BETTER GOOD λ INEQUALITIES

Douglas S. Kurtz

Introduction

In the early 1970s, D. Burkholder and R. Gundy introduced a technique for studying operators on L^{p} spaces. Their idea was to relate a pair of operators by a distribution function estimate which is now known as a "good- λ " inequality:

$$
\begin{aligned}
& \mathrm{m}\left(\left\{x \in \mathbb{R}^{\mathrm{n}}:|\operatorname{Tf}(\mathrm{x})|>2 \lambda,|\operatorname{Mf}(x)| \leq \delta \lambda\right\}\right) \\
& \leq \epsilon \mathrm{m}\left(\left\{x \in \mathbb{R}^{\mathrm{n}}:|\operatorname{Tf}(\mathrm{x})|>\lambda\right\}\right)
\end{aligned}
$$

Such an inequality implies that the L^{p} norm of $T f$ is bounded by the L^{p} norm of Mf. Thus, integrability results about M can be used to derive corresponding ones about T. Often, the method of proof allows one to replace Lebesgue measure by a weighted measure.

In many instances, this kind of result can be improved. Consider the situation when Tf is a maximal Calderón-Zygmund singular integral operator and Mf is the Hardy-Littlewood maximal function of f. R.R. Coifman and C. Fefferman proved [6]

$$
\begin{align*}
\mathrm{w}\left(\left\{x \in \mathbb{R}^{\mathrm{n}}:\right.\right. & \operatorname{Tf}(\mathrm{x})>2 \lambda, \operatorname{Mf}(\mathrm{x}) \leq \delta \lambda\}) \\
& \leq \epsilon \mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\lambda\right\}\right) \tag{0.1}
\end{align*}
$$

for any weight w in Muckenhoupt's \mathbf{A}_{∞} class. Our main result is an improved version of (0.1).

Theorem 1: Let $w \in A_{\infty}$ and $0<\epsilon<1$ There is a constant $C>0$ such thai

$$
\begin{aligned}
& \left.\mathrm{w}\left(\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\operatorname{CMf}(\mathrm{x})+\lambda\right\}\right) \\
& \quad \leq \epsilon \mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{+}: \operatorname{Tf}(\mathrm{x})>\lambda\right\}\right), \quad \lambda>0
\end{aligned}
$$

This result is equivalent to an estimate proved by R.J. Bagby and the author [1].

The conclusion of Theorem 1 implies (0.1). One can see it is an improvement of (0.1) by considering non-increasing rearrangements. From the theorem, we get

$$
(\mathrm{Tf})_{\mathrm{w}}^{*}(\mathrm{t}) \leq \mathrm{C}(\mathrm{Mf})_{\mathrm{w}}^{*}(\mathrm{t} / 2)+(\mathrm{Tf})_{\mathrm{w}}^{*}(2 \mathrm{t}), \quad \mathrm{t}>0
$$

This inequality implies sharp estimates on the operator norm of T acting on L^{p}, for large p. Such estimates cannot be obtained from (0.1).

We use $m(E)$ for the Lebesgue measure of the set E. Given a nonnegative, measurable function, w, and $p \geq 1$, set

$$
\|f\|_{\mathrm{p}, \mathrm{w}}=\left(\int_{\mathbb{R}^{\mathrm{n}}}|\mathrm{f}(\mathrm{x})|^{\mathrm{P}} \mathrm{w}(\mathrm{x}) \mathrm{dx}\right)^{1 / \mathrm{p}} .
$$

In Section 1, we discuss the good- λ inequality (0.1). A sketch of the proof of Theorem 1 can be found in Section 2. The last two sections contain results about rearrangement functions and applications.

The results of this paper contain joint work done with R.J. Bagby [1]. In particular, the content of Sections 3 and 4 can be found in that paper, where complete proofs are given.

I. The Good- λ Inequality

Let $w(x)$ be a non-negative, measurable weight innelon and set $w(\mathbb{E})=\int_{f} u / x \mid d x$ for any leebengue measurable set F

Definition 1.1: w $\in A_{\infty}$ if given $\epsilon, 0<\epsilon<1$, there is a $\delta>0$ so that for any cube $Q \subset \mathbb{R}^{n}$ and measurable set $\mathbb{E} \subset Q, m(\mathbb{E})<\delta m(Q)$ implies $w(\mathbb{E})$ $<\in w(Q)$.

Let f be a Lebesgue measurable function on \mathbb{R}^{n} and define the distribution function of f with respect to w by

$$
\mathrm{D}_{\mathrm{f}, \mathrm{w}}(\lambda)=\mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}:|\mathrm{f}(\mathrm{x})|>\lambda\right\}\right),
$$

for $\lambda>0$. For $1 \leq p<\infty$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f(x)|^{P} w(x) d x=p \int_{0}^{\infty} \lambda^{p-1} D_{f, w}(\lambda) d \lambda \tag{1.2}
\end{equation*}
$$

Let $K(x)$ be homogeneous of degree $-n$ and satisfy the conditions:
(i) $|\mathbb{K}(x)| \leq C /|x|^{n}$
(ii) $\int_{\{a<|x|<b\}} K(x) d x=0, \quad 0<a<b$
(iii) $|\mathbb{K}(x-y)-K(x)| \leq \mathbb{C}|y| /|x|^{n+1}, \quad|x| \geq 2|y|$.

Set

$$
T_{\epsilon} f(x)=\int_{\{y:|x-y|>\epsilon\}} K(x-y) f(y) d y
$$

To study the Calderon-Zygmund singular integral operator $\mathbb{K} f(x)=\lim _{\epsilon \searrow 0} T_{\epsilon} f(x)$, consider the maximal singular integral operator $\operatorname{Tf}(x)=\sup _{\epsilon>0}\left|\mathrm{~T}_{\epsilon} f(x)\right|$. The operator we use to control T is the Hardyfistilewood maximal function

$$
\operatorname{Mf}(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

where the supremum is taken over all cubes, Q , which contain x .
In [6], Coifman and Fefferman proved

Theorem 1.4: Let $w \in \mathrm{~A}_{\infty}$. Given $\epsilon, 0<\epsilon<1$, there is a $\delta>0$ so that

$$
\begin{aligned}
\mathrm{w}(\{\mathrm{x} & \in \mathbb{R}^{\mathrm{n}:}: \\
& \operatorname{Tf}(\mathrm{x})>2 \lambda, \operatorname{Mf}(\mathrm{x}) \leq \delta \lambda\}) \\
& \leq \mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\lambda\right\}\right), \quad \lambda>0 .
\end{aligned}
$$

From this theorem, we have

$$
\begin{aligned}
\mathrm{D}_{\mathrm{Tf}, \mathrm{w}}(2 \lambda) & \leq \mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>2 \lambda, \operatorname{Mf}(\mathrm{x}) \leq \delta \lambda\right\}\right)+\mathrm{D}_{\mathrm{Mf}, \mathrm{w}}(\delta \lambda) \\
& \leq \epsilon \mathrm{D}_{\mathrm{Tf}, \mathrm{w}}\left(\lambda+\mathrm{D}_{\mathrm{Mf}, \mathrm{w}}(\delta \lambda) .\right.
\end{aligned}
$$

Using (1.2) and several changes of variables

$$
\begin{aligned}
& =\mathrm{p} \int_{0}^{\infty}(2 \lambda)^{\mathrm{p}-1} \mathrm{D}_{\mathrm{Tf}, \mathrm{w}}(2 \lambda) \mathrm{d} \lambda \\
& \leq 2^{\mathrm{p}} \epsilon \mathrm{p} \int_{0}^{\infty} \lambda^{\mathrm{p}-1} \mathrm{D}_{\mathrm{Tf}, \mathrm{w}}(\lambda) \mathrm{d} \lambda \\
& +\left(\frac{2}{\delta}\right)^{\mathrm{p}} \mathrm{p} \int_{0}^{\infty}(\delta \lambda)^{\mathrm{p}-1} \mathrm{D}_{\mathrm{Mf}, \mathrm{w}}(\delta \lambda) \mathrm{d} \lambda \\
& =2^{P_{\epsilon}} \int_{\mathbb{R}^{\mathrm{n}}} \operatorname{Tf}(\mathrm{x})^{\mathrm{P}} \mathrm{w}(\mathrm{x}) \mathrm{dx} \\
& +\left(\frac{2}{\delta}\right)^{\mathrm{p}} \int_{\mathbb{R}^{\mathrm{n}}} \operatorname{Mf}(\mathrm{x})^{\mathrm{P}_{w}}(\mathrm{x}) \mathrm{dx} .
\end{aligned}
$$

Combining terms and taking $p^{\text {th }}$ roots yields

$$
\begin{equation*}
\|T f\|_{p, w} \leq \frac{2}{\delta\left(1-2^{P_{\epsilon}}\right)^{1 / p}}\|\mathrm{Mf}\|_{\mathrm{p}, \mathrm{w}} \tag{1.5}
\end{equation*}
$$

as long as $\epsilon<2^{-p}$.

Consider now the A_{p} condition.

Definition 1.6: Let $1<p<\infty . w \in A_{p}$ if there is a constant $C>0$ so that for all cubes $Q \subset \boldsymbol{R}^{\mathrm{n}}$

$$
\left(\frac{1}{|Q|} w(x) d x\right)\left(\frac{1}{|Q|} \int w(x)^{1-p^{\prime}} d x\right)^{p-1} \leq C
$$

Muckenhoupt [8] has shown that $w \in A_{p}$ implies M defines a bounded operator on the weighted L^{p} space. L_{w}^{p}. Since $w \in A_{p}$ implies w $\in A_{\infty}$ lode $\left.6_{i}\right),(1.5)$ gives the weighted norm inequality $\|T f\|_{p, w} \leq \mathbb{C}\|f\|_{p, w}$ whenever
$<\mathrm{p}<\infty$ and $\mathrm{w} \in \mathrm{A}_{\mathrm{p}}$.
There are two main problems with (1.5). One is that no single ϵ works for all values of p since we need $\epsilon<2^{-p}$. The other is that, due to the relationship between ϵ and δ, the expression $2 / \delta\left(1-2^{\mathrm{p}} \epsilon\right)^{1 / \mathrm{p}}$ is on the order of 2^{P} while operators like T should have operator norms on the order of p (see [10, p. 48]). Both of these problems are caused by the constant 2 by which λ is multiplied in Theorem 1.4. This constant can be replaced by any $\beta>1$, still yielding estimates with exponential growth, but not by 1 , since this would imply the norm of T is bounded for large p.

II. The Better Good- λ Inequality

The major problem with Theorem 1.4 is that Tf is considered only for values of x where Mf is relatively small. Notice that in Theorem 1 , the two are compared pointwise. We sketch a proof of Theorem 1 for completeness. The proof is taken from [1].

Proof: Fix ϵ and choose δ by the A_{∞} condition. Fix $\lambda>0$. Let $\left\{Q_{k}\right\}$ be Whitney cubes for the set $\mathbb{E}=\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\lambda\right\}$.

Fix k and choose $x_{k} \notin E$ so that distance $\left(x_{k}, Q_{k}\right) \leq 4$ diameter Q_{k}. Let Q be the cube centered at x_{k} with diameter $Q=20$ diameter Q_{k}. Set $g=f \chi_{Q}$ and $h=f \chi_{\mathbb{R}^{n}-Q}$ so that $\mathrm{f}=\mathrm{g}+\mathrm{h}$. If

$$
\alpha=\mathrm{C}_{1} \frac{1}{|\mathrm{Q}|} \int_{\mathrm{Q}}|\mathrm{~g}(\mathrm{y})| \mathrm{dy},
$$

then $C_{1} M f(x) \geq \alpha$ for all $x \in Q_{k}$. By the inequality

$$
\mathrm{m}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\alpha\right\}\right) \leq \frac{\mathrm{c}}{a} \int|\mathrm{f}(\mathrm{x})| \mathrm{dx}
$$

we get

$$
\begin{align*}
\mathrm{m}\left(\left\{x \in \mathbb{Q}_{\mathrm{k}}: \operatorname{Tg}(\mathrm{x})>\mathrm{C}_{1} \operatorname{Mf}(\mathrm{x})\right\}\right) & \leq \mathrm{m}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tg}(\mathrm{x})>\alpha\right\}\right) \\
& \leq \frac{\mathrm{A}}{\alpha} \int|\mathrm{~g}(\mathrm{x})| \mathrm{dx} \leq \frac{\mathbf{A}}{\mathrm{C}_{1}}|\mathrm{Q}| \tag{2.1}
\end{align*}
$$

Choose C_{1} so that $\mathrm{A}|\mathrm{Q}| / \mathrm{C}_{1} \leq \delta\left|\mathrm{Q}_{\mathrm{k}}\right|$.

Fix $\mathrm{x} \in \mathrm{Q}_{\mathrm{k}}$ and $\eta>0$. Let Δ be the symmetric difference of the balls $\mathrm{B}(\mathrm{x}, \eta)$ and $\mathrm{B}\left(\mathrm{x}_{\mathrm{k}}, \eta\right)$ and let $\mathrm{r}=\max \left\{\eta, \operatorname{distance}\left(\mathrm{x}_{\mathrm{k}}, \mathbb{R}^{\mathrm{n}}-\mathrm{Q}\right)\right\}$. Then

$$
\begin{aligned}
&\left.\left|T_{\eta} h(x)\right| \leq\left|\int_{\{y:}\right| x_{k}-y \mid>r\right\} \\
& K\left(x_{k}-y\right) f(y) d y \mid \\
&+\int_{\left\{y:\left|x_{k}-y\right|>r\right\}}\left|K\left(x_{k}\right)\right|-\mathbb{K}(x-y)| | f(y) \mid d y \\
&+\int_{\Delta}|K(x-y)||f(y)| d y
\end{aligned}
$$

The first term is bounded by $\operatorname{Tf}\left(\mathrm{x}_{\mathrm{k}}\right) \leq \lambda$. The second and third terms are bounded by constant multiples of $\operatorname{Mf}(x)$, by ($1.3, \mathrm{i}$) and (1.3 , iii), respectively. Taking the supremum over $\eta>0$,

$$
\begin{equation*}
|\operatorname{Th}(\mathrm{x})| \leq \mathrm{C}_{2} \operatorname{Mf}(\mathrm{x})+\lambda \tag{2.2}
\end{equation*}
$$

Let $C=C_{1}+C_{2}$. Then (2.1) and (2.2) imply

$$
m\left(\left\{x \in Q_{k}: \operatorname{Tf}(x)>\operatorname{CMf}(x)+\lambda\right\}\right) \leq \delta m\left(Q_{k}\right)
$$

Using the A_{∞} condition and summing over k completes the proof.
Suppose $\operatorname{Mf}(x) \leq \frac{1}{C} \lambda$. Then $\operatorname{Tf}(x)>2 \lambda \geq \operatorname{CMf}(x)+\lambda$ which implies

$$
\left.\left.\begin{array}{rl}
x \quad \mathbb{R}^{\mathrm{n}} \cdot \operatorname{Tf}(\mathrm{x}) & \left.>2 \lambda, \operatorname{Mf}(\mathrm{x}) \leq \frac{1}{\mathrm{C}} \lambda\right\} \\
& \subseteq\{\mathrm{x}
\end{array}\right) \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\operatorname{CMf}(\mathrm{x})+\lambda\right\} .
$$

Therefore, Theorem 1 implies Theorem 1.4 with $\delta=\frac{1}{\mathrm{C}}$. To see that Theorem 1 contains a stronger inequality, we consider rearrangement functions.

III. Rearrangement functions

Define the non-increasing rearrangement function of f with respect to w by

$$
\mathrm{f}_{\mathrm{w}}^{*}(\mathrm{t})=\inf \left\{\lambda>0: \mathrm{D}_{\mathrm{f}, \mathrm{w}}(\lambda) \leq \mathrm{t}\right\}
$$

for $t>0$. Since f and f_{w}^{*} are equi-measurable,

$$
\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x=\int_{0}^{\infty} f_{w}^{*}(t)^{p} d t
$$

Setting $\lambda=(\mathrm{Tf})_{\mathrm{w}}^{*}$ in Theorem 1 , we get the equivalent inequality

$$
\begin{align*}
\mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}:\right.\right. & \left.\left.\operatorname{Tf}(\mathrm{x})>\operatorname{CMf}(\mathrm{x})+(\mathrm{Tf})_{\mathrm{w}}^{*}(2 \mathrm{t})\right\}\right) \\
& \leq \epsilon \mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>(\mathrm{Tf})_{\mathrm{w}}^{*}(2 \mathrm{t})\right\}\right) \tag{3.1}
\end{align*}
$$

Fix $\gamma, 0<\gamma<1$ and set $\epsilon=\frac{1-\gamma}{2}$. Since the definition of $\mathrm{f}_{\mathrm{w}}^{*}$ implies $\mathrm{D}_{\mathrm{f}, \mathrm{w}}\left(\mathrm{f}_{\mathrm{w}}^{*}(\mathrm{t})\right)$ $\leq \mathrm{t}$, by (3.1),

$$
\begin{aligned}
& \mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\mathrm{C}(\mathrm{Mf})_{\mathrm{w}}^{*}(\gamma \mathrm{t})+(\mathrm{Tf})_{\mathrm{w}}^{*}(2 \mathrm{t})\right\}\right) \\
& \leq \mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Tf}(\mathrm{x})>\operatorname{CMf}(\mathrm{x})+(\mathrm{Tf})_{\mathrm{w}}^{*}(2 \mathrm{t})\right\}\right) \\
& \quad+\mathrm{w}\left(\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}: \operatorname{Mf}(\mathrm{x})>(\mathrm{Mf})_{\mathrm{w}}^{*}(\gamma \mathrm{t})\right\}\right) \leq \epsilon(2 \mathrm{t})+\gamma \mathrm{t}=\mathrm{t}
\end{aligned}
$$

Therefore, we get

Lemma 3.2: Let $w \in \mathbb{A}_{\infty}$. For $\gamma, 0<\gamma<1$, there is a $\mathrm{C}>0$ so that

$$
(\mathrm{Tf})_{\mathrm{w}}^{*}(\mathrm{t}) \leq \mathrm{C}(\mathrm{Mf})_{\mathrm{w}}^{*}(\gamma \mathrm{t})(\mathrm{Tf})_{\mathrm{w}}^{*}(2 \mathrm{t}), \quad \mathrm{t}>0
$$

Set $\gamma=\frac{1}{2}$ and iterate the conclusion of the lemma to get

$$
(\mathrm{Tf})_{\mathrm{w}}^{*} \leq \sum_{\mathrm{k}=0}^{\infty}(\mathrm{Mf})_{\mathrm{w}}^{*}\left(2^{\mathrm{k}-1} \mathrm{t}\right)+\lim _{\mathrm{s} \rightarrow \infty}(\mathrm{Tf})_{\mathrm{w}}^{*}(\mathrm{~s})
$$

If the sum is finite, one can show that the limit is 0 . Since f_{w}^{*} is nonincreasing, we have

Theorem 3.3: Let $w \in \mathbb{A}_{\infty}$. There is a $\mathbf{C}>0$ such that

$$
\begin{aligned}
(\mathrm{Tf})_{\mathrm{w}}^{*}(\mathrm{t}) & <\mathrm{C}(\mathrm{Mf})_{\mathrm{w}}^{*}\left(\frac{\mathrm{t}}{2}\right)+\mathrm{C} \int_{\mathrm{t}}^{\infty}(\mathrm{Mf})_{\mathrm{w}}^{*}(\mathrm{~s}) \frac{\mathrm{ds}}{\mathrm{~s}} \\
& \leq \mathrm{C} \int_{\mathrm{t} / 4}^{\infty}(\mathrm{Mf})_{\mathrm{w}}^{*}(\mathrm{~s}) \frac{\mathrm{ds}}{\mathrm{~s}}, \quad \mathrm{t}>0 .
\end{aligned}
$$

Results of this nature also appear in [3,4].

IV. Applications

Suppose $w \in \mathbb{A}_{\infty}$. By Hardy's inequality,

$$
\int_{0}^{\infty}\left(\int_{t}^{\infty} g(u) d u\right)^{P} d t \leq p^{p} \int_{0}^{\infty}(u g(u))^{p} d u
$$

and Theorem 3.3, we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{\mathrm{n}}} \operatorname{Tf}(\mathrm{x})^{\mathrm{p}_{\mathrm{w}}}(\mathrm{x}) \mathrm{dx}=\int_{0}^{\infty}(\mathrm{Tf})_{\mathrm{w}}^{*}(\mathrm{t})^{\mathrm{p} d t} \\
& \leq C^{p} \int_{0}^{\infty}\left(\int_{t / 4}^{\infty}(\mathrm{Mf})_{w}^{*}(\mathrm{~s}) \frac{\mathrm{ds}}{\mathrm{~s}}\right)^{\mathrm{p}} \mathrm{dt} \\
& \leq 4 \mathrm{C}_{\mathrm{p}} \mathrm{p} \int_{0}^{\infty}(\mathrm{Mf})_{\mathrm{w}}^{*}(\mathrm{t})^{\mathrm{p}} \mathrm{dt} \\
& =4(\mathrm{Cp})^{\mathrm{p}} \int_{\mathbb{R}^{\mathrm{n}}} \operatorname{Mf}(\mathrm{x})^{\mathrm{p}} \mathrm{w}(\mathrm{x}) \mathrm{dx} .
\end{aligned}
$$

Thus, $\|T \mathrm{~T}\|_{\mathrm{p}, \mathrm{w}} \leq 4 \mathrm{Cp}\|\mathrm{Mf}\|_{\mathrm{p}, \mathrm{w}}$ for $\mathrm{l} \leq \mathrm{p}<\infty$. By the boundedness of M on weighted L^{p} spaces, $\|\mathrm{Tf}\|_{\mathrm{p}, \mathrm{w}} \leq \mathrm{C}\|f\|_{\mathrm{p}, \mathrm{w}}$ for $\mathrm{l}<\mathrm{p}<\infty$ and $\mathrm{w} \in \mathrm{A}_{\mathrm{p}}$. Using: some results about A_{∞} weights (see [6]), we have

Corollary 4.1: Let $w \in A_{\infty}$. There is a $p(w)>1$ and a $C>0$ so that for $p(w) \leq p<\infty$,

$$
\|T f\|_{p, w} \leq C p\|f\|_{p, w}
$$

The linear rate of growth of the norm of T is the best possible for general Calderón-Zygmund singular integral operators. Note also that we get all of the L^{p} results, $1<\mathrm{p}<\infty$, using only $\gamma=\frac{1}{2}$, instead of having to vary ϵ as in (1.5).

Calderón [5] has shown that if an operator S is weak-type $(1,1)$ and bounded on L^{∞} then

$$
\begin{equation*}
(\mathrm{Sf})^{*}(\mathrm{t}) \leq \mathrm{C} \frac{1}{\mathrm{t}} \int_{0}^{\mathrm{t}} \mathrm{f}^{*}(\mathrm{~s}) \mathrm{ds} \tag{4.2}
\end{equation*}
$$

Suppose w satisfies the A_{1} condition, $\mathrm{Mw}(\mathrm{x}) \leq \mathrm{Cw}(\mathrm{x})$ for almost every x . Then, for the Hard Littlewood maximal function we have

$$
(\mathrm{Mf})_{\mathrm{w}}^{*}(\mathrm{t}) \leq \mathrm{C} \frac{1}{\mathrm{t}} \int_{0}^{\mathrm{t}} \mathrm{f}_{\mathrm{w}}^{*}(\mathrm{~s}) \mathrm{ds} .
$$

Plugging this estimate in the first inequality of Theorem 3.3 and performing the integration yields

Corollary 4.3: Suppose $w \in A_{1}$. Then there is a $C>0$ so that

$$
(\mathrm{Tf})_{\mathrm{w}}^{*}(\mathrm{t}) \leq \mathrm{C} \frac{1}{\mathrm{t}} \int_{0}^{\mathrm{t}} \mathrm{f}_{\mathrm{w}}^{*}(\mathrm{~s}) \mathrm{ds}+\mathrm{C} \int_{\mathrm{t}}^{\infty} \mathrm{f}_{\mathrm{w}}^{*}(\mathrm{~s}) \frac{\mathrm{ds}}{\mathrm{~s}}, \quad \mathrm{t}>0
$$

Thus, we get a weighted version of (4.2) even though T is not bounded on L^{∞} (see $[1,3])$. Averaging the conclusion of the corollary over the interval $(0, t)$ yields an analog of a result proved by O^{\prime} Neil and Weiss [9] for the Hilbert transform.

For finite p, the Marcinkiewicz space weak- L^{p} properly contains L^{p}, while the two spaces coincide when $\mathrm{p}=\infty$. In order to extend the Marcinkiewicz Interpolation Theorem to include operators that are unbounded on L^{∞}, Bennett, De Vore, and Sharpley [2] introduced a space called weak- ${ }^{\infty}$.

Define the averaged rearrangement function of f by

$$
\mathrm{f}_{\mathrm{w}}^{* *}(\mathrm{t})=\frac{1}{\mathrm{t}} \int_{0}^{\mathrm{t}} \mathrm{f}_{\mathrm{w}}^{*}(\mathrm{~s}) \mathrm{ds}
$$

We say $f \in$ weak- L^{∞} if $f_{w}^{*}(t)$ is finite for all $t>0$ and

$$
\| f!_{\text {weak-L }} \infty:=\sup _{\mathrm{t}}>0\left\{\mathrm{f}_{\mathrm{w}}^{* *}(\mathrm{t})-\mathrm{f}_{\mathrm{w}}^{*}(\mathrm{t})\right\}<+\infty .
$$

Another iteration of the conclusion of Lemma 3.2 yields

$$
(\mathrm{Tr})_{w}^{* *}(1) \leq c(\mathrm{Mr})_{w}^{* *}(1)+\mathrm{m}_{i_{u}}{ }^{*}(1)
$$

If $f \in L^{\infty}$ and $(T f)_{W}^{*}(t)$ is finite for a single t, then $(T f)_{W}^{*}(t)$ is finite for all t, by Lemma 3.2. Therefore, we have

Corollary 4.4: Suppose $w \in \mathbb{A}_{\infty}$ and $f \in L^{\infty}$. If $(T f)_{w}^{*}(t)$ is finite for some then $T f \in$ weak- L^{∞} and

$$
\|T f\|_{\text {weak-L }} \infty \leq \mathrm{C}\|f\|_{\infty}
$$

As a consequence of Corollary 4.4, one can prove results about local exponential integrability for T.

Versions of Theorem 1 are true for kernels satisfying conditions weaker than (1.3). Let $\Sigma=\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}}:|\mathrm{x}|=1\right\}$. Suppose K is positively homogeneous of degree -n and $\int_{\Sigma} K(x) \mathrm{d} \sigma(\mathrm{x})=0$. Set

$$
\omega_{\mathrm{r}}(\mathrm{t})=\sup _{|\rho| \leq \mathrm{t}}\|\mathbb{K} o \rho-\mathbb{K}\|_{\mathbb{L}^{\mathrm{r}}(\Sigma)}
$$

where ρ is a rotation of Σ and $|\rho|=\sup _{x \in \Sigma}|\rho x-x|$. We say $K \in L^{r}-\operatorname{Dini}, .1<$ $\mathrm{r} \leq \infty$, if $\mathrm{K} \in \mathbb{L}^{\mathbf{r}}(\Sigma)$ and

$$
\int_{0}^{1} \omega_{r}(t) \frac{d t}{t}<\infty
$$

Analogs of Theorem 1 for Dini kernels can be found in [1] We also note that similar results for Littlewood-Paley operators are known [7].

Bibliography

11] R.J. Bagby and D.S. Kurtz, A rearranged good λ inequality, Trans. Amer. Math. Soc. 293 (1986), 71-81.
2. C. Bennett, R. De Vore and R. Sharpley, Weak-L ${ }^{\infty}$ and BMO, Ann. of Math. (2) 113 (1981), 601-611.

3 C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces,

Dissertationes Math. 175 (1980), 1-67.
[4] C. Bennett and R. Sharpley, Weak-type inequalities for H^{p} and $B M O$, Proc. Sympos. Pure Math., Vol. 35, Part 1, Amer. Math. Soc., Providence R.I., 201-229.
[5] A.P. Calderón, Spaces between \mathbb{L}^{1} and L^{∞} and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
[6] R.R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
[7] D.S. Kurtz, Rearrangement inequalities for Littlewood-Paley operators, Math. Nach. (to appear).
[8] B. Muchenhoupt, Weighted inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[9] R. O'Neil and G. Weiss, The Hilbert transform and rearrangement of functions, Studia Math. 23 (1963), 189-198.
[10] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1971.

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico

