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BOUNDARY INTEGRAL METHODS APPLIED TO 

CAVITATION BUBBLE DVNAMICS 

Baehok Taib, G. Doherty and J,R. Blake 

L INTRODUCTION 

cavitation can occur in fast moving liquids whenever the local 

pressure in the liquid falls balolN a certain critical valmo (the vapour 

pressure) for a sufficient time, Bubbles form in a low pressure region 

and are swept away to regions of higher pressure 'Nhere they collapse 

creating extremely high local velocities and pressure immediately adjacent 

to the bubble. This leads to noise, vibration and physical damage if 

the collapse occurs close to a soli.d boundary, Cavitati.on is a problem 

that has continuously plagued engineers in a varie<ty of disciplines ranging 

from the aerospace engineer designing rocket pumps to the civil engineer 

concerned wi th the service life of spillway s<tructures a.nd enerq-y 

dissipators. Cavitation can occur in fluid machinery: in all 'cypes of 

centrifugal pumps, also in turbines, propellers, underwater missiles, 

tm::pedoes and in piping systems near elbows, contractions and expansions 

of the pipe (see Arndt [lJ for expansion on the above discussion). 

The main objectives of our research programme in Cavi"tation Bubble 

Dynailiics is to gain a better understanding of the potential mechanisms 

for causing damage "to turbomachinery and other hydraulic devices (e. 9 • 

pitting, erosion). It is now thought that the damage mechanism is 

primarily due to a very high speed liquid jet impacting against the 

boundary, However, the direction and speed of the jet depends on the 

properties of the boundary; for example a rigid boundary "attracts" 
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bubbles wi-th the jet directed towards the boundary, whereas a free 

surface "repels" bubbles with the jet directed away from the boundary, 

(see e.g. Benjamin and Ellis [2J, Plesset and 

Chapman [12J, Blake and Gibson [5J, Gibson and Blake [7J). The major 

objective of our study is to determine the parameter space of the 

physical properties of compliant boundaries which will just repel 

collapsing co.vi to. tiol! bubbles. 

In this paper we plan to illustrate one aspec-t of this study; 

notably the application of boundary in-tegral methods ,to the grOlojth and 

collapse of a cavitation bubble near a rigid boundary. vie calculate the 

shape of the bubble, pressure contours and particle paths as a function 

of the bubble 1.ifetime. other aspects of t:11_e experimental and 

theoretical research programme may be found in other publications of the 

group (see e.g. Blake a.nd Gibson [5J, Gibson and Blake [7,8J, Blake and 

Cerone [4J, Blake [3J). 

To simulate the growth and collapse of a cavitation bubble near 

a rigid boundary the fluid mechanics .Iill be modelled 

by an incompressible, inviscid and irrotational fluid flow. This yields 

I,aplace 's equation for the velocity potential, thus enabling us to apply 

the boundary integral method using the moving surface of the cavitation 

bubble. In the next section we develop techniques for solving the boundary 

integral equations for a bubble in an infinite fluid. These ideas are 

extended in the succeeding section to tha-c of a cavitation bubble near a 

rigid boundary, in particular concentra-ting on the solution strategy ,,,here 

the nonlineari ties are incorporated into the upda-ting of the boundary 

conditions. A discussion of the physical significance and implications of 

our calculations may be found in the final section. 
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However before moving to the development of ,our solution technique 

incorporating the boundary method we present the classic solution 

of Lord Rayleigh [13] for a cavitation bubble in an infinite fluid~ 

This is particularly important when checking and comparing results from 

our numerical procedure. Briefly if linear dimensions are scaled wiu! 

respect to the maximum bubble radius R and time scale of 
m 

Rm/[ IpJ!:i (p",' pressure at infinity; Pc' vapour pressure, 

p, density) are introduced, then the velocity and pressure field are 

given by 

( 1) ! 
2. 

RR 
v(r,t) = -2-

r 

, 1~-4Rj 1 ~ 3~ p(rl = 1 + --~- - -.- R(l-R l 
r 3R2 r4.J 

where R(t) (0:; R :; 1) is the bubble radius and r is the radius in 

spherical polar coordinates. The lifetime of a Rayleigh bubble is 

T = 10829. The maximcun pressure is given by 

f p(rll 

1 

~ 3 6j3 r l 
4 (R -~ ) R :; 006299 

(2) Pmax " I 1 

1-4R 

at R > 0.6299 

As an illustration, when R = 0.1, the maximum pressure Pmax = 15707030 

occurs at r l = 0.1589. Thus for e~(ample, if p - p 
co C 

was 1 atmosphere, 

the maximum pressure would be 1.57 atmospheres just outside the collapsing 

bubble. 

For non-spherically symmetric bubbles an alterna'tive technique is 

required: one approach will be described in the next section using a 

boundary integral method. 
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2. BOUNDARY INTEGRAL METIiOD 

2.1 Formula"tion. 

For any sufficiently smooth function cjl which satisfies Laplace's 

equation with a domain rI having piecewise smooth surface S, Green's 

integral formula can be written (Jaswon and Syrum [llJ) 

( 3) 

where P EO rI + s, q EO S, is the normal derivative outward from s, 

and 

( 4) c (p) {
4'lT 

2'lT 

if P E Q 

if pES. 

Choosing p on s yields an equation for ei~~er or ~ dn on S if the 

other is specified. Once both are known on S, equation (3) can be used 

to generate cjl at any interior point p. In axisymmetric problems, ¢ 

and are independen"t of rotational angle and integration over this 

variable can be performed analytically. 

2.2 Axisymmetric form of the integrals. 

Using cylindrical polar coordinates with p 

q (r,8,z) respectively. 

(5) 

If the surface S is parametrized by the arc length variable ~ 

(6) 

and 



where 

(8) 

dr - ~(z{t;) 
dE; 
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(r (I;) 

second kind. Approximations for these functions are available in Hastings 

[10] in the f01."IO 

K(k) P(x) - Q(x) iLn x, 
( 9) 

E(k) R(x) - SIx) 9vH x, 

where 

(10) x = 1 -

and 

P, Q, R, and S are tabulated polynomials. 

2.3 SUJ:face approximation. 

To proceed with. the compu<tation, we need to choose a representa<tion 

for the surface of the bubble, and also for the potential and its normal 

derivative on the surface. To some extent, these choices can be 

independent, bu'c as b'le movement of the surface is computed using th.e 

potential and its derivative, the two should be considered "together. In 

the description which follmvs, a plane section through the axis of symme<try 

of the bubble is taken, and rotatio!lal symmetry abou<t the axis is understood. 
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2.4 Linear surface - constant functions. 

The surface is replaced by a set of N" linear segments Sj' 

with the potential and its normal derivative constant on each segment. 

The boundary integral equation is replaced by its collocation form using 

the midpoint of each linear segment. 

21f<P. + I <p. f fl-" 1_1 dS = I l (<P.) f 1 dS. 
1 j=l J S. n Pi-qj j=lon J S.IPi-qjl 

J J 

(11) 

If we denote ~ by W, we can write (11) in matrix form (as for example 

in Brebbia [6J) as 

(12) 
NAN 

21f<Pi + I H .. <p. = I GiJ· WJ' • 
j=l 1J J j=l 

Defining Hij = Hij + 21f 8ij (12) may be written as 

(13) H<P = GW • 

2.5 Linear surface - linear functions. 

and are assumed to be single valued at the end points of 

the linear segments which approximate the surface. If the segment is 

parametrized by ~ in the range (0,1) we can define 

(14) 

and use the isoparametric approximations for both the surface and the 

functions. On segment S. we have, 
J 

rm rj_lMl(~) + rjM2(~) 

z(~) Zj_lMl (~) + ZjM2(~) 
(15) 

<pm <p j _l Ml m + <PjM2{~) 

W{~) Wj_lMl m + WjM2m 



172 

The collocat.ion points are moved to the end points of the intel.'Val, 

yielding N+l equations in the N+l unknowns. The integrals on each 

segment can be written 

(16) 

where 

(17) 

(18) 

'\',here 

(19) 

f dS 
S. 

J 

f dB 
S. 

J 

·1 f21T 
S . j d~}"'k (~) de ~I . _ ~i:"9fI--

J o 0 P1. q ", 

del 
dn 

1 

I p·-q(~,8) I 1. . 

206 Numerical integration. 

The evaluation of 'che elements of ·the matrices Hand G is 

performed nll.merically. Normally Gauss Legendre quadrature is adequa'te, 

unless the collocation point Pi is wi thin the segment S . g or is one of 
J 

its endpoints, in 1rlhich case the in'i:egrand is singular and must be treated 

specially. The singular integrals are evaluated by subtracting a logarithm 

term to remove the singularity, then using a quadrature scheme incorporating 

the logarithm to complete the integration. 

As an example, consider the case where is at the midpoint 

(~ \) of the in terval S .• A typical integral would be 
J 

IT 2 ~r 
(20) Is 

dS f\i; 4r(S) ~~) + (~~) K(k) 

!p-ql = ( )? ( 2L 0 [ r(~)+rO - + z(~)-zo) J' 

where p is the poin't (rO'zO' = (r(~l ,z(!1l) 0 
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Recalling 

(21) 

(22) x 

then around ~ ~, 

(23) 

so that the elliptic integral K(k) behaves like 

'I'his allows 'the integral of equation (20) to be replaced by 

(25) 

1 4 <s) rrdZ) 2 + (dr) 2l~ 
fo ds r Ud!; dsJ J [K(k) + 2Q (xl tn ( I ~-l;; I)] 

{ )2 I )2 !" [1.r(S)+ro + lz(~)-zo J' 

The first integral contains no singularity, and can be integra'ted by 

struldard Gauss Legendre quadrature. The second integral contains an 

explicit singularity of log 'type which can be integrated using the 

quadrature scheme tabulated by Stroud and Secrest [14J for the integral 

1,1 <i'{ tn (2:.) f (xl 
o X) 

Similar techniques can be used to remove the singularities from the other 

singular integrals. 

An additional device which has proved helpful in increasing the 

numerical accuracy of the computation has been to replace the diagonal 



elements of the matrix H by 

(26) 411 - L 
jr!i 
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H .. 
1.) 

This property may be deduced from the fact that foX' the interior problem, 

the matrix equation 

with tjl constant at all points on th.e boundary (the Dirich]",:!t problem) 

( 2!l!.1 
should yield w = I . an" zero at all points, while 1)) specified at all 

points on -the boundary (the Neumann problem) yields a solution foy 

which contains an aybitrary additive constant. Thus, for the interior 

problem, 

(27) H .. 
J.1. 

H. " 
1.J 

and consideration of the defini-tion of H leads imraediately -1:0 equation 

(26) for the exterior problem. 

3. EQUATIONS OF MOTION 

Assuming the fluid to be incompressible and inviscid, and ignoring 

suxface tension and gravi ta-tiona1 effects (Plesse-t and 01apman [12J, 

Blake and Gibson [5J, and Guerri, Lucca and Prosperetti [9]), the velocity 

in the fluid may be written 

(28) 

where ¢ satisfies Laplace's equation 

(29) 

On the bubble surface the pressure p is given by 

(30) 

where is the saturated vapour pressure in the bubble. As fluid 
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particles remain on the surface of the bubble we may simply equate the 

velocity of the bubble surface u 
-8 

to the fluid particle velocity 

( 31) 

The boundary conditions at infinity are 

( 32) 

In th.e case of a bubble growing adjacent to a rig·id boundary at z = 0, 

no flow through the bOQ~dary requires 

( 33) 2i-dZ - 0 at z = 0 • 

In ·terms of the potential, equation (31) for the movement of the 

boundary r becomes 

dr 
(34) dt = V ¢ 

By using the Bernoulli equation on the bubble surface, 

( 35) P = p - p E..<E. - lei pl1,1.12 , c 00 ()t -

we are able to obtain an expression for the rate of change of potential 

on the bubble surface as follows, 

(36) D¢ = ~ + V¢.d:£ 
Dt at dt 

Pco-Pc 
---+ 

P 

Equations (34) and (36) will be used during the computation to update both 

the shape of the bubble and the potential on its surface. 

Finally to specify a well-posed problem we require some initial 

condi dons. To do this we suppose the growth of the bubble is started from 

a very small spherical bubble of radius RO with the potential obtained 

from the Rayleigh bubble solution in an infinite fluid (Blake and Gibson 

[5]) • 
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( 37) 3 _ l~' 

where ~ is the maximum bubble radiuso In the next, section we proceed 

to obtain a numerical solution of 'the above equations. 

4.1 Solution strategy. 

The stra·tegy of solution is as follo1ilS: since initially we kno~, 'the 

position of the bubble surface and the potential ¢ on the surface we can 

solve the discretized form of the boundary integral equa·t,ion (13) to yield 

'che value of 'the normal veloci,ty on 'the bubble surface. With the 

prior knovdedge of ¢ on S we ca.n calculate 'the 'tangential veloci'!:y 

and hence, together with 'i7¢, ·the particle velocity on s. 

Immediately we can update the bubble shape by using a simple Euler scheme 

as follows 

(38) !:('c+~t) + b.t + 0 

and as well by exploiting (36), the upda'ted surface potential 

(39) 

with a time step chosen to limit the change in the potential ¢. This 

procedure is repeated throughout the growth and collapse phases of the 

bubble until just prior to the bubble becoming multiply connected. 

Experiments with more elaborate ,time in'tegration t.echniques will be 

reported in Taib [ISJ. 

4.2 Rayleigh bubble. 

The first problem studied is the Rayleigh bubble, a single spherical 

bubble growing and collapsing in an infinite fluid. Instability started 
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to occur in our calculation for a dimensionless bubble radius of 

105142 x 10-2 at dimensionless time T = 1.825, in reasonable agre~aent 

wi th the exact lifetime of l. 829. '1'hese resu1-ts ."ere obtained ,.i-th the 

bubble surface divided into 16 linear segmen'cs, ,.i til a linear approximation 

of -the potential and its deri va-ti ve on each segment_. 

4.3 Rigid boundary. 

'l'11e second problem, for which more det_ailed results are presented, 

is -the grow'th and collapse of a cavitation bubble near to a rigid boundary. 

'l'he condition of no flow t,1-:trough tile boundary is incorporated into the 

calculation by the use of an image bubble in the computation of potential 

and its normal deri,,-ative. In -these calculations 28 linear segment.s were 

used to represent the boundary with closer spacing near to the axis of 

symmetry. 

4.4 Dimensionless variables. 

The reduction to dimensionless variables is made wi'l::h respect to 

the lTIaximum bubble radius R. 
m 

(40) z z 
R 

r 
y h 

where h is the ini-t.ial dist.ance between the bubble centroid and the rigid 

boundary. The other variables are made dimensionless by the follovdng 

transformations 

r I ~ 
(41) T 

t P,,,,-PcJ 
Rnl , P 

(42) p 
P-Pc 

Poo-Pc 

( r ( 43) ~ 
-.t. _P_ -
~ Poe-Pc 

Calculations are reported in terms of the above dimensionless quantities .. 
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5. BUBBLE SHAPE, PARTICLE PATHS AND PRESSURE CONTOTJRS 

With the strategy of solution outlined in the previolls section "1e are 

able to calculate and plot the bubble shape, particle pa'chs and p:;:essure 

contours as functions of time for different values of y, the initial 

location of the bubble centroid relative to the rigid boundary. In this 

paper we have chosen b,;'O values of y for discussion; namely y '" l.O 

and 1.5. Gibson (see e.g. Gibson and Blake [7]) has conduc-ted a series of 

s:lI;periments over a range of values of y and we find that_ our meore·tically 

predicted bubble shapes compare very favourably ~.ith his experimen-cs. 

5.1 Bubble shape. 

The bubble shapes at selected dimensionless times Tare shol,m in 

figures land 2 for y = L.5 and 1. 0 respec-tively. It can be seen that_ 

the lifetime of t.he bubble is ext:ended when ·the grow"th begins nearer to 

the boundary (Le. smaller values of yl. 

For the case y = 1.5, the b,ilible shapes we obtained are in general 

agreement with those obtained by Plesset and Chapman [12], and those 

oot.ained by Guerri, Lucca and prosperetti [9J. However in our model the 

collapse occurred much nearer to the rigid boundary, indicat:ing the importance 

of e}~plicitly considering the growth phase. 

For y = 1.0, Plesset and Chapman [12J obtained bubble shapes which 

are more elongated ·than those we obtained here, again indicating the 

importance of the growth phase. We have separately modelled the case 

y = 0.96 where we obtain very '::Iood agreement with the experimental resul-ts 

reported in Gibson and Blake [7J, hence confirming our views on the 

importance of the growth phase. 
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RIGID BOUNDARY AlGID BOUNDARY 

Figure 1. Bubble sha.pes for y = 1.5 during (a) expansion phase at 

dimensionless times A) 0.001553 B) 0.024138 C) 0.090953 DJ 0.214281 

El 0.466561 F) 0.973926 and (bl collapse phase at dimensionless times 

Al 0.973926 BI 1.729799 C) 1.881328 D) 1.988787 E) 2.024132 

F) 2.044900 G) 2.063839 H) 2.093078. 
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fH Gl 0 BOUNDARY RIGID BOUNDARY 

Figure 2. Bubble shapes for y ~ 1.0 during (a) expansion phase at 

dimensionless times A) 0.001553 B) 0.009084 C) 0.053140 DJ 0.1·12416 

E) 0.312960 F) 0.975561 and (b) collapse phase at dimensionless times 

A) 0.975561 B) 1.849750 C) 2.023160 D) 2.048726 E) 2.097308 

F) 2.121807 G) 2.144854 H) 2.162422. 
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5.2 Particle paths. 

Figure 3 shows the pathlines of selected particles on the bubble 

surface, together with three shapes of bubble, the initial, the maximum 

and the final. We notice that the particles move radialLy during the 

growth phase, however du~ing the collapse phase, the particles migrate 

towards the axis of symmetry except when in the liquid jet where they 

move almost parallel·· to the· axis of synunetry. 

5.3 Pressure contours. 

Pressure at anT point in the fluid can be calculated using the 

Bernoulli condition 

p = Poo - f ~: - ~ P 1~12 . 

In our calculation we use the following difference approximation of 

(44) 
- (lit )2</> 1 

n n-

where lItn = tn+l - tn· With our prior knowledge of u we can now 

calculate the dynamic pressure p anywhere in the fluid. 

In figure 4 we illustrate the pressure contours at several times late 

in the collapse phase for the y = 1.0 example. From the Rayleigh bubble 

solution we might anticipate a maximum pressure occurring close to the 

bubble surface and, because of the loss of spherical symmetry in the rigid 

boundary example, the point of maximum pressure occurs on the axis of 

symmetry. A physical explanation of the above phenomena is as follows. 

At the start of the collapse phase the maximum pressure occurs at infinity 

(equal to 1 in our dimensionless terms) causing the fluid to accelerate 

towards the bubble (i.e. the bubble is acting as a sink). However as the 

collapse continues mass conservation demands that the bulk of the fluid 

some distance away from the bubble must decelerate (we do not have a black 

hole!) creating a point of maximum pressure close to the COllapsing bubble 
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RIGID BOUNDARY 

Figure 3. Path1ines of selected fluid particles on the bubble surface 

for the case a) y ~ 1.5 and b) y = LO. The bubbles shown are the 

initial, maximUlll and the final shape. respectively. 
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Figuxe 4. Pressure contours for y = 1 at time a) 2.09308 

b) 2.121807 c) 2.1448544 and d) 2.162422. Maximum pressure at 

* of a) 7.2269 b) 7.6117 c) 8.0510 and d) 8.4018. 
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surface. In other words °the acceleration of "the fluid is zero at this 

point (Le. "l/p = OJ. Conversely the sro.all vo11JlIle of fluid between the 

point of maximum pressure and the bubble is being continually accelerated 

creating the very high speed liquid jet so clearly evident in figures 1, 2 

and 3. 

6. CONCLUSIONS 

This paper has been primarily "lith the developmenl: of a 

boundary integral method to model the gr01l>Ith and collapse of a cavitation 

bubble near a rigid boundary. The method allows us to calculate in fine 

detail, and °co high accuracy, "che relevant physical quan'ci"ties such as jet 

speed, pressure field and particle trajectori,Cls. These calculations 

"together with further work too be reported in Taib [15] will lead to a much 

enhanced understanding of the physical mechanisms responsible for 

cavitation damage. 
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