O,!) • 

Now let ~ be the retraction of 
n+k 

R ~ Lk-l (a) onto Ln given in 

Lemma 29.4, and let 

(8) Tp TLLk_1 (a;p), (3T)p TL~_1 (a;p), 

so that by (6), (7) 

(9) M(T ) 
= p 

n+l n+l 
::; cp ~(T) , ~( (3T) p) ::0: cp ~(3T) 

Furthermore by 28.10 we know that for each p E (O,!) we can find 

p* E (p/2,p) such that 

(10) ~(<T,d,p*>) < ~ M(T -T ) ::0: cp~_(T) , 
- p = p p/2 
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where d is the (Lipschitz) distance function to Lk-l (a) 

(d(x) dist(x,Lk~l(a)),Lip(d)=l) and <T,d,p*> isthesliceof T by 

d at (Notice that we can choose such that (10) holds and such 

that <:r,d,p*> is integer multiplicity in case T is integer multiplicity 

see Lemma 28.5 and the following discussion.) 

We now want to apply the homotopy formula 26.22 to the case when 

n+k 
]R Lk_1 (a;o), a> 0 . Notice that, h is only 

Lipschitz on :Rn+k 'V L (a ·0) 
k-1 ' so we define h# , ~# as in Lemma 26.25. 

(We shall apply h#, ~# only to currents supported away from [0,1] XLk_1 (a) 

and Lk_1 (a) respectively.) 

Keeping this in mind we note that by 29.4, (6) and (7) we have 

(11) 

and 

(12) 

Similarly by the homotopy formula 26.22, together with 26.23 and (6), (7) 

above, we have 

(13) 

and 

(14) 

Notice also that by (6), (10) and 26.23 we have 

(15) 

and 
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(16) ~(h#([(0,1)]x <T,d1p*>)) ~ cp~(T) 

Next note that by iteration (11), (12) imply 

(17) { 

~(~#(Tp-Tp/ 2V)) ~ 2cp~(T) 

~(ljJ# ( (3T) p- (3T) P/2v)) ~ 2cp~(3T) 

for each integer v ~ 1 1 where c is as in (11)1 (12) (c independent of 

V ). Selecting p = i and using the arbitrariness of V 1 it follows that 

(18) { 

~(ljJ#(T-Ta)) ~ c~(T) 

~(~#(3T-(3T)a)) ~ c~(3T) 

for each a E (0 11) (with c independent of a ) • 

Now select p = pv = 2-v and p~ E [2-v-1 12-v] such that (10) 1 (15) 1 

(16) hold with in place of then by (15) 1 (16) 1 (17) 1 (18) we 

have that 

are Cauchy sequences relative to ~ 1 and ~(<T 1 d 1 p~>) + ~(ljJ#<T,d,p~ ) + 0 

Hence there are currents Q, s1 E Vn (JRn+k) and R1 E Vn+1 (:Rn+k) such that 

(19) 

(lim M(Q-•1• (T-T )) = 0 
= "'# p* v 

0 

lim ~(R1-h#([(0,1)] X (T-Tp*)) = 0 . 
v 

Furthermore by the homotopy formula and 26.23 we have for each V 



(20) T-T p* 
\) 

Since dTP~ = (dT)p~- <T,d,p~> 

thus get that 
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(by the definition 28.6, 28.7 

(21) T-Q = dRl + s1 • 

of slice) we 

(Notice that Q, R1 are integer multiplicity by (19), 28.4, 28.5 and 27.5 

in case T is integer multiplicity; similarly s1 is integer multiplicity 

if aT is.) 

Using the fact that 1/J retracts n+k 
:R - Lk-l(a) 

(by 26.23) that spt 1/J#(T-TP*l c Ln , and hence 
\) 

(22) spt Q c Ln 

We also have (since 1/J(z+C) c z+C 'rJ z E :?Zn+kl that 

onto L we know 
n 

(23) { 
spt R1 U spt Q c {x: dist(x,spt T) < ln+k } 

spt s1 c {x: dist(x,spt aT) < /n+k } 

and, by (18), (19), we have 

(24) l M(Ql ::: cM{T) , !::!<R1l ::: 

l::!(Sl) ::0 C!::!(dT) • 

Cl::!(T) 

Also by (18) and the semi-continuity of !::! under weak convergence, we have 



( 25} ~(()Q) s lim inf 

lim inf 

s c~(ClT) 

Now let F be a given face of 
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~(31/J# (T-Tp*)) 
v 

1').(</J,.Cl (T-T *)) 
- rr Pv 

L (Le. 
,n 

0 

and let F interior of 

F • Assume for the moment that F c JRn x{o} ( c JRn+k) , and le·t p be the 

orthogonal projection onto JRn x{o} . By construction of ljJ 'lle know that 

po 1p = 1/J in a neighbourhood of any point y E F . We therefore have (since 

Q is given by (18)) that 

(26) 

It then follows, by the obvious modifications of the arguments in the proof 

of the constancy theorem (Theorem 26.27) and in Remark 26.28, that 

( 27) (Q L Fl <wl 

(28) 

L < e 1 11 ... 11 en,IJJ(X) > 8F(x)dLn(x) 

F 

L leF\dLn, ~((3Q)LFJ 
F 

Furthermore, since 

(Q L F- i3[F]) (iJJ) J (8F-i3) < e 1 II ... 11 en,IJJ(x)>dL n(x) 
0 

F 

(by (27)), we have (again using the reasoning of 26.28) 

(29) 

where Xo 
F 

J ~(QL :F- i3[F]l = L JeF- 13\dLn 

1 ~(3(QLF-i3[F]ll: J ln<xo<8F-Sll\, 
Rn F 

characteristic function of F 
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Thus taking S = BF such that 

(30) { n{ o } nr o } 1 min L X E F : eF:::: B u L tX E F : eF (x) ::: 8 :::: 2 

(which we can do because Ln (F) = 1 ; notice that we can take BF E 2Z if 

(31) 

is integer-valued), we have by 6.4, 6.6, (28) and (29) that 

I ~(QlF-B[F]):::cJF jneFj=c~(Qllh 
l £;'!(3(QLF-6[F]))::: c L JneFj=c~(QLF) 

F 

We also have by 26.30 

(32) Q l 3F = 0 . 

Then swmning over F E Ln and using (31), (32) we have, with P 

that 

(33) 

Actually by (30) we have 

(34) 

I ~(Q-P) ::: c~(3Q) 

1 ~(3Q-ClP) < c~(ClQ) 

\BFJ ::: 2 Jo JeFjdLn , 

F 

and hence (using again the first part of (28)), since £;'!(P) 

(35) ~(P) :5 C£;'!(Q) 

Notice that the second part of (33) gives 

(36) ~(dP) :5 C£;'!(3Q) 
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Finally we note Lhat (21) can be written 

(3 7) T-P 

Setting R = R1 , S = + (Q-P) ·the theorem now follovlS immediately from 

(23), (24), (25) and (33), (35), (36), (37); the fact that P, R are integer 

multiplicity if T is should be evident from ·the rew.arks during the course 

of the above proof, as should be the fact tha'c s is integer multiplicity 

if T !i dT are~ 

§30. Jl,PPUCP1TIONS OF THE DEFORi'lATION THEOREivJ 

We here establish a couple of simple (but very important) applications 

of the deformation ·theorem, namely ·the isoperimetric theorem and the weak 

polyhedral approximation theorem. This latter theorem, when combined with 

the compactness theorem 27.3 implies the important "boundary rectifiability 

theorem" (30.3 below), which asserts that if T is an integer multiplicity 

current in Vn(U) and if ~(3T) < oo V W cc U , then ClT ( E V n-l (U) ) is 

integer mutiplicity. (Notice that in the case k = 0 , ·this has already 

been established in 27.6.) 

30.1 THEOREM (Isoperimetric Theorem) 

Suppose V ( n+k, 
T E n-1 JR ' is integer multiplicity, n ~ 2 , spt T 

and 3T= 0 . Then there is an integer multiplicity current 

with spt R compact, 3R = T ~ and 

where c = c(n,k) . 

n-1 
n 

~(R) S c ~(T) , 

is compact 
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Proof The case T = 0 is trivial, so assume T # 0 . Let P, R, s be 

integer multiplicity currents as in 29.3, where for the moment p > 0 is 

arbi tra.ry, and note that S = 0 because CiT= 0 . Evidently (since 

(*) 

V FE Fn-l (p)) we have 

n-1 
t;j(P) = N(p)p 

for some non~negative integer N {p) • But since ~ (P) :::: c !1 (T) (from 29. 3) 
- 1 

we see that necessarily N(p) 
n~j_ 

0 in .(*) if we choose p= (2c~(T)) . Then 

P = 0 and 29.3 gives T = 3R for some integer multiplicity current R 
_1_ 

with spt R compact and ~(R) s cp~(T) c' (~(T))n-1. 

30.2 THEOREM (Weak polyhedral approximation theorem) 

Given any integer multiplicity T E V (U) 
n 

there is a sequence {Pk} of currents of the folm 

(**) 

v w cc u ~ 

such that Pk ~ T (and hence also (lpk ~ CiT) in u (in the sense of 26.12). 

Proof First consider the case U = JRn+k and ~ (T) , !:! (ClT) < oo In this 

case we simply use the deformation theorem: for any sequence pk t 0 , 

the scaled version of the deformation theorem (with p= pk) gives Pk as 

in (**) such that 

(1) 

for some Rk , Sk such that 

(2) 

and 
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Evidently (1), (2) give Pk (w) + Tk (W) 

if 3T = 0 , so the theorem is proved in case U = JRn+k and 'I' , 8T are 

of finite mass. 

In the general case v1e ·take any Lipschitz function ¢ n+k 
on JR such 

that ¢ > 0 in u' ¢ = 0 in JRn+k ~ U and such that {x = ¢ (x) > A.} cc U 

'if A. > 0 For L1 -a.e. 28.5 implies that '!' = T l {x : ¢ (x) > ,\} 
-~. -

is such that ~ (3TA.) < 00 Since spt TA cc U , we can apply the argument 

above to approximate TA for any such ), Taking a suitable sequence 

A.j + 0 , the required approximation then immediately follows. 

30.3 THEOREM (Boundary 1·ectifi ability theorem) 

Suppose T is an integer mult·iplicity current in Vn (U) with 

~\q (dT) < oo 'if w cc u Then ClT( E Vn-l {U)) is an 1:nteger multiplicity 

cu.rrent. 

Proof A direct consequence of 30.2 above and the compactness theorem 27.3. 

30.4 REMARK Notice that only the case 

the above proof. 

§31. THE FLAT METRIC(*) TOPOLOGY 

3T. = 0 
J 

Vj of 27.3 is needed in 

The main result to be proved here is the equivalence of weak convergence 

and "flat metric" convergence (see below for terminology) for a sequence of 

Note that the word "flat" here has no physical or geometric significance, 
but relates rather to Whitney's use of the symbol b (the "flat" symbol 
in musical notationj in his work. We mention this because it is often a 
source of confusion. 



integer mul-tiplicity currents 

sup. (H 
. J?.l ='W 

< co 
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{T.} c V (U) 
J n 

such that 

'tj w cc u . 

We let U denote (as usual) an arbitrary open subset of 
n+k 

JR 

I T is in·teger multiplicity and 

(3T) < 00 v w cc u} , 

and 

1 
M,W 

{T E 1 spt ~: c l!J , ~ (T) + ~ (3'l') ::; M} 

for any M > 0 and W cc U • 

On I we define a family of pseudome·trics by 

31.1 

where RE Vn+l (U), SE Vn(U) are integer multiplicity} 

\lle henceforth assume I is equipped with the topology given (in the 

usual way) by the family f<" } ·'\1 Wccu 
of pseudometrics. This topology is 

called the "flat metric topology" for I 

neighbourhoods at each point, and 

'rf w cc u . 

T. -+ T 
J 

there is a countable base of 

in ·this topology if and only if 

31.2 THEOREM Let T, {Tj} c Vn (U) be ·£nteger multiplicity with 

supj?.l{~VI(Tj) +~~(()Tj)} 

26.12) if and only 

< 00 \j w cc u . Then T. 
J 

~(Tj,T) + 0 for each w cc u 

T (in the sense of 

31.3 REMARK Notice that no use is made of the compactness theorem 27.3 in 

this theorem; however if we combine the compactness theorem with it, ·then we 

get the statement that for any family of positive (finite) constants 
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{c (W) }wccu the set {TE 1 :~(T)+~(:3T) ::;c(W) V W cc u} is sequentially 

compact when equipped with the flat metric topology. 

Proof of 31.2 First note that the "if" part of the theorem is trivial 

(indeed for a given W cc U , the statement ~(Tj ,T) -+ 0 

with spt w c W) .• (T.-T) (W)-+ 0 for any fixed wE Vn(U) 
J 

evidently implies 

For the "only if" part of the theorem, the main difficulty is to 

establish the appropriate "total boundedness" property; specifically we show 

that for any given E > 0 and W cc W cc U, we can find N=N(E:,W,W,M) and 

integer multiplicity currents P1 , •.. ,PN E Vn(U) such that 

(1) 

where, for any P E I , 

N 

rM,w c I B w<P.> , 
j=l E:, J 

B -(P) = {SE I: d-(S,P) < d . This is an easy s,w -w 
consequence of the deformation theorem: in fact for any p > 0 , 29.3 

guarantees that for T E IM,W we can find integer multiplicity P , R, S 

such that 

(2) T-P :3R+ S 

(3) p 

(4) spt P c {x: dist(x,spt T) < 2/n+k p} 

(5) 

spt S c {x: dist(x,spt T) < 2/n+k p} 

(6) 

~(R) + ~(S) ::; cp~(T) ::; cpM • 

Then for p small enough to ensure 2/n+k p < dist(W,:3W) , we see from (2), 

(6) that 
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<Jw(T,P) :0: cpM . 

Hence, since there are only finitely many P1 , •.. ,PN currents P as in 

(3), (4), (5) (N depends only on M,W,n,k,p) , we have (1) as required. 

Next note that (by 28.5 (1), (2) and an argument as in 10.7(2)) we 

can find a subsequence {Tj,} c {Tj} and a sequence {wi} , wi ccwi+1 cc u, 
00 

u such that < 00 Vi • Thus from now on 

we can assume without loss of generality that W cc U and 

(7) 

Then t.alk:e any 

E: = 1 , ! , l etc . 

that 

and hence 

(8) 

spt T. c w 
J 

Vj • 

W such that W cc W cc U and apply (1) 

to extract a subsequence {T } 
l jr r=1,2, ... 

-r cJw {T . , T . ) < 2 
Jr+1 Jr 

where Rr , Sr are integer multiplicity, 

spt Rr U spt sr c w 

1 
~{Rr) + ~(Sr) <-­

- 2r 

with 

such 

Therefore by 27.5 we can define integer multiplicity R{~) , s(~) by the 

~- absolutely convergent series 

00 

then 



and (from (8)) 

T- T. 
JR. 

Thus we have a subsequence of 
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{T.} 
J 

such that 0 . 

Since we can thus extract a subsequence converging relative to from 

any given subsequence of {T .} 1 

J 
we then have since this 

can be repeated with W = W. 1 
1. 

Vi as above), the required 

result evidently follows. 

§32. RECTIFIABILITY THEOREM, AND PROOF OF THE COMPACTNESS THEOREM. 

Here we prove the important rectifiability theorem for currents T 

which, together with 8T 1 have locally finite mass and which have the 

additional property that for JlT- a.e. x The main tool 

of the proof is the structure theorem 13.2. Having established the 

rectifiability theorem, we show (in 32.2 1 32.3) that it is then straight-

forward to establish the compactness theorem 27.3. Although this proof of 

compactness theorem has the advantage of being conceptually straightforward, 

it is rather lengthy if one takes into account the effort needed to prove 

the structure theorem. Recently B. Solomon [SB] showed that it is possible 

to prove the compactness theorem (and to develop the whole theory of integer 

multiplicity currents) without use of the structure theorm. 

32.1 THEOREM (Rectifiability Theorem) 

Suppose T E Vn(U) is suah that ~(T) + ~(8T) < oo 'if w cc u I and 

*n 0 (JlT~x) > 0 for JlT- a.e. x E u . Then T is rectifiable ; that is 
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(*) 
T = J,(M,6,!;) , 

where M is countably n-reotifiable, Hn~measurable, 6 is a positive 

locally Hn-integrable function on M, and !;(x) orients the approximate 

tangent space TxM of M for Hn- a.e. x E M . 

Proof First note that (by Theorem 3.2(1)) 

(1) 

for W cc U , and hence 

Notice that the same argument applies with dT in place of T in order to 

give 

(3) 

(Notice we could also conclude 0 for any d > 0 

by 3. 2 (1) .) 

Next notice that, because ~ (T) + ~ (3T) < co V W cc U , we know 

from 26.29 (see in particular Remark 26.30) that (by (2)) 

(4) co} 0 , 

and (by (3)) 

(5) 0 . 

(*) The notation here is as for integer multiplicity rectifiable currents (§27): 

J(M,6,!;) (W) JM <!;,w>6 dHn 

although of course 6 is not assumed to be integer-valued here. 
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Now le·t 

and note by (1) ·that H is ·the countable union of sets of fini·te Hn-measure. 

Furthermore by 26 .. 29 \r:Je kno'VJ ·that 11m (P) = 0 for each purely unrectifiable 
~ 

subset of f'.-1 ! and hence 

(6) (P) 0 'r/ purely unrectifiable P c JYI 

*n 
by virtue of 3. 2 (1) and the fac·t thai: G · (jJT,x) > 0 for every x E H. (by 

de£ ini tion of M) • Then by ·the structure theorem 13. 2 we deduce that 

(7) M is countably n-rectifiabZe. 

*Il 
Furthermore (since 8 (]JT,x) > 0 for )JT- a.e. x E U by assumption), we 

have 

(8) T T L M • 

Next we note that is absolutely continuous with respect to 

(by (4) and 3.2(2)) and hence by 'che differentiation ·theorem 4. 7 we have 

where 8 is a positive locally Hn-integrable function on M and 8 _ 0 

on U ~ M . Then by the Riesz representation theorem 4.1 we have 

(9) T(w) 

for some Hn-measurable, A (JRn+kl -valued function r-
n s ' 1 . 

It thus remains only to prove that s(x) orients T M for Hn- a.e. x EM. 

(i.e. S (x) = ±T 1 II ••• II T n for Hn- a.e. xE M , where 

orthonormal basis for the approximate tangent space T M 
X 

X 

is any 

of M.) To see 
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00 

this, write M = u M. ' j=O J 
0 

a submanifold of :Rn+k , j ::: 1 • Now, by 3.5, if j ::: 1 we have, for 

Hn- a.e. 

(10) 0 . 

Hence, writing as usual ~x,A(y) 

that, for all x E M. 
J 

such that (10) holds, and for A small enough to 

ensure that spt w c ~X, A (U) , 

+ E C\) I 

where E(A) + 0 as A+ 0 • (E(A) depending on x and w .) That is 

r n 
J <~ (x+Az) , w (zJ>e (x+Az) dH (z) + E (A) 

~ X,A(Nj) 

for all x E M. 
J 

such that (10) holds. Since N. 
J 

this gives 

(11) lim ~ A#T (w) = e (x) I <E; (x) , w (z)> dHn (z) 
A+O x, P 

x E M. {independent of w ) 
J 

where P is the tangent space 

TN. of N. at x 
X J J 

Thus (by definition of TxM - see §12) we have (11) 

with P = T M for Hn- a.e. x E M. 
X J 

On the other hand by (5) we have 

= o (A) as 

for Hn- a .e. x E Mj (independent of w) 

# 
CIT(~ ,w) 

X,A 

A + o 

Thus for such x 
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{12) lim(()Jl, '#T) (W) 
A.+O },, A 

0. 

On the other hand for lJT- a. e. X E u I for any 
n+k w cc JR we have by (4) 

that 

(13) lim sup ~w 
HO 

Thus (by (11), (12), (13)), for 
n , 

H - a.e. X EM , we can find a sequence 

+ 0 such tha·t 

s 
X 

where S E V (JRn+k) is defined by 
x n 

ds 
X 

0 , 

(14) Sx(w) = 8(x) JP <s(x), w(zl> dHn(z) 1 

wE Vn(Rn+k), p = TxM. We now claim that (14), taken together with the 

fact that as 
X 

(without loss of 

w E Vn-1 (JRn+k) 

0 ' implies 

generality) 

so that w(y) 

1 n+k . 
(y , ... ,y ) , J ~ n+1 y 

that s (x) orients p To see this, assume 

that p = JRnX {0} c JRn+k and select 

= yj</J(Y)dy 
il i 

n-1 
II ••• 1\ dy where 

and 

Then since y. :: 0 on JRn x {o} we deduce, from (14) and 
J 

the fact that ()sx 0 , 

0 ()Sx(w) 

That is, since 

s (dw) 
X 

f ~ i1 in-1 
e (x) P <P (yl<s (xl ,dyJ 11 dy 11 ••• 11 dy > 

is arbitrary, we deduce that 

s(x)•(e.lle. II ••• lie. ) = 0 whenever j ~ n+1 and 
J ~1 ~n-1 

{i1 , ... ,in_1 } c {1, •.• ,n+k} . Thus we must have (since ls(x) I 1) , 

s (x) = ± e 1 11 ••• 11 en as required. 
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We can now give the proof of the compactness theorem 27.3. For 

convenience we first re-state the theorem in a slightly weaker form. (See 

the remark (2) following the statement for the proof that the previous version 

27.3 follows.) 

32.2 THEOREM Suppose {Tj} c Vn(U) , suppose Tj, dTj are integer 

multiplicity for each j , 

(*) < 00 'r/ w cc u ' 

and suppose Tj ~ T E Vn (U) . Then T is an integer multiplicity current. 

32.3 REMARKS 

(1) Note that t:he general case of the theorem follows from the special 

case when U = RP and spt Tj c K for some fixed compact K ; in fact if 

T 
J 

are as in the theorem and if ~ E U then by 28.5 (1), (2) and an 

argument like that in Remark 10.7 (2) we know that, for L 1 - a.e. r > 0 , 

place of T. 
J 

for some subsequence {j'} c {j} (depending on r) . 

(2) The previous (formally slightly stronger) version 27.3 of the above 

theorem follows by using 30.3. (Note that the proof of 30.3 needed only the 

weaker version of the compactness theorem given above in 32.2; indeed, as 

mentioned in Remark 30.4, it used only the case <lT. = 0 of 
J 

27.3. 

Proof of 32.2 We shall use induction on n with U c RP (U,P fixed 

independent of n) First note that the theorem is trivial in case n = 0 

Then assume n ~ 1 and suppose the theorem is true with n-1 in place of n. 

By the above remark (1) we shall assume without loss of generality that 

spt T j c K for some fixed compact K , and that U = RP . Furthermore, by 
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remark (l) in combina-tion wi'ch the inductive hypothesis, for each E, E :RP 

we have 

(1) (l (T L Br (E,)) is an integer multiplicity current 

(in 
p 

I) l(JR~)) 
n-

for r > 0 . 

From 'che above assumptions U = JRP , spt T j c K we know that 0 lli( ClT- T 

zero boundarv and is the weak limi·t of 0 !lii' ~T - T 
- 0 j j since 0 ~ 3T is 

integer multiplicity (by the inductive hypothesis) v-Je ·thus see tha'c the 

general case of the theorem follows from the special case when 3T ~ 0 • We 

shall therefore henceforth also assume 3T = 0 . 

Next, define (for E, E JRP fixed) 

By virtue of 28.9 we have (since ClT = 0) 

(2) 

(Notice that f' (r) exists a. e. r > 0 because f (r) is increasing.) 

*D. 
On the other hand if 8 (lJT, E,) < n (T) > 0 a given constant), then 

lim sup 
f(p) 

< n and hence for each cS > 0 we can arrange ' p+O 
n 

lunp 

(3) d (fl/n (r)) s 2wl/n n 
dr n 

for a set of r E (0,6) of positive L1-measure. (Because 

reS 
6-l d (fl/n (r)) dr s cS-1 fl/n (6) S wl/nn for all sufficiently small cS > 0. ) 

J 0 dr n 

Now by (1) and the isoperimetric theorem, we can find an integer 

multiplicity such that and 
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(4) 
n 
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::: c~(a (TL Br(i;))) 

n-1 

::: cnM (T L B (1',;)) n = r 
(by (2) 1 (3)) 

for a set of r of positive L1 -measure in {0,8).* Since 8 was arbitrary 

we then have both (1), (4) for a sequence of r + 0. But then (since we 

can repeat this for any such that if c is any compact 

{ P *n } subset of X E JR : e (j.JT,x) < n I by Remark 4.5(2) we get for each given 

p > 0 a pairwise disjoint family B. 
J 

of closed balls covering 

j.lT-almost all of C , with 

(5) U B. c {x: dist(x,C) < p} 
j J 

and with 

(6) M(S~p))::: cl)M{TlB.) 
= J = J 

for some integer multiplicity s~Pl with 
J 

(7) as ~P> 
J 

a (Tl B.) 
J 

Now because of (7) we have S~p) - TL B.= a({i;.} ~ (S~p) - TL B.)) , and 
J J J J J 

hence (by 26.23, 26.26) we have for w E Vn(JRP) 

(8) i<s~P) -TLB.)(w)l :::cpM(S~p) -TLB.)idwj 
J J = J J 

(by (6)). 

Therefore we have 2: (S ~p) - T l B.) ~ 0 as P .j. 0 1 and hence 

(-9) 

as p + 0 . 

j J J 

T + 2: (S ~p) - T l B.) 
j J J 

~T 

However since the series 2: s~Pl 
j J 

and L: TL B. 
J j 

are ~-absolutely 

convergent (by (6) and the fact that the Bj are disjoint), we deduce that 

(JRP-U B.) + 2: s~P) and hence the left side in (9) can be written T L 
j J j J 

* In case n = 1 , (1) I (2) I (3) (for n < t) imply a {T L B {1',;)) = 0 I hence we get, in 
place of (4} , M {S } ::: M {T L B (1',;}} trivially by takifig S = 0 • 

= r := r r 
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(using (6) again, together with the lower-semicontinuity of ~(W open) 

under weak convergence) 

J.lT({x: dist(x,C) < p}) ::: J.lT({x: dist(x,C) < p}~c) + 

Choosing n such that 1 
en :::2 , 

cn].lT ({x: dist(x,C) < p}) • 

this gives 

].lT({x: dist(x,C) < p} ::: 2]1T({x: dist(x,C) < p} ~ C} . 

Letting p + 0 , we get ].lT(C) = 0 

Thus we have shown that for ].lT- a.e. We 

can therefore apply 32.1 in order to conclude that T = I(M,8,~) as in 32.1. 

It thus remains only to prove that 8 is integer-valued. This is achieved 

as follows: 

First note that for Ln- a.e. x E M we have (cf. the argument leading 

to (11) in the proof of 32.1) 

(10) A + o , 

where [TxM] is oriented by ~ (x) • Assuming without loss of generality 

that T M = :Rn x {0} c :RP and setting d(y) = dist(y,JRnX {0}) 
X 

by 28.5(1) we can find a sequence A. + 0 and a p > 0 
J 

<nx,A.#T,d,p> is integer multiplicity with 
J 

~Q(<nx,A.#T,d,p>) ::: c (independent of j 
J 

where Q = B~ (0) x :RP-n c JRP . Then by 28.5(2) we have 

such that 

S.- <nx,A.#T) L {y:d(y)<p} 
J J 

is such that, writing 
n P-n p 

Q = Bl (0) X R C :R 

(11) 



192 

Now let p denote the restriction to ~ of the orthogonal projection 

-onto and let S. be the current in V (~) obtained by 
n J 

setting s . (w) = s . (W) , w E Vn(Q} such that w = w in 
J J 

26.28 and (11) above, 

f 
B~ (0) 

for some integer-valued BV100 (B~(O)) function e. with 
J 

l 
M (p#S.) f I ej I dL n 

(12) 
B~(O) J B~ (0) 

~ (()pii .) J joe .1 
B~(O) J n J 

B1 (0) 

f I oe . I + J I e . I dL n ::: c , 
n J J 

'Bl (0) Bn(O) 
1 

Then by (11), (12) we deduce 

and hence, by 

c independent of j ' and hence by the compactness theorem 6.3 we know 

converges strongly in Ll in B~(O) to an integer-valued BV function 

on the other hand s. 8 (x) [JRnx {o}] by (10), and hence 
J 

- e(x)p#[JRn x {o}] = e(x)[JRn] 
n 

p#Sj in Bl (0) We thus deduce that 

thus 8(x) E ~ as required. 


