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THE ROLE OF CONDITIONING IN THE
NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS

Frank de Hoog

ABSTRACT

The manner in which small perturbations in the data give rise to a
perturbation in the solution of a two point boundary value problem will
determine how effectively the solution can be approximated numerically.
However this 'conditioning' also has a number of other implications that
are less obvious. These include the effect on the stability of
numerical schemes, the conditioning of shooting methods and the
existence of a dichotomy. This paper aims to examine some of these

inter-relationships.

1. INTRODUCTION

We shall examine the system of ordinary differential equations
(1.1) ly :=y' - By = £, 0 <t<1

' n
where A ¢ [Lp(O,l)] xn and f e [Lp(O,l)]n for 1 < p <® ., 1In order
to specify the solution uniquely, we require some restrictions on the
solution and in our case we limit attention to conditions involving only

values of y at the ends of the interval. Specifically, we consider

(1.2) By = Byy(0) + By(1) = b
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nxn . .
for B , B, e R satisfying

max{]BOI, |Bl[} =1

where o denotes the Euclidean norm.

Any solution to (l.l)v(see for example Keller [3]) can be written

in the form
(1.3) y(t) = ¥(t)c + §p(t)

where Y ¢ [L;(O,l)]nxn and yp € [L;(O,l)]n are solutions of the

initial value problems

Ly =0, Y(0)

il
[}

[
o
-

Ly =f£, v (0
y yp( )

respectively. On substituting (1.3) into the boundary conditions (1.2)

we obtain the system of equations
Byc = (BO + BlY(l))c =b - Blyp(l)

and it follows that the boundary value problem (1.1)-(1.2) has a unigue
solution iff the matrix BO + BlY(l) is nomnsingular. Furthermore, on
writing

_ -1
o(t) == Y(t)(BO + BlY(l))

we obtain

1
(1.4) y(t) = 2(t)b +[ G(t,s) £(s) ds
0 .
= d(t)b t
d(t)b + yp( )
where
1
yp(t) = J G(t,s) f(s) ds

0
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and G(t,s) 1is the Green's function defined by

o(t) B, (0) o s t>s
(1.5) G(t,s) =
~3(t) B, (0) ¥\ (s) t<s .

Thus, a knowledge of the fundamental solution allows us to write down
(at least in principle) the solution to the boundary value problem

(1.1), (1.2).

When solving boundary value problems of the form (1.1), (1.2)
numerically, it is important to know how small perturbations in the
right hand sides of (1.1) and (1.2) will affect the solution. 1In order
to characterise this mathematically we need to define some norms. With

n nxn .
be R , EecR we denote the Euclidean norm by |b| and the norm
of A by IA] = sup]Ab[/|bl respectively. For £ ¢ [LP(O,l)]n we

b .

define

1
Nel = [( le(e) [P ae1t’® | l<p<o
b lo .

with its limiting value

I£l = sup | £(t) |
t

and for A ¢ []'_.P(O,l)]nxn we take the induced norm
lafll
p

"A“p= sup . TEr [ ¢
£ 1
€[Lp(0 )]

It now follows from (1.4) that

A

Iyl < 8lp| +alsl

or equivalently

N

(1.6) Iyl < 8|By| + oLyl
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where

@™
I

ol

1
1 1
sup[f le(t,s) | as] /q, =+
t ‘o P

Q
[
Q|-

In the sequel, we shall be concerned mainly with the case p =1 . Then,
(1.7) o = sup lG(t,s)| .

t,s
However, in some applications, other choices of p may be more
appropriate and it may even be necessary to use weighted norms (see

de Hoog and Mattheij [21]).

Basically (1.6) says that the perturbations in £ and b may be
amplified by the factors o and B respectively. Thus, when o and B
are large, the problem is poorly conditioned and we may expect to have
difficulties in obtaining a numerical solution. Note however that the
converse is not true and it is easy to construct problems with moderate

condition numbers that are difficult to solve numerically.

This paper looks at some of the consequences of the conditioning of
(L.1), (1.2). 1In section 2 we examine typical stability estimates for
finite difference schemes for the numerical solution of (1.1), (1.2)
while in section 3 we consider the effect of the stability constants on
shooting methods. Finally in section 4 we describe some results of
de Hoog and Mattheij [2] which relate dichotomy and stability in two

point boundary value problems.

2. STABILITY OF FINITE DIFFERENCE SCHEMES

We shall demonstrate in this section how the conditioning of finite
difference schemes is affected by the condition numbers o and B

defined in section 1. For simplicity, we take p=1, A € [Cl[O,l]]nxn
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ana lal_ , I2'l_ < a .

Let A={O=t0<t1< <tN=1} be a partition of the

interval [0,1] and consider the centred Euler finite difference operator

defined by
Y. Y. Y. +y.
’ _ T3+l i _ j+l 3 L _
(LAg)j hj A(tj+%) ) R 3j 0,...,N=-1

and boundary conditions

By = +
aY = Bp¥y * By¥y

(N+1)n
= - = + .
where y e R ’ hj tj+1 tj and ‘tj+% (tj+1 tj)/2 Let

¢ (t) be the broken line interpolant to y at the points tj R

j=0,...,N . That is

IA
o+
N

g(t) := (yj+l+yj)/2 + (t-tj_'_%) (yj+1-yj)/hj , tj tj+1

Then, using (1.6) we obtain

l@%=m?[%ISMW]+wWH.

Furthermore
|B9| = |B,yl
and it is easy to verify that

IIL§(IIl < (a;az)h g, + @ +%) IILAXII1

where
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Combining these estimates when h < 2/(a-+a2) gives

(2.1) Iyl == m;xx iyj| < B(h) [B,y| + at) Iyl
where

B(h) =2B/2 - (a+a®)h) ,

a(h) = a2 +ah)/(2- (a+a2)h) .

Equation (2.1) is the analogue of (1.6) and clearly the condition
numbers o(h) and R(h) of the finite difference scheme are closely
related to the condition numbers o and B of the continuous problem.

Indeed in the present example we have of(h) + o and B(h) - B as h~+ 0 .

Although the above analysis has been derived for a particularly
simple finite difference scheme, the basic idea used can be generalised
so that a wide variety of finite difference schemes can be analysed.
Details can be found in de Boor, de Hoog and de Keller [1].However the
role played by the condition numbers o and B in the above example is

typical of the more general situation.

3. THE SHOOTING APPROACH TO BOUNDARY VALUE PROBLEMS

Suppose that d e [L;(O,l)]nxn is a fundamental solution of the
differential operator L defined by (1.1) and satisfies the boundary

conditions

1

As in section 1 we can associate with these boundary conditions the

Green's function
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o (t) B, ®(0) & " (s) t>s
G(t,s) =
L =B B 3 3he) t<s
and hence the stability constants
3 % L 1/ 1 1
B=1U%I_ , &=sup {f [Be,s)[Tas}’?, =+==1
t 0 P q
so that
Iyl < B|By| + &IILyIIp .
Now let

1
v (t) = [ G(t,s) £(s) ds .
P 0

Then the solution of (1.1), (1.2) can be written as
(3.1) y(t) = ®(E)e + ¥ ()

where ¢ is determined from fhe linear equations
(3.2) (Bd)c = b - B§P .

The relevance of (3.1) and (3.2) is that if we can obtain numerical
approximations to % and §p ;, then the above procedure can be used to
obtain a numerical approximation to the solution of (1.1), (1.2) . Of
course, this makes sense only if the calculation of % and §p is
substantially simpler than the calculation of & and yp. Thus the
choice almost invariably used is EO =I, El = 0 which corresponds to
solving initial value problems for the solution of ® and §p .
However, separable boundary conditions which correspond to the case when
rank(ﬁo) =k, rank(ﬁl) = n-k could also be used and there are a number
of good algorithms to solve such problems (see for example [4]). The

difficulty here is the choice of appropriate separable boundary

conditions.
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Before analysing the shooting method further, we require the

following result.

LEMMA 3.1 Let B, B, & and 9 be defined as above. Then

B3t = Bo .

Proof since

o(t) = 3(e) (B3 = Be) 375(0) o(0) = B(t) BL(L) o(1) ,
it follows that
B =310 a0 =311 (1) .
Thus
S ~ -1
@)= B, B0 + B 3 30 20

= ~ oo -l
By @(0) + B, 3(1) 377(0) @(0)

B, ©(0) + B, 3(1) 1) e

B .

The above lemma enables us to obtain a simple bound on the

condition number of the matrix B® . Clearly,

K@) := | 8% |83

|Bo| |Bd|

IA

(Jo)| + |3 ]) (Jew | + [e)])

~

4BB .

IA

Thus if Bé is large, the solution of (3.2) may be poorly conditioned.
In fact, even when the condition number K(B®) is not large, the

calculation may be unsatisfactory because if H?Pﬂw is substantially
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larger than |yl , the addition in (3.1) must involve the subtraction
of two nearly egqual members and thus loss of significant digits. In

order to ensure that this does not occur, we require O to be of modest

size. This requirement means that the choice ﬁo =I, Bl = 0 is not

satisfactory as it is a simple matter to construct examples for which 0«

and B are moderate and o ’ B are very large.

The shooting method can also be used to analyse the rate of

convergence of a numerical scheme and also its stability. To illustrate

this, suppose that we have approximations Y and EP to ® and yP

respectively. Following (3.1) and (3.2) we let

1

(3.3) Sy = V() BN (b-BZ) + 2(t)

be the approximation to y (we are assuming here that BY is non-

singular). Then we find that

LEMMA 3.2 Let ¥, 3, §p . 2,9, 9 be defined as above. Further—

more, let

|Bo| |BE| <1 .

Then, the approximation (3.3) is well defined (in the sense that BY <is

nonsingular) and satisfies

[90) -y < ~—— {le| (BE| |By| + |B&|)

1-|B3| |BE|

+ B | (|By| + |Be| |Bel} + |3(w)] .
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Proof Let

1

o) = 3(e) BHL, ye) = ¥(e) BHL.

Then,
[90) —y)] < | (@(e) =¥ (£)) (b-B}”{P)I + vy | B3| + 2|

and we now proceed to estimate the terms on the right hand side. First

we obtain

Y] = |¥w) BH°

1
|

|G + B B9 (1 + BEGH™H™

Clewr] + |B)| [Bo|
1 - |BE| |Bo|

the last being obtained using lemma 3.1. Also

8% 8%

b - BY b - BY
Byp ( Byp)

(B®) (Bd(b —B§P))

1]
23]
o
[2x]

=

and hence

[3(0) -Y(e) &8 BS| |Byl

IA

| @) -¥(©) (b-BF )|

|3t) (- (B3 +8E) " 8b)| |8

IA

+ |Ew)| | (B +BE) T B3| |By|

lo(t) BE(z+ (8D L 8®) ™Y Byl

v E@] Ja+ @ s Byl
loey| [BE| [By| +|Ee)| [Byl
1 - |BE| |Bo|

The result now follows on combining the above estimates.

An immediate consequence of the above lemma is
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COROLLARY 3.1 et |IEN < €1 and el < g, - Then

2
ly -9l < —————E—»{(zs +1) Hyﬂmel+—8(1 +2€l)52} + €

1-4ge, . !

2

The thing to notice about the above bound is that it does not

involve the condition numbers & and E . They are however implicit in

the quantities IEl_~ and I8l Dbecause the magnitude of these when V¥
and EP are obtained by applying a numerical scheme to calculate % and
§P respectively will almost certainly depend on the condition numbers &

~

and B .

4. A RELATIONSHIP BETWEEN DICHOTOMY AND CONDITIONING

One reason why (1.1), subject to initial conditions, may be very
poorly conditioned when (1.1), subject to (1.2), is well conditioned is
because the fundamental solution may have both increasing and decreasing
components. In fact it has become almost traditional to assume that the

solution space S = {Y(t)c|c ¢ ®'} can be split into S = s, ®s, such

that the solutions in S are 'decreasing' while the solutions in S

1 2

are 'increasing'. Specifically we say that

DEFINITION s Zs dichotomic if there exist matrices T, and T, such

that rank T, = k, rank T. = n-k , T, +T_ =1I and

2 1772
lv(e) 7 v he)| <y t>s
(4.1)
le(e) =, vie)] <y t<s

for some constant vy .

If S is dichotomic then on defining
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s, = {¥(0)T clc e r"}

1
s, := {Y(£)T c|c e "}
2 2
nd noting that T and T re projections (i T, =T 2 T, =T 2)
a ) 1 , are projectiol .€o 1 =T Ty, =T,
we find that for ¢ € Sl
) vy el
< Y(t T Y <
o) = " TYGsIT of < |y Yol <y
for t > s while for ¢ € S2 .
() l¥(e)T,
< < |y <
d(s)| ° n Y(s)T c | (t)T Y (s)| Y
for t<s . Thus, S does indeed correspond to the 'decreasing’

1

solutions (i.e. solutions that do not increase too much) while S2

corresponds to the 'increasing' solutions.

Of course it is always possible to find projections Tl and T2

such that (4.1) holds (for example Tl =1, T2 = 0). However we would

like to find T1 and T2 such that Y is not too large when the stability

constants o and B are moderate. This is straightforward when the

boundary conditions are separable.

LEMMA 4.1 Let rank B, = k , rank B, = n-k and

o = sup |G(t,s)]
t,s

Then (4.1) holds with T, = 8(0) By , T, = ©(0) B} (1) 371 (0)

Y =0q.

Proof The result follows on noting that

Y(£) = o(e) & 1(0) ,

-1
Y(E)T, Y T (s) = G(t,s) , t>s
Y(6)T, v l(s) = -gt,s) , t<s
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rank(Tl) = rank(BO) =k
rank(Tz) = rank(Bl) = n-k
and
+ = .
Tl T2 I

Thus if we can find separable boundary conditions such that the
resulting problem is well conditioned we can immediately establish
dichotomy. Such boundary conditions have been derived by de Hoog and

Mattheij [2]. Let

Y(1) = &(1) & 1(0) =: upv"

where U and V are orthogonal matrices and

D = diag(l/dl,...,l/dk, dk+l""'dn)
with 0 < di =1,i=1,...,nn . Now define
I 0]
P1= . P2= k
o 1o
~ T ~ T
(4.2) B0 = PlV v Bl = P2U .

Then, it is shown in [2] that

LEMMA 4.2 et ﬁo and El be defined by (4.2). Then

Iyl < B|By| +alLyl,

2

with & < o+40° and B < 40 .

Thus, we find that the constant <Yy in (4.1) can be bounded in

terms of the stability constant for the continuous problem.
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