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THE ROLE OF CONDITIONING IN THE 

Nm~ERI CAL SOLUTI ON OF BOUNDARY VJ1.LUE PROBLE1~S 

Frank de Hoog 

ABSTRACT 

The manner in which sma.ll perturbations in the data give rise to a 

perturbation in the solution of a two point. boundary value problem will 

determine how effectively the solution can be approximated nmnerically. 

However ·this 'conditioning' also has a number of other implications that 

are less obvious. 'rhese include the effec·t on the stability of 

numerical schemes, the condi·tioning of shooting methods and the 

existence of a dichotomy. This paper aims to examine some of these 

inter-relationships. 

1. INTRODUCTION 

We shall examine the system of ordinary differential equations 

(1.1) Ly := y' - Ay f , o < t < 1 

where A E [L (O,l)]nxn 
p 

and f E [L (0,1) J n 
p 

for l,s; p ,s; 00 • In order 

to specify the solution uniquely, we require some restrictions on the 

solution and in our case we limit attention to conditions involving only 

values of y at the ends of the interval. Specifically, we consider 

(1. 2) By 
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for satisfying 

where 1·1 denotes the Euclidean norm. 

Any solution to (1.1) (see for example Keller [3]) can be written 

in the form 

(1. 3) 

where Y E [Ll(O,l)]nxn 
p 

initial value problems 

y(t) 

o 

f , 

y(t)c + y (t) 
p 

Y(O) 

.y (0) 
p 

I 

o , 

are solutions of the 

respectively. On substituting (1.3) into the boundary conditions (1.2) 

we obtain the system of equations 

and it follows that the boundary value problem (1.1)-(1.2) has a unique 

solution iff the matrix BO + BlY(l) is nonsingular. Furthermore, on 

writing 

we obtain 

(1.4) 
1 

y(t) ~(t)b + fo G(t,s) f(s) ds 
$ 

~(t)b + y (t) p 

where 

y (t) f: G(t,s) f(s) ds 
p 
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ill1d G(t,s) is the Green's function defined by 

(1.5) G('c,S) 

f <I>(t) 

l-<!>(t) Bl 1>(0) <1>-1 (s) 

t > S 

t < S 

'l'hus, a knowledge of the fundamental solution allows us to wri-te dm,m 

(at least in principle) the solution to the boundary value problem 

(1.1), (1.2), 

v<)hen solving boundary value problems of the form (1.1), (1.2) 

numerically, it is important to know how small perturbations in the 

right hand sides of (1. 1) and (1. 2) will affect 'che solution, In order 

to characterise this mathematically we need to define some norms, With 

bERn, E E Rnxn we denote the Euclidean norm by Ibl and the norm 

of A by 

define 

IAI = suplAbl/lbl 
b 

respectively. 

II fll 
p 

[(
1 

:= If(tlIPdtl l/p , 
JO 

with its limiting value 

IIflloo suplf(t)1 
t 

For f E Ii (0 1)] n we p , 

lSp<oo 

and for A E Ii (Ol)]nxn p , we take -the induced norm 

IIAII 
p 

sup 

fdL (O,ll]n 
p 

It now follows from (1.4) that 

or equivalently 

(1. 6) 

{
IIAfllp} 
Ilfll ' 

p 



where 
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II <P II 
00 

SUP[(l !G(t,S) Iq ds]l/q , 
t j 0 

In the sequel, we shall be concerned mainly with the case p 

(1. 7) sup !G(t,s) I . 
t,s 

1. Then, 

appropriate and it may even be necessary to use weighted norms (see 

de Hoog and Mattheij [2]). 

Basically (1.6) says that the perturbations in f and b may be 

amplified by the factors a and S respectively. Thus, when a and S 

are large, the problem is poorly conditioned and we may expect to have 

difficulties in obtaining a numerical solution. Note however that the 

converse is not true and it is easy to construct problems with moderate 

condition numbers that are difficult to solve numerically. 

This paper looks at some of the consequences of the conditioning of 

(1.1), (1.2). In section 2 we examine typical stability estimates for 

finite difference schemes for the numerical solution of (1.1), (1.2) 

while in section 3 we consider the effect of the stability constants on 

shooting methods. Finally in section 4 we describe some results of 

de Hoog and Mattheij [2] which relate dichotomy and stability in two 

point boundary value problems. 

2. STABILITY OF FINITE DIFFERENCE SCHEMES 

We shall demonstrate in this section how the conditioning of finite 

difference schemes is affected by the condition numbers a and S 

defined in section 1. For simplicity, we take p = 1, A E [cl[O,l]]nxn 
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I} be a partition of the 

interval [0,1] and consider the centred Euler finite difference operator 

defined by 

y, -'-1 - Y , Y'.;.1 + Y , 
(L ) = J' J A(t ) J' J t,,'l j h , - - j +:\: 2 

J 

j 0,0 •• ,N-I 

and boundary conditions 

where (N+I)n . _+-. Y E JR , h, = 1:" _ 
J J+.L J 

and t, J = (t, 1 + t ,J /2 . 
J+" J+- J 

y(t) be the broken line interpolant to y at the points tj , 

j = 0, •.• , N. That is 

y(t) := (Y'+I+y,)/2 + (t-t'+')(Y'+I-y,l/h, , 
J J J 2 J J J 

Then, using (1.6) we obtain 

max 
j 

Furthermore 

and it is easy to verify that 

t, ,,; t ,,; 
J 

,,; (a+a2)h lIylloo+ (l+ah) IILLl.'[lIl 
2 2 

where 

and 

h max h, 
J j 

Let 
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Combining these estimates when h < 2/(a +a2) gives 

(2.1) lIyll _ 00 :~ max 
j 

\"here 

6 (h) = 2 6/(2 - (a + ah h) , 

~ (h) = 01, (2 + ah) (2 - (a + h). 

Equation (2.1) is the analogue of (1. 6) and clearly the condition 

nuzu1:H3'!rs Ob (h) ,a11.d B (h) of tl1.e fini~te difference scheme are closely 

rela'ted to 'the condition nU!l1bers /y, and [3 of the continuous problem. 

Indeed in the present example we have a (h) ->- 01, and [3 (h) ->- [3 as h..,. 0 

Although the above analysis has been derived for a particularly 

simple finite difference scheme, the basic idea used can be generalised 

so that a wide variety of finite difference schemes can be analysed. 

Details can be found in de Boor, de Haag and de Keller [1]. However the 

role played by the condition numbers a and [3 in the above example is 

typical of the more general situation. 

3. THE SHOOTING APPROACH TO BOUNDARY VALUE PROBLEMS 

Suppose that i E [LIIO l)]nxn p , is a fundamental solution of the 

differential operator L defined by (1.1) and satisfies the boundary 

conditions 

I , 

As in section 1 we can associate with these boundary conditions the 

Green's function 
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j ~(t) BO 1> (0) ~-l(s) 

G(t,s) 

-q;, (tl Bl ~ (1) 1>-1 (s) 
l 

and hence the stability constants 

111>11 
00 

so that 

Now let 

y (t) = fl G(t,s) f(s) ds . 
p 0 

Then the solution of (1.1), (1.2) can be written as 

(3.1) yet) ~(t)c + y (tl 
p 

where c is determined from the linear equations 

(3.2) 

t > s 

t < s 

1 -+ 
P 

1 
- = 1 
q 

The relevance of (3.1) and (3.2) is tha"t if v;e can obtain numerical 

approximations to ~ and Yp , then the above procedure can be used to 

obtain a numerical approximation to the solution of (1. 1), (1. 2) Of 

course, this makes sense only if the calculation of ~ and y 
-p 

is 

:3ubstantially simpler than the calculation of 1> and y. 
p 

Thus the 

choice almost invariably used is EO = I , EI o which corresponds to 

solving initial value problems for the solution of 1> and y 
p 

However, separable boundary conditions which correspond to the case when 

rank (BO) = k , rank (EI ) = n-k could also be used and there are a number 

of good algorithms to solve such problems (see for example [4]). The 

difficulty here is the choice of appropriate separable boundary 

conditions. 
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Before analysing the shooting method f~rther, we require the 

following result. 

LEMMA 3.1 Let B, 'S , ~ and q, be defined as above. Then 

Proof Since 

~(t) = ~(t) (B~)-l = ~(t) ~-l(O) ~(O) = ~(t) ~-l(l) ~(l) , 

it follows that 

Thus 

(B~)-l <'Bo q, (0) + Bl ~(l» rl(O) ~(O) 

= BO ~(O) + Bl 4>(1) rl(O) ~(O) 

= BO ~(O) + Bl q, (1) 4>-1(1) ~(l) 

= B~ . 

The above lemma enables us to obtain a simple bound on the 

condition number of the matrix B~. Clearly, 

Thus if SS is large, the solutio~ of (3.2) may be poorly conditioned. 

In fact, even when the condition number K(B4» 

calculation may be unsatisfactory because if 

is not large, the 

lIy II is substantially poo 

# 
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larger than lIylloo' the addition in (301) must involve the subtraction 

of two nearly equal members and thus loss of significant digitso In 

order to ensure that this does not occur, we require a to be of modest 

size. 'l'his requirement means that the choice BO = I , III = 0 is no-t 

satisfactory as it is a simple matter to construct exa~mples for which ex 

and i3 are modera-te and ex, ~ are very large. 

The shooting method can also be used to analyse the rate of 

convergence of a numerical scheme and also its stability. To illustrate 

this, suppose that we have approximations ~ and z 
p 

respectively. Following (3.1) and (3.2) we let 

(3.3) 

to ¢ and y 
p 

be the approximation to y (\.,e are assuming here that Bift is' non-

singular). Then we find that 

Let iii be defined as above. FUY'ther-

E := if' - ¢ 

and 

I B<!> I I BE I < 1 . 

Then, the approximation (3.3) is well defined (in the sense that B~ is 

nonsingular) and satisfies 

Iy(t) -y(t) I :<; 
1 {I <!> (t) I 

1 - jB¢1 IBEI 
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Proof Let 

<P (t) ~ ~ (t) (Bq,) -1 , 

Then, 

I ~{( t) ~ y (t) 1 :0; I (~( t) - ':V (t II (b- I + 1':V(t) liBel + le('c) I 

and 'IIle now proceed to estimate the terms on the right hand side" First 

we obtain 

11'111 rr,t-ll 
• <j, :-~ i 

I(~(t) +E(t» 

:0; 1<1>(t») + IE(t») IB<i>1 

1 -I BEl ISiP! 

the last being obtained using lel!ll.ua 301. Also 

and hence 

:0; I~(t) (1- (B1>+BE)-l B1»1 !Byl 

+ !E(t)II(B~+BE)-IB~IIByl 

= liP(t) BE(I+ (B~)-l BEl-I! !1hl 

+ IE(t)1 I(I+(B~)-l BEl-II IByi 

:,;liP(tl! IBEI Ilhl+!E(t)1 IByl 
I - I BEl [BiP! 

The result now follows on combining the above estimates. 

An il!ll.11ediate consequence of the above lemma is 

# 
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COROLLARY 3.1 Let II Ell and Then 
co 

:;; Z {(2S+1) IlyllcoEl+S(1+2El)EZ}+EZ 
1 - 4SEl 

The thing to notice about the above bound is that it does not 

involve the condition numbers a and S They are however implicit in 

the quantities II Ell and II ell because the magnitude of these when '¥ 
co co 

and z are obtained by applying a numerical scheme to calculate 1 and 
p 

Yp respectively will almost certainly depend on the condition numbers a 
and S . 

4. A RELATIONSHIP BETWEEN DICHOTOMY AND CONDITIONING 

One reason why (1.1), subject to initial conditions, may be very 

poorly conditioned when (1.1), subject to (1.2), is well conditioned is 

because the fundamental solution may have both increasing and decreasing 

components. In fact it has become almost traditional to assume that the 

solution space S = {y(t)clc E ]Rn} can be split into S = Sl (J)S2 such 

that the solutions in Sl are 'decreasing' while the solutions in S2 

are 'increasing'. Specifically we say that 

DEFINITION s is dichotomic if there exist matrices 

that rank Tl = k 3 rank T2 = n-k> Tl +T2 = I and 

t > s 

(4.1) 

I -1 
y(t) T2 Y (s) I :;; y t < s 

for Bome CJastant y 0 

If S is dicho.'comic then on defining 

and T 
2 

such 



and noting that and 

we find that for ¢ E 81 

for t > s 'flhile for ¢ E 

iw,t <p (s) 0;. max 
CERn 

86 

are proj ections (L e. 

52 . 
I y~tlT2cl < 

fy(s) T2 c l -- ly(tlT2 y-l(s)I 

2 

< y 

'" , ~2 

for t < s. Thus, 51 does indeed correspond to the 'decreasing' 

solutions (i.e. soiutions that do not increase too much) while 8 2 

corresponds to the 'increasing' solutions. 

Of course it is always possible to find projections Tl and T2 

such that (4.1) holds (for example 1'1 = I , T2 = 0). However we would 

like to find Tl and T2 such that y is not too large when the stability 

constants a and B are moderate. This is straightforward when the 

boundary conditions are separable. 

LEMMA 4.1 Let rank BO = k > rank Bl = n-k and 

a sup IG(t,s) I 
t,s 

Then (4.1) holds with Tl 

y = a . 

Proof The result follows on 

yet) 

Y(t)Tl y-l (s) 

Y(t)T2 y-l(s) 

noting that 

<l?(t) <1>-1(0) 

G(t,s) , 

-G (t, s) , 

t > s 

t < s 
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rank (Tl ) rank lEO) k 

raIlk(T) rank (Bl ' n-k 

and 

Tl +T2 I 

Thus if we can find separable boundary conditions such that the 

resulting problem is well conditioned vIe can immediately establish 

dichotomy. Such boundary conditions have been derived by de Hoog and 

Mattheij [2]. Let 

where U and V are orthogonal matrices and 

D = diag(l/dl,···,l/dk , dk+l,···,dn ) 

with 0 < d. ::: 1 , i 1, ..• ,n- . Now 
1 

[~l 
(4.2) 

Then, it is shown in [2] that 

define 

[ 
Ik I 0 1 
o-r-;-J 

LEMMA 4.2 Let BO and Bl be defined by (4.2). Then 

wi th a:> a + 4a2 and 8 < 4a • 

Thus, we find that the constant y in (4.1) can be bounded in 

terms of the stability constant for the continuous problem. 

# 
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