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ASYMPTOTIC Lil"!!TS IN MULTI-P!-i..ASE SYSTEMS 

Greg Knowles 

In this note we consider the asymptotic behaviour of an inviscid fluid 

with heat conduction. This work has been done in conjunction with J. Ball 

[2]. The fluid is assumed homogeneous and to occupy a spatial region w c Rn, 

where w is bounded and open. At time t and position x e w the fluid has 

density p(x,t) ~ 0, velocity v(x,t) eRn, and temperature e(x,t) > 0. For 

simplicity we assume there is no external body force or heat supply. The 

governing equations are then 

pv - grad p 

p + p div(v) 0 

pO + p div(v) + div(q) 0 

(1) 

( 2) 

(3) 

where the dots denote material time derivatives, p is the pressure, U the 

internal energy density and q the (spatial) heat flux vector. The 

constitutive relations are given in terms of the Helmholtz free energy, 

A(p,e) and specific entropy n(p,S), by 

p 
2 

p 
ClA 

dp 
n 

3A 
38 

q q ( p, e, gt'ad e). 

We impose the boundary conditions 

v•ni 
dW 

0 

u A + ne (4) 

(5) 
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0 (6) 

where n n(x) is the outward normal to aw at x, and e0 > 0 is constant. 

We make the following hypotheses on A 

(i) A: (O,b)x(O,oo) ~ R is continuous, where b > 0 is a constant 

(ii) for each fixed p e (O,b), A(p,•) is c1 

(iii) for each fixed e c (O,oo), the function 

lim 
P""O+ 

fe(P) = 

p 
and lim f 8 (p) 

p-l>b_ 
+ "' 

(iv) the function L(p,B) = p[U(p,B) - e0n(p,8)] attains a strict minimum 

in e at e = 8 0 for all p e [O,b], and lim L(p,e) 
8-?Q+ 

p > 0. 

lim L(p,S) ="'for all 
8->oo 

These hypotheses are satisfied by the classical van der Waals' fluid ([7]) 

for which 

A(p,S) -ap + kelog[--P-J - celoge-de + const 
b-p 

where a, k 1 c are positive constants. 

(7) 
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The central mathematical tool in this study is the concept of a Young 

measure (originally called a generalized curve [9] or a parametrized meas-

ure). Namely if E is a compact subset of Rn andY a locally compact Polish 

space, the Young measures M (E:Y) are just those Radon measures on ExY whose 

projection onto E is dx, Lebesgue measure. M (E:Y) is topologized with the 

vague topology. We can alternately view a Young measure ~ = (~x) as a 

mapping x ~ ~x from E into the probability measures on Y, M~(Y),measurable 

w.r.t. the vague topology on M+(Y) ([8]). Then ~n 
1 

if 

J J f(x,y)d~n(y)dx ~ J J f(x,y)d~x(y)dx 
E Y X E Y 

for every f e Cro(ExY). 
0 

Given a measurable function g:E~Y, we can associate it with the Young 

measure ~g = (og(x)), where o is the Dirac measure. We say a sequence of 

g 
such functions gn_,. ~vaguely, if~ n_,. ~· This is equivalent to 

F(gn) ~ f F(A)d~x(A) in Lro(E) weak*, for every continuous F: Y ~ R with 
y 

compact support ([8]). 

To study the asymptotic behaviour of solutions of (1) - (3) we recall 

a classical result of Duhem [4] (see also [3] for extensions to 

non-constant 9 0 ) that 

2 
E(p,v,S) ~ f p[ 2 Jvl + U(p,S) - s0n(p,8)]dx 

w 
(8) 

is a Lyapunov function, Of course, we also have conservation of 

mass 



f pdx 
w 

M 
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(9) 

So if (p(t),v(t), e(t)) is a solution, and tj 7 oo, then (p(tj),v(tj)), e(tj)) 

will be a minimizing sequence forE subject to (9), and hence to obtain 

information about the asymptotic limits of solutions of (1) - (3) we are led 

to firstly characterize the limits of all minimizing sequences of E, which is 

(non-convex) problem in the Calculus of Variations. It is an open (and much 

more difficult) question as to whether all of these limits are actually 

attained by solutions of (1) - (3) for varying initial conditions (partial 

results of this type are given in [1]). 

We assume that aw * ¢. Similar techniques can be used to analyse the 
2 

Neumann problem, although it is somewhat more complicated. The details are 

given in [2]. The assumptions on L (assumption (iv)) imply that the 

integrand in (8) has a strict minimum, for fixed p, when v = 0 and e e0 . 

Motivated by this we firstly consider the problem of minimizing 

I(p) ~ J p[U(p,e l - e n(p,e )]dx 
w 0 0 0 

f f (p(x))dx 
w 8o 

(10) 

( 11) 

amongst measurable ftmctions p:w 7 [O,b] satisfying (9), where f (b) is 
, eo 

defined to be +oo to match assumption (iii). Then we shall characterize the 

solution of the full problem in terms of the minimizers of (10), (11). 

We denote by f** the lower convex envelope of f , i.e. 
8o 

r**c l 
8o p 

sup{a+Sp:a+St<f (t), for all t e[O,b)}, 
- So 

(12) 
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and the subdifferential by, 

af**c l 
eo P 

{B e R:f**Cp) + B(t-p) < f**Ct), ••. ,}, 
e e0 

and the Weierstrass set by 

w { [o b l f** ( ) p e ' : So p f (p)}, 
So 

( 1 3) 

( W consists of the "points of convexity" of f ) • Finally define 
So 

M ~ Ml me as ( w) ( 1 4) 

(the mean mass) and 

s(M) = {p e (O,b): <lf**CMl c af (p)} 
e a eo 

( 1 5) 

It is easily seen that S(M) c W and that M belongs to the convex hull of 

-
S (M). 

ab 3 3 
For the van der Waals' fluid with- > (-) there exists one 

k8 0 2 

non-trivial common tangent to the graph f 80 with end points p1 ,p 2 as shown 

in fig. 1. The Weierstrass set 

for 

-
S(M) 

for 
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Pa b/3 
f' 

Figure 1 

Since f (•) is, in general, not convex, we introduce a relaxed problem which 
So 

is convex, and which has the same minimum as I. We use the theory of Young 

measures introduced by L.C. Young [9], which are now playing an increasing 

role. in the study of non-linear partial differential equations, (Tartar [8]). 

This approach is motivated by the following consideration, if op(x) denotes 

the Dirac measure supported at p(x), 0 < x < b, then 

I ( P) r f (p(x) )dx 
W S0 

b 
J J f (p)dop(x)(p)dx. 
w 0 6 0 

( 16) 

consequently, if v = (vx) c M(O,b) is a Young measure, and we define 

~ 

I(v) 
b 

J J 
w 0 

( 17) 

I(p), and the functional I is now linear in v. Similarly, 

the constraint (9) can be generalized as 

b 
f f pdvx(p)dx 
w 0 

M ( 18) 

The characterization of the minimizers and minimizing sequences for (10), 

(11), (17), (18) can now be stated (for proof see [2], also [5] for related 

results). 

Theorem 

(a) The minimum of I(v) subject to (18) is attained. The minimizing Young 
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-
measures v are exactly those satisfying (18) for which suppv C S(M) 

X 

a.e. x e w. 

(b) The minimum value of I subject to (9) is the same as that of I(v) 

subject to (18), and is attained exactly by the functions p satisfying (9) 

and such that p(x) e S(M) a.e. x e w. 

(c) Let {pi} be any minimizing sequence for I subject to (9), then there 

exists a subsequence {p~} and a minimizing Young measure v for I subject to 

(18) such that p\l-" v in the sense of Young measures. 

Conversely, given any minimizing Young measure v for I subject to 

(18) there exists a minimizing sequence {p~} of I subject to (9) converging 

to v in the sense of Young measures. 

Note that part (b) of the Theorem states that only values p e W can 

be observed in an absolute minimizer, this is the classical Weierstrass con-

dition of the calculus of variations. Sometimes it is asserted that 

because of this 'stability' condition f must be convex; the correct 

interpretation has been pointed out, by Ericksen [6]. 

We are now in a position to state our characterization of the 

minimizers and minimizing sequences of E. 

Theorem 2 The absolute minimizers of E in the space of bounded measurable 

functions subject to (9) are of the form (p*,0,6 0 ) where p*(x) e S(M) a.e. 

x e w. For any minimizing sequence (pj(x),vj(x),6j(x) of E subject to (9), 

there holds, vj(x) ~ 0, 6j(x) ~ 60 a.e. x e w, and there exists a subsequence 

p\l~ v vaguely, where supp v C S(M), a.e. x e w. 
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There is an interesting possible "physical" explahation of the 

convergence of the densities pJ..l....:.. \i, and the limit "density" \i, in the case 

it is measure. It could represent the creation of "mist" where the phases 

are mixed more and more finely as tJ..l ~ oo, as energy is transferred to higher 

and higher modes by the non-linear dynamics. Hence in the limit we can 

really only talk about the probability of the different material phases in a 

given region of w. Young measures would seem a natural way to analyse this 

energy transfer in non-linear systems. Of course, as pointed out earlier, 

showing that such limits are actually realized from certain initial 

conditions by solutions of the pde is much more difficult, and seemingly, 

as yet, unresolved problem. Numerical studies could illuminate this point 
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