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1 Introduction 

In this lecture I outlined how some results in the representation theory of the 

noncompact semisimple Lie group SU(n+ 1, 1) were related to harmonic analysis 

on the Heisenberg group. The guide we use is the example of analysis on ihe 

real. line viewed as the boundary of the upper half-plane. The Heisenberg group 

can be identified with the boundary of a Siegel domain. For each of the following 

ingredients of classical analysis on the upper half-plane, we seek an analogue in 

the setting of harmonic analysis on noncompact symmetric spaces. They are: 

1. the Cauchy-Riemann operator 

2. the fact that the real and imaginary parts of a holomorphic function are 

conjugate harmonic functions ; 

3. the boundary values of these functions; 
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4. the Cauchy-Szego integral, which takes boundary data and assigns holomor­

phic functions; 

5. the Hilbert transform (combine items 4, 2, and 3 ) ; 

Now let G be a noncompact semisimple connected Lie group with finite centre, 

acting transitively as a group of isometries on a noncom pact Riemannian symmet­

ric space X. Fix an element x 0 in X, which we will treat as the origin, and 

let K denote its isotropy subgroup in G. We let G act on the right, so that 

X= K\G. Furthermore, fix: an Iwasawa decomposition G = ANK and let M 

denote the centralizer of A in K. Take an irreducible representation ( r, V,.) 

of K. Functions on X with values in V.,. can be identified with r-covariant 

functions on G. Items ( 1) through ( 5) above suggest the following apparatus. 

1. Fix a G-invariant first order differential operator 8... acting on V.,.-valued 

functions on X, determined by the location of T in the dual object of K. 

2. Under the action of r(M), V,. splits into irreducible M -components. The 

M -components of an element F E ker( Or) should be eigenfunctions of the 

Casimir operator and play the role of conjugate functions. 

3. The boundary of X is approached by moving towards infinity along orbits 

of A in X. 'Weighted boundary values of M -components of elements 

of ker(8.,.) provide a means of imbedding ker(8-,-) into a principal series 

representation. 
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4. The Gauchy-Szego map, with suitable parameters, exhibits the K -finite 

part Of ker( aT) as a quotient Of a Certain principal SerieS representation. 

5. Intertwining operators. 

For item (1) in this list, see [5,17,3]. The remark about the location of r is ex­

plained in Section 2 of [15]. Item (2) is connected with Corollary (3.2) in [13] and 

[6]. Boundary behaviour, as referred to in item (3), is described in [1,8,10,3]. My 

work [15] is concerned with realizations of end of complementary series representa­

tions in this setting (see section 15 in [12] for a definition of end of complementary 

series). I have been guided in this research by the work of John Gilbert, R. A. 

Kunze, Bob Stanton, and Peter Tomas, who have treated the case of the Lorentz 

groups SO( n, 1). 

2 Domains in Projective Space 

Fix n ~ 2 and recall that G = SU(n + 1, 1) is the subgroup of SL(n + 2, C) 

which preserves the sesquilinear form on cn+2 given by 

SL(n + 2, C) acts transitively on pn+l(C), where we represent an element of 

projective space by means of a row of homogeneous coordinates [z] and matrices 

multiply on the right-hand side. In particular, G acts transitively on the domain 

B = {[z] E pn+l(C): zT,z* < o} 

and its boundary 8B = {[z] E pn+1(C): zT,z* = o}. 
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Consider another sesquilinear form on cn+2, given by 

Here the (n + 2) X (n + 2) matrices r1 and r2 are related by the equation 

( 
1/vl2 

!= 0 
-1/vl2 

1/vl2) 
In 0 . 
0 1/vl2 

0 

The Siegel domain X is X= {[z] E .P"+l(C): zF2 z* < o}, which is the same as 

B,-1 • If [z] E B then Zn+2 f- 0 and so B can be identified with the unit ball 

in cn+l and aB with the unit sphere. Similarly, if [z] E X then Zl i- 0 and 

Zn+2 i- 0. We can identify X with the domain in cn+l described by 

and the identification is achieved by the map cp : cn+l --+ pn+l(C) described by 

cp( () = [(t, ( 2 , ••• , (n+l• i]. The boundary of this domain in cn+l is the set 

and it is known that this is a realization of the Heisenberg group (see [2]). Its 

image with respect to If' consists of the open dense subset of ax consisting 

of those elements [z] with Zn+2 i- 0. The action of G on X and ax 

is defined by [z] · g = [Z/9/-1] and the action on the corresponding domain 

in cn+l is ( f-+ cp-1 (cp(() ·g). This means that G acts by fractional linear 

transformations. Equip X with the hermitian hyperbolic metric. It is known 

that G acts isometrically. 



236 

3 Special subgroups 

Fix x 0 = [1, 0, 0 •• , 0,1] in X. Its isotropy subgroup in G is the compact subgroup 

K = S(U(n + 1) x U(l)). On the boundary, take x 1 = [0,0, ... ,0,1] as the 

origin. For every t E R let 

( cos~(t) 

sinh(t) 

0 sinh(t)) 
0 . 

cosh(t) 0 

The geodesic half-line from x 0 to x 1 :is traced out Xo· as t varies 

over 0:::; t < oo. Let A = { a(t) : t E R}. The centralizer of A in K is 

The isotropy subgroup of x 1 in G is AN M, where N is ihe subgroup 

{( 1-~lzl 2 +ir z ~lzl 2 -ir) } 
N = -z* In z* : z E en andrE R . 

· ir- ~lzl 2 z 1 + ~lzl 2 - ir 

and ax= ANM\G. The Heisenberg group is V = {(n-1 )* : n EN} and 

so a typical element of V is of the form 

(
1 + ir ~' ~lzl 2 

v(z,r)= -z 
~lzl 2 - ir 

z 
In 
-z 

A direct calculation shows that x 1 • V is an open dense subset of the boundary 

and it follows that AN MV is an open dense subset of G. The Iwasawa decom-

position determined by this set up is G = AN K. Taking the conjugate transpose 

of this, we can also write G = KV A so that X = x 0 • VA = x 0 • AV 0 It is 

also known that K acts transitively on aX, which means that ax = M\K 0 
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4 Covariant Functions 

Now we must describe some irreducible representations of K. Fix p and q, non-

negative integers, and let Vp;q denote the space of spherical harmonics of bidegree 

(p, q) on cn+l. The group K acts by Tp,q on Vp,q' and this action is described by 

(( kn 
Tp,q Q 

where k11 E U(n + 1) and k22 = det(k11)-1. Given a function f :X -t Vp,q we 

can extend it to be a Tp,q-covariant function on G by assigning 

J'(kav) = Tp,q(k)f(xo · (av)), 

for all kav E KAV. Similarly, ifF is a Tp,q- covariant function on G, set 

F~(x0 • av) = F(av), 

so that F~ is a Vp,q-valued function on X and (F~)I = F. The action of G on 

Tp,q-covariant functions is by right- translation, and so there is an action of G on 

Vp,q-valued functions on X. 

The Lie algebra f!_ of G has a Cartan decomposition f!_ = k + .§., where .§.is 

isomorphic with the tangent space of X at x 0 • Hence, ~ carries the action of 

Ad(K) as a group of rotations. This action can be extended to yield a unitary 

representation of K on the complexification §.c. In fact, as a K -module, §.c is 

isomorphic with V1,o E9 Vo,l· Each element E E §.c produces a right-translation 

invariant vector field on G, given by f 1-+ E * f. Now fix an orthonorq1al basis 

E1, E 2 , ••• , E 2n+2 of §.c. There is the canonical invariant differential operator (see 
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[12]) V acting on Vp,q-valued functions on X and given 

2n+2 

Vf = C'£ * 
j=l 

Notice that V f : X -t V p,q ® k and that lS ® Ad\K )- covariant. 

Each K -equivariant projection P of Vp,q ® k onto a K -invariant subspace 

gives a G-invariant first order differential operator Po V, acting on Vp,q-valued 

of Vp,q ® :l!.c into irreducible 

K-modules is 

Vp,q ® §..c ~ Vp+l,q EB Vp,q+l EEl Vp-l,q EB Vp,q-l EEl (other representations). 

In [15] I define such a differenti.U operator, say 8p,q , by taking P to be the 

projection onio the orthogonal complement of vp+l,q EEl . We say thai a 

function on G is K -finite if its right translates by elements of K generate a finite-

dimensional vector space. Clearly ker( 8p,q) is a G-invariant subspace of the space 

of smooth Vp,q-valued functions on X. Although the subspace of K -finite vectors 

is not G-invariant, it is a (~, K)-module. The following theorem is proved in 

[15]. 

Theorem 1 If p = q 2 2 then the K -finite vectors in ker(op,p) form an irre-

ducible (fl, K) -module. 

Let it denote the Casimir operator for G and o the canonical Laplace-Beltrami 

operator acting on Vp,p- valued functions on X, as described in [6]. From the 

:results in section 6 of [15], Corollary 3.2 in [12], and the theorem in [6], we see 

that elements of ker( 8p,p) have the following eigenfunction property. 
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Corollary 1 For p ?: 2 , every element f E ker( ap,p) satisfies, D f = (p + n )f 

and Of= 2(p -l)(p + n)f. 

5 Principal Series Representations 

Next we must consider the form of G-invariant spaces of vector-valued functions 

on ax, which will provide the boundary values of elements of ker( ap,q). As 

in the previous section, we deal with covariant functions, but now the isotropy 

subgroup is AN M rather than K. Fix an irreducible representation ( u, 1lu) of 

M, occuring as a subrepresentation of (rp,qiM, Vp,q)· Let C""(K,u) denote the 

space of all smooth functions f : K --+ 1lu with the covariance property, 

f(mk) = u(m)f(k), Vm EM and k E K. 

For each complex number >. let I,.,.x denote the space of all elements of C""(K, u), 

extended to all of G by requiring that f( a( t)nk) = e(P+A)t f( k) for all t E R, n E N, 

and k E K. Here p = n + 1 . This space is invariant under right translation 

by elements of G and this representation of G is called a (nonunitary) principal 

series representation. The normalisation p+>. is arranged so that this is a unitary 

representation of G when >. is purely imaginery, see [4). The fact that 

G = ANMV U (a set of measure 0) 

means that elements of I,.,.x are completely determined by their restriction to V. 

This tells us how to equip spaces of 'Hu-valued functions on ax with actions of 

G, depending on which value we take for >.. 
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The passage from elements of lu,~ to Tp,q·covariant functions is achieved using 

Cauchy-Szego maps, at the level of generality defined by Gilbert, Kunze, Stanton, 

and Tomas in [3,4]. This explicitly depends on the imbedding of 1iu as an M-

invariant subspace of Vp,q• Fix u, 1iu, and A as above, and for every f E lu,~ 

let 

This operator, called a Cauchy-Szego map , intertwines the principal series repre-

sentation of G on lu,~ and right translation on Tp,q-covariant functions. Starting 

with a smooth function, say F : 8X --+ 1iu ,which can be extended to be an ele-

ment F E lu,~ , applying Su,~, and then forming (Su,~(F))b, is a G-equivariant 

linear operator into the space of smooth Vp,q-valued functions on X. In particular 

cases we can show that it actually maps into ker( 8p,q). 

As we said above, it is important to know the decomposition of Vp,q into M-

invariant subspaces. This is described in [14]. Among the cases considered in [15] 

are the following two representations of M. First, let (1, 1i1 ) denote the trivial 

representation acting on the one-dimensional subspace in Vp,q generated by the 

spherical harmonic 

"' (t: t:*) = t:Ptq ~ (-p)k(-q)k (161 2 -le12)k 
..-p,q ..... ..1 .. 1 LJ k'( ) It: 12 

k=o · n k .. 1 

The second representation we consider is ( u2, 1i2), where 1{2 is the M -invariant 

subspace of Vp,q generated by e~e:.+l and u2(m)f = Tp,q(m)f for all mE M and 

f E 1i2 • If£ is a space offunctions on G, let EK denote the subspace of K-finite 

vectors. The following result is a combination of Theorems 6.3.1 and 6.6.1 in [15]. 
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Theorem 2 Fix p = q ~ 2 and let (I, 1-i1 ) and ( o-2 , 7-i2) be the subrepresenta-

tions of ( Tp,piM, Vp,p)' as above. Then the Cauchy-Szego maps S1,1-n-2p and s.,..,n-1 

both have their images contained in ker( ap,p). Furthermore, when restricted to act-

ing on K -finite vectors, they satisfy 

This shows how the space of K -finite vectors in ker( ap,p) occurs as quotients 

of principal series. This is analogous to the description of discrete series represen-

tations by Knapp and Wallach in [I3]. 

6 Boundary Values 

In section 2 we saw that ax= an-y-1 This means that if [(] E ax then 

For an element v( z, r) E V the corresponding element in the boundary of X is 

x 1 ·v(z,r) = [lzl 2 -2ir, -v'2z, I]. Suppose we start with a scalar-valued function on 

V and extend it to be an element of I 1,.x, then we would like to know its restriction 

to K. For this reason, we must determine the lwasawa components of an element 

of V. Every v(z,r) can be written as a product, v(z,r) = a(z,r)nk(z,r), for 

some n E N,a(z,r) E A, k(z,r) E K. Here the coset Mk(z,r) is uniquely 

determined by requiring that X1 • v(z,r) = x 1 • k(z,r). For an element a(t) E A 

and a complex number f.£ set a( t)~-' = e~-'t. With this notation we see that iff E I 1,.x 

then 

f(mk(z,r)) = a(z,rt(p+.X)f(v(z,r)), 



for all mE M and v(z,r) E V. 

When x E X is of the form x = rp( () let the height of x be defined 

In particular, h(x0 ) = 1 and the height of points on the boundary is zero. 

Lei!TI:ma 1 If x EX and v(z,r) E V,then If t E R then 

This tells us how to find the term a(z, r) in the Iwasawa decomposition of 

v(z,r). That is, measure the height of x 0 ·v(z,r)*, which. is ((1 + jzj 2 ) 2 + 4r2 )-2 • 

We saw earlier that 8X could be identified with the unit sphere S2n+1, in which 

case the point x 1 • r) = x 1 • k( z, r) corresponds to the unit vector 

( jzj 2 -1-- 2ir -2z ) 
1 + jzj2 - 2i:r' 1 + jzj 2 - 2ir 

in cn+l, and this correspondence is J( -equivariant. 

Proposition 1 If f E I 1 ,;., then for all v( z, r) E V and m E M, 

f(mk(z,r)) = 

Furthermore, f will be a K -finite vector if and only if there i.s a finite sequence 

of spherical harmonics Yj,lt E V j,k ·such that 

f( v(z r)) = ((1 jzj2)2 4r2l -(p+.A) -.;::-" y. ( lzl 2
- 1 --_ 2ir -2z ) 

' + + 1 ~ J,k 1 + jzj2- 2ir' 1 + jzl 2 - 2ir · 
J 1k I 

In Theorem 1 we saw that if f is a K -finite vector in I 1,1_,.._ 2P then the 

S1 ,1_n- 2v(f) is in the image of the Cauchy-Szego map . The K -finite 
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of the kernel of S 1,l-n-2p is the extension to I1,1-n-2p of the direct sum of the 

spaces V j,k> taken over all pairs (j, k) with either j < p or k < p. 

Let w0 denote the matrix 

0 

~.), 
-t 0 

so that for every a( t) E A, w 0 a( t)w01 = a( -t). Then w0 generates the Weyl 

group for (£[,!:&}, and there is a G-invariant pairing between 1"2 ,;. and Iw0 u 2 ,->. 

described in [12]. This latter space is equal to Iu,,->.· Furthermore, let Q denote 

the M -equivariant projection of Vp,p onto 71.2 • In [1,3] the following result is 

demonstrated. 

Proposition 2 F E I,.2 ,n-1 then the following limit exists, 

and is equal to A( w 0 , .::r2 , n- 1 )F'(l). 

Here A(w0 ,.::r2 ,n -1) is the intertwining operator from Iu,,n-l to I,.2 ,l-n· 

This means that for every <P E S,.2 ,n_1 (I"2 ,n-d (which is a subspace of ker(8p,p)) 

the boundary value operator 

B<P(v(z,r)) 

converges to an element of A(wo,cr2,n -l)Icr2,n-1 resticted to V. This is then 

true for the image of the K -finite vectors in I 1,l-n- 2p. It is also known [12] 

that the intertwining operator provides a means of equipping its image with a 
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G-invariant quadratic form. That is, if F E I,.2 ,n-l then the value of this form 

on A(w0 , u 2 , n -l)F is 

In fact, the results of [9] show that this is positive definite for the case with which 

we are dealing. Siarting with a K -finite element of I 1,l-n-2p, there will be a 

coset F+ 

can assign a seminorm II f II = Ill BS1,1-n-2p(f) Ill· The completion of the quotient 

of (I l,l-n-zp)K modulo the null space of this seminorm is a candidate for a Hardy 

space. For more on this see [4,3,8,10,11]. The problem remains to explicate the 

operator f H BS1,l-n-2p(f) as a vector-valued convolution operator on V and 

to understand IJJII in terms of the Heisenberg group Fourier transform. 
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