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SOME UNCERTAINTY PRINCIPLES IN ABSTRACT HARMONIC ANALYSIS 

John F. Price and Alladi Sitaram 

The first part of this article is an introduction to uncertainty 

principles in Fourier analysis, while the second summarizes some recent 

work by the authors and also by Michael Cowling and the authors. 

The following (rather vague) principle is well known to every 

student of classical Fourier analysis: If a function f is 

'concentrated' then its Fourier transform f is 'spread out' and vice-

versa. After reviewing three precise (and different) formulations of 

this principle in classical Fourier analysis on Rn, we will describe 

how it extends to LCA groups and certain nonabelian Lie groups - for 

instance, semisimple Lie groups and Heisenberg groups. 

I HUP (Heisenberg Uncertainty Principle) The first one is the 

celebrated Heisenberg uncertainty principle: For all 
2 n 

f e L (R ) , 

(1) 

A very readable account of this can be found in [4]. Analogous 

inequalities with different powers of lx-al and ly-bl and with Lp­

norms replacing L2-norms are given in Cowling and Price [2]. It is 

easy to see from the above inequality that if we consider compactly 

supported f supported in an interval around a, with fixed 
2 

L -norm 

(say equal to 1) and then shrink the support of f to {a}, then the 

quantity Uly-blf11 2 has to blow up, no matter what b is. 
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II LUP (Local Uncertainty Principle) However we would like to say 

something more. If f is concentrated, not only is f spread out, but 

f is not concentrated on ~ small set E, no matter how E is 

situated. W.G. Faris [5] and J.F. Price [8,9] have developed a whole 

host of inequalities to illustrate this. We will just mention one of 

these due to J.F. Price [8]: 

Give there exists a positive constant k8 such that 

for all and measurable 

(2) l'f A 2 )1/2 E If (y) I dy s 
e ne 

m{E) lllxl fl! 2 

Here m denotes Lebesgue measure. (LUP is indeed stronger than HUP in 

the sense that inequalities of type (2) imply inequality (1) (though 

perhaps not with the best possible constant) - see [5,9,12] .) 

III QUP (Qualitative Uncertainty Principle) We next mention a result 

due to M. Benedicks [1] which can also be viewed as an expression of the 

principle stated in the beginning. 

For 
1 

f E L (G)' let Af = {x: f(x) ~ 0) and Bf = {y: f(y) ~ 0). 

(Here we are ·taking fixed versions of f and f.) If m (A f) < = and 

0 a.e. 

(If f is assumed to be compactly supported the above collapses to 

an easy exercise. However with only the assumption m(Af) < =, the 

result is quite nontrivial. Note also that ·the supports of f and f 

are Af and Bf respectively.) 

The first natural question to ask is: How much of the above can be 

generalized to locally compact abelian (LCA) groups? In 1973, 1'. 
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Matolcsi and J. Szucs [7] proved the following restricted version of 

QUP: Let G be an LCA group and G its dual group. Let m be a 

Haar measure and m the corresponding dual measure on G. Let 

f e L1 (G) and t its Fourier transform (on G). Retaining earlier 

notation, if m(Af)m(Bf) < 1, then f = 0 a.e. However, recently 

J.A. Hogan [6] has been able to prove QUP for general LCA groups G 

with only the slightly restrictive condition that the identity component 

of G is noncompact. In [6] Hogan has also been able to extend 

inequalities of the HUP and LUP kind to general LCA groups. 

We also remark briefly that inequalities of the HUP and LUP kind 

can also be considered for compact groups. For the n-torus this has 

been considered by J.F. Price and P.C. Racki in [10] and for compact Lie 

groups by the authors in [13]. J.A. Hogan has also some results in 

this direction. 

Let us now turn our attention to noncompact, nonabelian groups. 

For simplicity, from now on we assume that G is a connected noncompact 

locally compact unimodular group and G its unitary dual, that is, G 

is a maximal set of pairwise inequivalent irreducible unitary 

representations of G. For each ~ e G, let H~ be the corresponding 

Hilbert space. The Fourier transform f of f e L1 (G) is defined by 

f(~) = f f(x)~(x)dx for ~ e G. Hence f(~) e B(H~), the space of 
G 

bounded linear operators on H . 
~ 

(i) LUP Let m be a fixed Haar measure on G and ~ the 

Plancherel measure (or something closely akin to the Plancherel measure) 

on G. When G is the Euclidean motion group, a noncompact semisimple 

Lie group or a Heisenberg group the authors [12] have been able to 

establish the following analogue of inequality (2): Given 9 e (0,1/2) 
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·there exists a constant k 
f) 

such that for all f in a certain class of 

functions on G and all measurable E ~ G, 

where ljl fJ is a certain v;reigh'c func·tion on G, measuring the 

'concentration' of f, for 1~hich an explicit formula is given. (When 

G 
n 

R , q, e (x) 

(ii) HUP Using the results described above the authors have been 

able to get versions of HUP for symmetric spaces of the noncompact type 

- see [12]. 

(iii) QUP For a '>lide variety of groups, including the Heisenberg 

groups, the Euclidean motion group on the plane, and 

K x Rn, where K is compact, the au·thors have been able to establish 

results very similar to QUP in [11] . In [3] M .. Cowling and the authors 

have established a qualitative uncertainty principle very close to 

Benedicks' QUP for all noncompact connected semisimple Lie groups with 

finite centre. 

In conclusion we would like to say that there are many aspects of 

uncertainty not mentioned at all in this exposition. For instance in a 

series of papers W. Schempp has looked at the radar uncertainty 

principle for ~he Heisenberg group. See, for example [14]. We have 

also not gone into any of the many interesting applications of the 

uncertainty principle, for example, in the theory of partial 

differential operators. (See "The uncertainly principle" by C. 

Fefferman in Bull. ~~er. Math. Soc. 9 (1983), 129-206. For some aspects 

of the uncertainty principle on sy.runetric spaces and its connections 
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with scattering theory see the following preprint of M. Shahshahani: 

"Poincare inequality, uncertainty principle and scattering theory on 

symmetric spaces".) 
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