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Gerhard Huisken 

In recent years various evolution equations have been studied in 

differential geometry. In a landmark paper Hamilton [4] studied the 

deformation of Riemannian metrics on compact manifolds in direction of 

their Ricci-curvature: 

(1) 

is the Riemannian metric, Ric .. 
lJ 

is the Ricci curvature and 

is the average of the scalar curvature on the manifold. This 

is a weakly parabolic system and Hamil ton showed that on a three 

dimensional manifold any initial metric of positive Ricci-curvature 

flows into a metric of constant positive curvature when evolved by 

equation (1). This result was later extended to higher dimensions in 

[5] and [7]. 

In [6] we studied the mean curvature flow, that is an evolution 

equation for hypersurfaces Mn embedded in ffin+l: Let the initial 

hypersurface M~ be given locally by some diffeomorphism 

then we want to find a whole family F(.,t) of diffeomorphisms 

corresponding to hypersurfaces M 
t 

such that the evolution equation 

d -;. -'> -;. 
dt F(x,t) = -H(x,t) .v(x,t) 

(2) 

F(. ,0) F0 
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is satisfied. Here H is the mean curvature on Mt and u is the 

unit normal to Mt , such that the hypersurfaces are flowing in 

direction of the mean curvature vector. Again (2) is a weakly parabolic 

system and the resulting evolution equation for the second fundamental 

form on Mt has a structure similar to the evolution equation for the 

curvature tensor resulting from (1). Whereas in (1) one has to assume 

that the intrinsic curvature of the initial metric is sufficiently 

positive in order to obtain a convergence result, for the mean curvature 

flow in (2) one has to assume that the initial hypersurface is uniformly 

convex. We have from [6]: 

TIIIDREH 1 Let n ~ 2 cmd asstu11e that M0 is unifonnly convex, i.e. 

the eigenvalues of the second f!J1Ul.amental. form. are strictly positive 

everywhere. Then the evol.ution equation (2) has a smooth soLution Mt 

on a finite time interval 0 ~ t < T and the hypersurfaces Mt 

contract to a single point 0 as t ~T The shape of Mt becomes 

more cmd r11ore sphericaL as t ~T, i.e. homothetic expansi.ons of Mt 

with a fixed area around 0 converge to a round sphere. 

Corresponding results for curves in IR2 were shown in [2] and [3], 

and in [8] and [1] a similar result was established for hypersurfaces 

moving along their Gauss-curvature. 

Here we study an evolution equation which keeps the volume enclosed 

by the hypersurfaces Mt constant without having to rescale: 

d ~ ~ .... 
dt F(x, t) = (h(t) - H(x, t)) . v(x, t) 

(3) 

F(.,O)=Fo 

where h Jtdil is the mean value of the mean curvature on Mt . The 
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enclosed volume is clearly constant since Jh - Hd~ = 0 and we will see 

that the total area of Mt is decreasing: one c~~ expect Mt to 

converge to a solution of the isoparametric problem. We show that this 

is indeed the case if the initial hypersurface is uniformly convex: 

THEOREM 2 Let n 2 2 and assume that M0 is uniformLy convex. Then 

the evolution equation (3) has a smooth soLution Mt for aU times 

0 ~ t < 00 and Mt converges smoothLy to a round sphere as t ~ 00 • 

The strategy of the proof aims at obtaining a uniform upper bound 

for the mean curvature on Mt We show that the curvature can only 

blow up in a uniform way, then contradicting the constancy of the 

enclosed volume. The necessary estimates are more involved than in the 

standard mean curvature flow since we don't have an a priori lower bound 

for the mean curvature and since h introduces a global quantity into 

all evolution equations. We sketch the proof of Theorem 2, the details 

will appear elsewhere. 

A Evolution equations and convexity properties 

Let g = {g .. } and A = {h .. } denote the metric and the second 
lJ lJ 

fundamental form on Mt respectively. Using the Gauss-Weingarten 

relations one can then deduce from (3) evolution equations for g and 

A: 

d h 'h - 2Hh. hm. hh hm IAI~-dt ij = tl ij 1m J + im j + -hij 

where IAI 2 ij k!! 
g g hikh;!! is the norm of the second fundamental form 

" 
squared and is the (time dependent} Laplace operator on 

The evolution equation for g implies that the area of the 
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hypersurfaces is decreasing, we have 

Also, the evolution equation for hij together with a maximum 

principle for parabolic systems developed by Hamilton in [4] implies 

that the inequality ) 0 is preserved, in other words: 

A uniformly convex initial hypersurface stays uniformly convex for all 

times. We can even show 

lf for some 0 ( t < ~ we have on M0 - n 

H > 0 

the inequaH ty 

then this inequaLity is preserved with the same c for a!l times t 

where the solution Mt of (3) exists. 

Note however that we do not yet have a lower bound for the mean 

curvature. 

B A pinching estimate 

In this step we show that the eigenvalues of the second fundamental 

form come close together at least at those points where the mean 

curvature is large. Let K1 , ... ,Kn denote the eigenvalues of A and 

consider the quantity 

1 2 I (Kl.-KJ.) 
n i(j 

which measures how much the Ki s differ from each other. We prove 

LEMMA 2 There is c0 < oo and o > 0 depending only on M0 and ~ 

such that 

hoLds on Mt for alL times t . 
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Proof: We want to bound the function 

f 
a ~-a 

for small enough a ) 0 The evolution equation for hij implies 

2 evolution equations for IAI and H and after some lengthy 

calculations we derive 

{5) 

ddt fa ~ Afa + 2 (1-a) <V H V f > - _e._ IV Hl 2 
H i ' i a ~-a 

- 2 E.~f 
a 

where we also used the convexity property from Lemma 1. If we now had 

an inequality like h ~ o H , the Lemma would immediately follow for 

small enough a since IAI 2 ~ ~ . Unfortunately there seems to be no 

easy way to obtain such an estimate and we have to use the negative 

somehow. 

2 term on the right hand side to absorb the positive term alAI f a 

The main tool is a Poincare - type inequality for convex 

hypersurfaces proven in [6]: 

LEMJL\. 3 Let 

have 

p ~ 2 Then for any 11 > 0 and any O_<a<!. we - 2 

ne.2Jf~~dJ.! ~ {217P + 5) JH~-a f~-1 1v Hl 2dJ.! 

+ 17-l{p-l)Jfp-2 1V f 12dJ.t 
a a 

Using this inequality we first obtain from (5) bounds for high Lp 

norms of f where 
a 

-2 
P ~a The sup-norm bound is then obtained from 

the Sobolev inequality and an iteration method. 
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C Derivative estimates 

Here we show that the gradient of the mean curvature becomes small 

at points where H is large. 

:lellll!ll!a 4 For any 1J > 0 there is a constant C depending only on 
1J 

and 1J but not on T such that for all 0 ~ t ~ T we have 

IV H! 2 ~ 1J max max H4 + c 
te.[O,T] Mt 

1J 

Proof: We compute an evo.luticm equation fo:r lv Hl2 and obtain 

(6) 

The idea is then to add enough of the evolution equation of 

g 

to this inequality in order to absorb the bad term on the RHS of (6) and 

to control the bad terms in the evolution equation of g with Lemma 3. 

We omit the details. 

Lemma 4 can now be used to compare the mean curvature at different 

points of the surfaces M:t and we can show that the max:i.mum of H can 

only tend to infinity if the minimum of H blows up also. But then all 

principal curvatures on Mt would go to infinity by Lemma 1 

contradicting the constancy of the enclosed volume. 

It follows that the mean curvature is uniformly bounded for all 

times and it is then easy to obtain estimates for all higher derivatives 

of the second fundamental form as well. Thus the solution of (3) exists 

for all times 0 S t < oo and one has only to show that Mt converges 

to a round sphere as t ~ ro • 

To see this, note that (4) implies 

00 

J J(H-h)2dMdt ~ IM0 1 

0 



and our uniform estirrates then show th~t 

sup IH-hl -+ 0 as t -+ 00 

Mt 

Now we obtain from (5) that 

1 'i' ( ,2 
L K 1. -KJ.; 

n i(j 

decays exponentially as t -+ ro and the result follows. 
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