
CHAPTER 3 

COUNTABLY n-RECTIFIABLE SETS 

The countably n-rectifiable sets, the <theory of >vhich we develop in 

this chap-ter, provide the appropriate notion of "generalized surface"; they 

are the se<ts on \vhich rectifiable currents and varifolds live (see later) • 

In the first section of this chapter we give some basic definitions, 

and prove the important result that countably n-rectifiable sets are 

essentially charac-terized by the property of having a suitable "approximate 

tangent space" almost everywhere. 

In later sections we show that the area and co~area formula (see §§8,10 

of Chapter 2) extend naturally <to the case when M is merely countably 

n-rectifiable rather than a c1 submanifold, we make a brief discussion 

of Federer's structure theorem (for the proof we refer to (FHl] or [RM]), and 

finally we discuss sets of finite perimeter, which play an important role in 

later developments. 

§11. BASIC NOTIONS, TANGENT PROPERTIES 

Firstly, a set M c Rn+k is said to be countably n-rectifiable if 

M c M0 U ( U 
j=l 

where 0 and F < : Rn->- Rn+k are Lipschitz 
J 

functions for = 1, 2, ... * Notice that by the extension theorem 5.1 this 

is equivalent to saying 

* 

M M0 u < u 
j=l 

F. (A<)) 
J J 

Notice that this differs slightly from the terminology of [FHl] in that 
we allow the set M0 of Hn-measure zero. 
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where n+k . h" F. : A.+ lR L~psc ~tz, 
J J 

A. c ::Rn • 
J 

More importantly, 

we have the following lemma. 

co 

11.1 LEMMA M is aountably n-reatifiable if and only if M c U N. 
j=O J 

where and where eaah :::: 1 , is an n-dimensional embedded 

c 1 submanifold of :Rn+k • 

Proof The "if" part is essentially trivial and is left to the reader. The 

"only if" part is an easy consequence of Theorem 5.3 as follows. By Theorem 5.3 

we can choose c 1 functions g (j) (j) 
1 , g2 , ... such that, if Fj are Lipschitz 

functions as in the above definition of countably n-rectifiable, then 

co 

F. (lRn) c E. u ( u g ~ j) (JRn) ) j 1,2 •.• 
J J i=l 

~ 

where Hn(Ej) 0 . Then we let 

co co 

u 
j=l 

E.) U ( 
J 

u 
i, j=l 

g~j)(C .. )) 
~ ~J 

Where C· = {xE :Rn: J g~j) (x) = 0} 
ij ~ 

and 
( ") 

J g. J 
~ 

denotes the Jacobian of 

( . ) 
g.J as in §8. By the area formula (see §8) 
~ 

we have 

and hence Hn(N0 ) = 0 . 

Now for each x E En ~C. . we let U .. (x) 
~J ~J 

be an open subset of 

containing x and such that g~j)Ju .. (x) is 
~ ~J 

1:1 . Such uij(x) exists 

by the inverse function theorem (since J g ~j) (x) > 0 
~ 

=- d g~j) (x) has rank n) , 
~ 

and the inverse function theorem also guarantees that g~j) (U .. (x)) :: N .. (x) , 
~ ~J ~J 

say, is an n-dimensional c 1 submanifold of :Rn+k in the sense of §7. We 

can evidently choose a countable collection x 1 ,x2 , •.• of points of 
co 

such that U U .. {xk) 
k=l ~J 

co 

hence U N .. (xk) ::> g~j) (JRn-c .. ) , 
k=l ~J ~ ~J 

so 

we have F j (:Rn) - N0 c U Nij (~) for each j 
i,k=l 

The required result now 

evidently follows. 
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We now 1.orant to give an important characterization of countably 

n-rectifiable sets in terms of approximate tangent spaces, which we first 

define. 

11.2 DEFINITION If M is an Hn -measurable subset of JRn+k with 

\:j compact K , then we say that an n-dimensional subspace P 

of is the approximate tangent space for IV! at x (x a given point 

in if 

lim f n f 

A+o 'n , <Ml 
X,/\ 

~ (y) d H (y) J f (y) d Hn (y) 
p 

(Recall n ' X, A 

11.3 REMARK 

n+k n+k 
JR + JR is defined by llx, A (y) 

Of course P is unique if it exists; we shall denote it by T M 
X 

It is often convenient to be able to relax the condition Hn (M n K) < oo 

\:j compact K in 11.2; we can in fact define TxM in case we merely assume 

the existence of a positive locally Hn-integrable function 8 on M (the 

existence of such a 8 is evidently equivalent to the requirement that M 

can be expressed as the countable union of Hn-measurable sets with locally 

finite Hn-measure). 

11.4 DEFINITION If M is an Hn -measurable subset of JRn+k and 8 is a 

positive locally ~-integrable function on M , then we say that a given 

n-dimensional subspace P of JRn+k is the approximate tangent space for M 

at X With respect to 8 if 

(By change of variable z = ;\y+x , this is equivalent to 
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8(x) J f(y)dHn(y) 
p 

11.5 REMARK Notice that if ]J = WL 8 and if M = {x E M : 8 (x) > n} , n 
Hn (M n K) < oo for each compact K and 

n 
for Hn- a.e. 

then 

Hence for Hn- a.e. x E M the approximate tangent space 
n 

for M with respect to 8 coincides with T M 
x n (as defined in 11.2) if 

the lat·ter exists. It follows that the approximate tangent spaces of M with 

respect to two different positive Hn-integrable functions 8, e coincide 

Hn- a.e. in M . For this reason we often still denote the approximate 

tangent space defined in 11.4 by TxM (without indicating the dependence on 8 ). 

The following theorem gives the important characterization of countably 

n-rectifiable sets in terms of existence of approximate tangent spaces. 

11.6 THEOREM Suppose M is Hn-measurable. Then M is countably 

n-rectifiable if and only if there is a positive locally Hn-integrable 

function 8 on M with respect to which the approximate tangent space 

TxM exists for Hn- a.e. x E M 

11.7 REMARK If M is Hn-measurable, countable n-rectifiable, then we can 

write M as the disjoint union u Mj I 

j=O 
where M. is 

J 

Hn-measurable, and M ~ N 
j '-- j ' j ::: 1 1 with N. an embedded n-dimensional 

J 

by 

submanifold of Rn+k 

M. 
J 

00 

j-1 

u 
i=O 

M. ' 
l' 

(To achieve this, just define the M. 
J 

inductively 

j ::: 1 ' where are submanifolds with 

N. having Hn-measure zero; such N. exist by 11.1.) We shall 
J J 

show below (in the proof of t>'1e "only if" part of Theorem 11.6) that then 

(*) 

This is a very useful fact. 
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Proof of "only if" part of Theorem 11.6 As described in 11.7 above, we may 
00 

write M as the disjoint union U M. , 
j=O J 

where Hn (M0 ) = o , Mj c Nj , j::: 1, 

and M. Hn-measurable. Nj embedded cl submanifolds of dimension n , 
J 

Let ~ = Hnl e , where e is any positive locally Hn-integrable function on M 

(e.g. put e= l/2j on M j , assuming, without loss of generality, that 

Now, by 3.5, 

(1) 

Also, since N. 
J 

(2) 

From (1), (2) 

0 , Hn- a.e. x E M. 
J 

is we have (by the differentiation theorem 4.7) 

and the fact that N. is c 1 , 
J 

6(x) , Hn- a.e. x E Mj 

it now easily follows that 

the approximate tangent space for M with respect to 6 exists for 

Hn- a.e. and agrees with TN. 
X J 

Rather than just proving the "if" part of Theorem 11.6, we prove the 

following slightly more general result.. (The "if" part of Theorem 11.6 

corresponds to the case ~ = Hn L 6 in this more general result - see Remark 

11.9 below.) 

11.8 THEOREM Suppose ~ is a Radon measure on nH: 
JR , and for x E JRn+k , 

A > 0 Zet ~x,A be the measure given by ~x,A A 
-n A ~(x+AA) Suppose 

that for ~-a .e. X there is e (x) E (O,oo) and an n-dimensionaZ subspace 

P c Rn+k with 

(*) lim .J f (y) d~ A (y) =- 6 (x) J f (y) dHn (y) • 
A+O x, P 

(P is called the approximate tangent space for ~ at x , and 6(x) is 

called the multiplicity.) Let M =- {x : (*) holds for some P and some 
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B(x) E (O,oo)} , and set B(x) 0 , x E Rn+k M . 

Then M is countably n-rectifiable, B is Hn-measurable on Rn+k , and 

11=Hnle 

11.9 REMARK Notice that in case J1 = Hn L B , where 8 is a non-negative 

locally Hn -integrable function on Rn+k then 

J f(z)B(x+Ay)dHn(y) , 
ll , (M) 

Xr/\ 

where M = {x : 8(x) > O} , so the approximate tangent space for J1 at x 

is just the approximate tangent space T M 
X 

with respect to 8 (in the sense 

of 11.4). Thus we get the "if" part of Theorem 11.6 in this special case. 

Proof of Theorem 11.8 Replacing ll by )J L BR ( 0) (R chosen so that 

\.re may assume that 
n+k 

ll (R ) < oo • First note that (by(*)) 

we have 

(1) 8 (x) lim 
p+O 

and hence, by Remark 3.1, 

(2) 

)l- a.e. 

e is Hn-measurable. 

Given any k-dimensional subspace 
n+k 

1T c R and any a E (0,1) 

denote the orthogonal projection of Rn+k onto 1T and 

the cone 

{y E JRn+k Jp (y-x) J ~ aJy-xJ} . 
1T 

let 

denote 

Fork-dimensional subspaces 1T , 1T' we define the distance between 1T , 1T' , 

denoted dist (1T ,1T') , by 

dist ( 1T, 1T ') sup Jp (x) -p , (x) J 
JxJ=l 1T 1T 
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Choose e0 > 0 and a Borel-measurable subset F c ~n+k such that 

(3) 

and such that for each x E F , has an approximate tangen·t space p 
X 

at 

X witll multiplicity 8(x) ~ e0 Thus in particular for x E F (by (1) and 

( *) ) 

(4) 

and 

(5) 

where n 
X 

For k 

and 

Then 

(6) 

lim 
Jl(Bp(x)) 

:': 
p+o n 

u\P 

]1 (X,. (TI , x) nB (x)) 
2 X p 

lim 
p+o 

1,2, ... and x E F, define 

inf 1 
o<p<k 

8., 
u 

sup 1 
O<p<k 

jl(X!(Tix,x)nBp(x)) 

n 
wnp 

0 ' 

I;J X E F , 

and hence by Egoroff's Theorem we can choose a jl-measurable E c F with 

(7) 

and with (6) holding uniformly for x E E • Thus for each s > 0 there 

is a 8 > 0 such that 
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(8) 
~(X~(TI ,x)nB (x)) 

"l X p 

X E E , 0 < p < 0 . 

Now choose k-dimensional subspaces TI1 , •.. ,TIN of Rn+k (N=N (n,k)) such 

that for eaeh k-dimensional subspace TI of 
n+k 

:R , there is a jE {1, ••• ,N} 

such that d(TI,1Tj) < t6 and let E1 , ... ,EN be the subsets of E defined 

by 

N 
Then E = U E. and we claim that if we take E 

j=1 J 

such that (8) holds, then 

(9) x3 (TI. ,x) n Ej n B012 <x> {x} , v xE E. 
J J 

4 

j 

Indeed otherwise we could find a point X E E. and a 
J 

for some 0 < p ::: 012 But since x E E and 2p ::: 

(10) 

~ (Xt (Tix' x) n B2p (x)) ::': ~ (B p/8 (y)) 

1, ••. ,N . 

Y E x 3 (1T. ,x) n E. n ()B (x) 
- J J p 
4 

0 , we have (by (8)) 

which contradicts (8), since We have therefore proved (9) • 

Now for any fixed x 0 E Ej it is easy to check that (9), taken together 

with the extension theorem 2.1, implies 
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where q is an orthogonal transformation of 

where 
1 k f = (f , .•• ,f ) is Lipschitz. 

Rn+k with q(7T .) 
J 

and 

Since j E {1, ••• ,N} and x0 E Ej 

select Lipschitz functions f 1 , •.• ,fQ 

q1 , .•. , ~ of lRn+k such that 

are arbitrary, we can then evidently 

lRn-+ lRk and orthogonal transformations 

E c 

Thus by (3), (7) we have 

Q 
u 

j=1 
q.(graph f.) • 

J J 

Q 
U q. (graph f.)) ~ i ]l (:Rn+k) 

j=1 J J 

Since we can now repeat the same argument, starting with 

n+k Q 
ll L (:R - U q. (graph f.)) in place of ]l , we thus deduce that there are 

j=1 J J 

countably many Lipschitz graphs F j = graph f j , and that 

00 

).l(lRn+k_ U Fj) = 0. 
j=1 

By (1) and 3.2(1) 
00 

we then deduce Hn (M - U F . ) = 0 , 
j=1 J 

so that (by definition) M is countably n-rectifiable. Thus by 11.1 (see in 
00 

particular Remark 11. 7) we can write M as the disjoint union U Mj , 
j=O 

N. being n-dimensiona1 c1 submanifo1ds 
J 

Then (1) evidently implies that lim 
p-1-0 

]l (Bp (x)) 
----"---- = e <x> , 
Hn(B (x)nN .) 

p J 

Hna.e. xEM. 
J 

then by the differentiation theorem 4.7 we have ]l 

as required. 

§12. GRADIENTS, JACOBIANS, AREA, CO-AREA 

Throughout this section M is supposed to be Hn-measurable and countably 

n-rectifiable, so that we can express M as the disjoint union 
00 

u 
j=O 

M. 
J 

(as in 
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M, 
J 

is Hn-measurable, j ::: 1 ' where 

N, 
J 

are embedded n-dimensional c1 submanifolds of 

Let f he a locally Lipschitz function on U where U is an open set 

in IR n+k containing M , 'I'hen we can define the gradient of f , \IMf , 

Hn - a. e. on M according to 

12.1 DEFINITION 

N, 
\1 Jf(x) 

whenever x EM, and fiN, is differentiable (which is true Hn-a.e. 
J J 

by virtue of Rademacher's Theorem 5.2 together with the fact that N, 
J 

12.2 REMARK Note that (by 11.7) if1£(x) E T M 
X 

for Hn- a.e. X E M , and 

is, up to a set of Hn-measure zero in M , independent of the particular 

decomposition 

00 

u 
j=O 

M, 
J 

used in the definition. (i.e. is well-defined 

as an function on subsets of M with finite Hn-measure). Indeed we can 

easily check that, at all points x where f!Nj is differentiable, we have 

f!L is differentiable on the affine space L 
N. 

and gradient f!L (x) = \! Jf(x) Since TxNj 

x +TN. at the point x, 
X J 

TxM for Hn- a.e. x E Mj 

(see 11.7), and since T M 
X 

is independent of the particular decomposition 
00 

U Mj , we thus deduce that ~f is also independent of the decomposition 
j=O 
up to a set of measure zero, as required. 

Having defined lfif , 

induced by f by setting 

at all points where TM 
X 

values in JRN (fj still 

dMf TXM + JRN by 
X 

we can now define the linear map T M + JR 
X 

and ~f(x) exist. If f 

locally Lipschitz on u ' 
= l, •.. ,N) , we define 
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N 

12.3 E 
j=l 

l/l!ith such an f , in case N ::: n , we define the Jacobian 

(Cf. ·the smooth case 8 .3), ;;;here : :RN + T H denotes the adjoint 
X 

Then we have the general area formula 

12 .LJ, J H0 (An f-1 <Yl) dl-r <Yl 

'RN 

for any Hn-measurable set A c M . The proof of this is as follows: We may 

suppose (decomposing Hn-almost all M. 
J 

as a countable union if necessary and 

using the c1 approxi1nation theorem 5.3) that f!Mj 

n+k 
on lR , j ::: 1 .. 

By virtue of the definition 12.1, 12.3, we then have 

J g.(x) , Hn-a.e. 
Nj J 

X E M. 
J 

where g. is 
J 

Thus JMf is Hn- measurable, and by the smooth case 8.4 of the area formula 

(with N. 
J 

in place of M ' An M. 
J 

in place of A and in place of f ) ' 

we have 

f 0 -1 N 
H <AnM .nf <Yl l dH 

N J 
JR 

We now conclude 12.4 by summing over j ::: 1 and using the (easily checked) 

fact that if ~ : U + JRN is locally Lipschitz and B has Hn-measure zero, 



69 

We note also that if g is any non-negative Hn-measurable function on 

M , then, by approximation of g by simple functions, 12.4 implies the more 

general formula 

OJ N g dH dH (y) • 

In case f is 1:1 on M , this becomes 

12.5 

There is also a version of the co-area formula in case M is merely 

Hn-measurable, countably n-rectifiable and f U + JRN is locally Lipschitz 

with N < n • (U open, M c U as before) • 

In fact we can define (Cf. the smooth case described in §10) 

J* f(x) =I det(dMf) 0 ccflt )* 
M X X 

with cflt as in 12.3 
X 

and 

Hn-measurable set A c M , 

12.6 

(eft )* 
X 

adjoint of 

J Hn-N(Ant-l(y)l 

RN 

Then, for any 

This follows from the c1 case (see §10) by using the decomposition 

M = U M. and the approximation theorem 5.3 in a similar manner to the 
j=O J 

procedure used for the di~cussion of the area formula above. 

As for the smooth case, approximating a given non-negative Hn-measurable 

function g by simple functions, we deduce from 12.6 the more general formula 
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12.8 REMARKS 

I g J~f dlin 
A 
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I I g dlin-N dLN(y} • 

:Rn f-l(y}()M 

(1) Note that the remarks 10.7 carry over without change to this setting. 

(2} The "slices" M n f- 1 (y} are countably (n-N}-rectifiable subsets 

of JRn+k for LN- a.e. y E :RN This follows directly from the decomposition 
00 

M = U M. , together with the c1 Sard-type theorem 10.4 and the approxima
j=O J 

tion theorem 5.3. 

§13 THE STRUCTURE THEOREM 

Notice that an arbitrary subset A of JRn+k which can be written as 

the countable union 

into a disjoint union 

13.1 

00 

u 
j=l 

A. 
J 

of sets of finite measure, is always decomposible 

A=RUP, 

where R is countably n-rectifiable and P is purely n-unrectifiable; 

that is P contains no countably n-rectifiable subsets of positive Hn-measure. 

To prove 13.1, we simply let R be a maximal element of the collection 

of all countably n-rectifiable subsets of A (ordered by inclusion}; such R 

exists by the Hausdorff maximal principal. 

A very non-trivial theorem (the Structure Theorem} due to Besicovitch [B] 

in case n = k = 1 and Federer [FH2] in general, says that the purely 

unrectifiable sets Q of :Rn+k which' (like the subset P in 13 .1} can be 

written as the countable union of sets of finite Hn-measure, are characterized 

by the fact that they have. Hn-null projection via almost all orthogonal 

projections onto n-dimensional subspaces of :Rn+k • More precisely: 
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13.2 THEOREM Suppose Q is a purely n-um•sctifiahl-e subset of Rn+k 
00 

with Q = U QJ. , 
j=l 

Then Hn(p(Q)) = 0 for o-aUnost all-

p E O(n+k,n) . Here 0 is Haar measure for O(n+k,n) , the orthogonal 

projections of Rn+k onto n-dimensional subspaces of Rn+k 

For the proof of this theorem see [FHl] or [RM] .. 

13.3 REMARK Of course only the purely n-unrectifiable subsets could possibly 

have the null projection property described in 13.2. Indeed (by 11.1) if Q 

were not purely n-unrectifiable then there would be an n-dimensional c1 

submanifold M of Rn+k such that Hn (M n Ql > 0 • It is then an easy matter 

to check that if we select any x E M with o*n(Hn,Mn Q,x) > 0 , then 

for all orthogonal projections p of 

n-dimensional subspace s which is not orthogonal to T M 
X 

onto an 

Notice that, by combining 13.1 and 13.2, we get the following useful 

rectifiability theorem: 

13.4 THEOREM If A is an arbitrary subset of Rn+k which can be written 
00 

as a countable union u A. with Hn(Ajl < 00 \lj ' and if every subset 
j=l J 

B c A with positive Hn-measure has the property that Hn(p(B)) > 0 for a 

set of P E O(n+k,n) with a-measure > 0 , then A is countahl-y n-rectifiabl-e. 

§14 SETS OF LOCALLY FINITE PERIMETER 

An important class of countably n-rectifiable sets in Rn+l comes from 

the sets of locally finite perimeter. (Or Caccipoli sets- see De Giorgi [DG], 

Giusti [G] .) First we need some definitions. 

If 
n+l . 

U c R ~s open and if E is an Ln+l_measurable subset of 

we say that E has locally finite perimeter in U if the characteristic 
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function of E is in BVloc(U) . (See §6.) 

Thus E has locally finite perimeter in U if tl1.ere is a Radon :measure 

llE ( = I nxE I in the not.ation of §6) on u and a llE·-measurable function 

"-- (''1, ... ,,,n+l,,. 'th 1"\ 1 J.l a v v v w:t v = E - • e. in U , such that 

14.1 J' , . dln+l 
Cl.l.V g 

Enu 

for each g = 1 .. ""' 
with gj E (U) , j = 1,. •• ,n+l Notice that 

if E is open and dE n U is an n-dimensional embedded c1 submanifold of 

n+l 
:lR , then the divergence theorem tells us that 14.1 holds with 

f.lE = Hnl (dEn U) and with v = l=he inward pointing unit nol.'!.llal to dE Thus 

in general we interpret J.lE as a "generalized boundary measure" and \! as a 

"generalized inward unit normal". It turns out (see Theorem 14.3 below) 

that in fact this interpretation is quite generally correct in a rather precise 

(and concrete) sense. 

We now want to define the reduced boundary 3*E of a set E of finite 

perimeter by 

14.2 3*E {x E U exists and has length 1} . 

Since jvj = 1 llE- a.e. in U, by virtue of the differentiation theorem 

4. 7 we have llE (U ~ (J*E) = 0 , so that J.lE = yE L Cl*E . We in fact claim 

much more : 

14.3 THEOREM (De Giorgi) Suppose .E has locally finite perimeter ·in u 

Then Cl*E is countably n-rectifiabZe and llE = Hn L 3*E . In fact at each 

point x E 3*E the approximate tangent space Tx of llE exists~ has 

multiplicity 1 , and is given by 



(1) T 
X 

r \)dlJ 
1 B (x) E 

UJhere \) (x) =lim p -
E ptO llE {Bp(x)) 

73 

(so that JvE {x) I = 1 14.2). Furthermore at 

any such point x E Cl*E we have that \'E (x) is the ··inward pointing unit 

normal for E " in the sense that 

{2) 
- -1 

E , = {"A (y-x) 
X,J\ 

yEE}-+ {yE Rn+l 

in the sense. 

y•\) <xl > o} 
E 

Proof By 11.6 and 3.5, the first part of the theorem follows from (1), 

1t1hich we now establish. (2) will also appear as a "by product" of the proof 

of (1). Assume without loss of generality \) = \) 
E 

on Cl*E • 

Take any y E 3*E • For convenience of notation we suppose that y 0 

and \)(0) = (0, ..• ,0,1) . Then we have 

(1) 

and hence (since 1\)1 

(2) 

Further if 

(3) 

lim 
p-l-0 

lim 
p-!-0 

j B ( 0) \) n+l dlJE 
p 

1 

1 11E- a.e.) 

J 1\)ildllE 
B (0) 

p 

has support in 

0 ' i 

B (0) c U , 
p 

then by 14.1 

Now (taking Bp(O) to be the closed ball) replace s by a decreasing 

sequence {sk} converging pointwise to the characteristic function of Bp(O) 

and satisfying 
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(4) 

(Notice that this can be done whenever 'che right side exists, •.;hich is 

L1 -a.e. p .) Then (3) gives 

(5) I B {0) 
p 

\! d\.lE < __£_ Ln+l(EilB (0)) 
n+l - dp p 

for ~a.e. p E (0, c1ist.(O, 3U) .. T'hen 1: .. y (1) '~Ne have 11 for 

suitable p 1 E (O,p 0 J , 

(6) 

Then by the compactness theorem 6. 3, it follows tha·t we can select a 

sequence so that in where F is a set 

of locally finite perimeter in Rn+l Hence in particular for any non-negative 

( 7) limJ D. L; dl n+l 
JF D. L; dln+l . 

k-><X> -1 
~ ~ 

pk E 

Now write L;k(x) 
-1 

i:;(pk X) and change variable x + pkx then 

(by 14.1), so that D. L; dln+l + 0 
~ 

by ( 2) fo:t i=l, ... ,n. Thus (7) gives 



J D. l; dL n+l 
F l. 

0 
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" r _ ~1 (JRn+l) 
v " t .._0 i 1, .... ., ,n i' 

and it follows that F JRn x H for some L 1 -measurable subset H of JR . 

On the o·ther hand by 14.1 with g sk en+l and by (1) we have, for 

k sufficiently large and l; > 0 , 

as k-+-oog 

(8) 

for some A 

so that 

F 

X H 

J D s _ 1 n+l 

pk E 

is non-decreasing on JR, hence 

{x E.Rn+l X < A} 
n+l 

We have next to show that A = 0 . To check this we use 

the Sobolev inequality (see e.g. [Gl']) to deduce that, if l; :':: 0 , spt s c U 

and 0 < dist(spt r;,ClU) , then 

n+l n 

[ Jfu (r "o*XE)-n. dLn+l] n+l <_ I j ( , I Ln+l " ~ c U D s ~o*XE) d 

Then by 6.2 it follows that 

n+l 
n 

]
n+l 

dL n+l S c [ J u s d]JE + J E I Di:; I dL n+ 1 J ' s n 

and replacing l; by a sequence i:;k as in (4) , we get for a.e. p E (O,p 1 ) 
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n 

(Ln+1 (EnBP(O)))n+1 < c(~E(BP(O)) + :P Ln+l(EnBP(Ol)) 

which by (6) gives 

n 

(Ln+ 1 (EnBP(Oll]n+1 s c :P Ln+ 1 (EnBP(O)) 

Integration (using the fac·t that L n+1 (EnBP (0)) is non-decreasing) then 

implies 

(9) 
n+1 

c p 

for all sufficiently small p Repeating the same argumen·t with U ~ E in 

place of E , we also deduce 

(10) Ln+l(B (0)-E) 
p 

n+1 
::: c p 

for all sufficiently small p • (9) and (10) evidently tell us that A 0 

in (8). 

Now given any sequence pk 4- 0 , the argument above guarantees we can 

select a subsequence pk' such that X + X in 
-1 {xEJRn+l, 

established. 

Hence X -1 
p E 

+X 

Pk,E 

{xEJRn+l x <O} 
n+l 

Then by 14.1, (1) and (2) we have 

X <Q1 
n+1 ' 

and (2) of the theorem is 

~ -1 
p E 

+ ::= Hnl ~ n+1 
{xEJR : x 1<0} 

n+ 

0} as p + 0 and the proof is complete. 


