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SOME PROBLEMS CONCERNING 
REFLEXIVE OPERATOR ALGEBRAS 

W.E. Longstaff 

1. INTRODUCfiON AND PRELIMINARIES 

We discuss below some problems concerning a certain class of algebras of operators 

on complex Banach space. Each algebra of the class arises from a lattice of subspaces of 

the underlying space (in a way that will soon be made precise) and most of the problems 

are of the fonn: find conditions, additional to those specified a priori, on the lattice of 

subspaces, which are both necessary and sufficient for the corresponding algebra of 

operators to have a certain, specified, algebraic and/or topological property. It is more 

accurate to say, then, that these problems concern lattices of subspaces of certain types. 

Naturally, all the problems have partial solutions some of which will be described. While 

the interested reader can find complete proofs elsewhere, some brief proofs are included 

for the purpose of illustration. Most of these problems have arisen (in some cases, have 

re-surfaced) in joint work with S. Argyros and M.S. Lambrou. 

Throughout, X denotes a complex non-zero Banach space and H denotes a 

* complex non-zero Hilbert space. The topological dual of X is denoted by X . The 

terms 'operator' and 'subspace' will mean bounded linear mapping and closed linear 

manifold, respectively. For any family {M } of subspaces of X, VM denotes the y y 
* * * closed linear span of {M } . For any vectors e eX and f e X , f ®e denotes the 

"( 

* * operator on X given by (f ®e) x = f (x) e. The lattice of subspaces of X is denoted 

by C(X) and for any L e C(X) , L l. denotes the annihilator of L , that is 

l. * * * L = {f e X : f (x) = 0, for every x e L} . 

For any subset C . .;:;;; C(X) the set of operators on X that leave every member of C 

invariant is denoted by Alg C . Thus 
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Alg C = {T e B(X) : TM (;;; M , for every M e £} . 

It is not difficult to verify that, for any C , Alg C is a unital subalgebra of B(X) which 

is closed in the strong operator topology. So Alg C is a unital Banach algebra. Dually, 

for any subset A(;;; B(X) , the set of invariant subspaces of A is denoted by Lat A . 

Thus 

LatA= {Me C(X): TM (;;; M, for every TeA}. 

An algebra of operators A(;;; B(X) is called reflexive if A = Alg Lat A . Thus an algebra 

is reflexive, if and only if it is completely determined by its invariant subspaces. The 

following easily obtainable characterization is more direct: the algebra A (;;; B(X) is 

reflexive, if and only if A = Alg C for some subset C s;; C(X) . 

For example, every von Neumann algebra is reflexive (see [13]). In fact, an algebra 

A(;;; B(H) is reflexive and self-adjoint, if and only if it is a von Neumann algebra. Our 

problems concern non-self-adjoint reflexive algebras for the most part. 

In the study of reflexive algebras Alg C (;;; B(X) we can assume that C (;;; C(X) 

satisfies 

(1) (0) ' X E c' 
(2) C is a complete sublattice of C(X) , 

that is, for every family {M } of elements of C both nM and VM belong to C . A y y y 

subset C (;;; C(X) satisfying (1) and (2) is called a subspace lattice .on X. A nest is a 

totally ordered subspace lattice. 

2. SOME PROBLEMS 

In 1965 J.R. Ringrose initiated the study of nest algebras, that is, those algebras of 

the form Alg )/for some nest )/(;;; C(X). We will come to one of his theorems presently. 

One of the early results in this study is the following. 
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THEOREM. (J.A Erdos, 1968 [2]) For every nest )/ on H, the subalgebra of Alg )I 

generated by the rank one operators is dense in Alg )I in the strong operator topology. 

DEFINITION. If £ is a subspace lattice on X , say that £ has the strong rank one 

density property, abbreviated SRO, if the subalgebra of Alg £ generated by the rank one 

operators is dense in Alg £ in the strong operator topology. 

PROBLEM. Which subspace lattices on X have SRO? 

If £ is a subspace lattice on X , the subalgebra generated by the rank one 

operators of Alg £ is just the set of finite sums 1: R where each R is an operator of a a 

Alg £ of rank at most one. This algebra is an ideal of Alg £ , so £ has SRO if and 

only if 

for every E > 0 and for every finite set of vectors x1 ,x2, ... ,xm of X , there 

exists F = 1: R (as described above) such that llx.- Fx.ll < c:, for 
a J J 

j = 1,2, ... ,m. 

If Alg £ contains no rank one operators the subalgebra of it generated by the rank one 

operators is { 0} . This can happen, and there is a simple lattice-theoretic 

characterization of this phenomenon. 

DEFINITION. Suppose £ is a subspace lattice on X . For any L e £ define L e £ 

by L _ = V { M e £ : L [ M} . 

In the above definition, and in what follows, we employ the conventions that V0 = (0) 

and n0 =X; then (0)_ = (0). 

LE:M:MA. (W.E. Longstaff, 1975 [11]) If £ is a subspace lattice on X and e e X , 

* * * f e X , then the operator f ® e belongs to Alg £ if and only if e e L and 
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* f e (L_).L for some L e C. 

COROlLARY. Alg C contains a rank one operator if and only if there is some L e C 

with L ::f:: (0) and L ::f:: X . 

For example, if K, L and M are non-trivial (that is, each is neither (0) nor X) 

subspaces of X satisfying KVL = LVM = MVK =X and KnL = LrM = Mr\K = (0) , 

then there is no rank one operator leaving each of K, L and M invariant. 

A subspace lattice C on X is distributive if K n (LVM) = (KnL) V (KnM) holds 

identically in C. Complete distributivity is a very much stronger condition than 

distributivity, though still purely lattice-theoretic. We need not be concerned with the 

actual definition here. For present purposes it is more than enough to note the following 

characterization of it. 

THEOREM. (see [11]) Let C be a subspace lattice on X . The following are 

equivalent. 

(1) C is completely distributive, 

(2) for every L e C, L = V{M e C: L g; M_}, 

(3) for every L e C, L = n{M_: Me C: and MiL}. 

The Alg of a completely distributive subspace lattice C is rich in rank one 

operators. So many are there that in fact C = Lat 1l where 1l is the set of rank one 

operators of Alg C [11] (see also [5]). We have the following necessary condition for 

SRO. 

THEOREM (W.E. Longstaff, 1976 [12], M.S. Lambrou, 1977 [5, 7]) Let C be a 

subspace lattice on X . If C has SRO, then C is completely distributive. 
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Proof. Suppose that £ has SRO. By the preceding theorem, it is enough to show that 

L ~ V{M e £: L i,. M_} , for every L e £ since, by the definition of M , the reverse 

inclusion is obvious. 

Let L e £ . We show that every rank one operator R of Alg £ maps L into 

V{Me£:Lrt,.M_}. 

* * By the earlier lemma, R = f ®e where e e K and f e (K_).L for some K e £. 

For this K , if RL ::t (0) , then L g, K _ and RL ~ K . From this, 

RL~V{Me C:Lg,M_}. 

Now let x e L be arbitrary. Since £ has SRO, for every £ > 0 there exists a 

finite sum F = l: R of operators R e Alg £ each of rank at most one such that a a 

llx- Fxll < £. But, by what we've just proved, Fx e V{M e £: L rt M_} . Hence 

xe V{Me C:Lrt,M_} and L~V{Me C:Lrt,M_} asrequired. 

A subspace lattice £ on H is called commutative, if the orthogonal projections 

onto its members pairwise commute. For example, every nest is commutative. For 

commutative subspace lattices on separable Hilbert space the converse of the preceding 

theorem is also true. 

1HEOREM. (C. Laurie and W.E. Longstaff, 1983 [10]) Every completely distributive 

commutative subspace lattice on complex separable Hilbert space has SRO. 

Let £ be a subspace lattice on X . An element K e £ is called an atom of £ if 

(0) ~ M c K and M e £ implies that M = (0) . We say that £ is atomic if every 

non-zero element of £ contains an atom and is the closed linear span of the atoms it 

contains. We say that £ is complemented if for every L e £, there exists L' e £ 

such that Lr\L' = (0) and LVL' =X. It is easily shown that, if £ is distributive, then 

for every L e £ there is at most one element L' e £ satisfying Lr\L' = (0) and 
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LVL' =X. By definition, an atomic Boolean subspace lattice, abbreviated ABSL, is an 

atomic, complemented and distributive subspace lattice. ABSL's are extreme opposites to 

nests, from a partial order point of view. Nevertheless every nest and every ABSL is 

completely distributive. The only ABSL on X with one atom is { (0), X} . Every 

ABSL on X with precisely two atoms is of the fonn { (0), K, L, X} where K and L 

are non-trivial complementary subspaces (that is, KnL = (0) and KVL = X ). In any 

ABSL £ we have K = K' (the unique complement of K ), for every atom K of £ 

[11]. 

PROBLEM. Does every ABSL on X have SRO? 

This problem, when restricted to ABSL's on X with one-dimensional atoms, turns 

out to be (equivalent to) a well-known unsolved problem in the theory of bases (see [1]), 

namely (in the terminology of W.H. Ruckle [15]): Is every 1-series summable M-basis of 

X finitely series summable? 

The general 1-atom case presents little difficulty; the finite-rank operators are dense 

m B(X) = Alg{ (0), in the strong operator topology. The 2-atom case has been solved 

only recently; every ABSL on X with precisely two atoms has SRO [1]. The n-atom 

case (n ~ 3) is still unsolved. Some partial solutions to the general problem are given in 

[1], including the following. 

IHEOREM. Let £ be an ABSL on X. For every finite set of vectors x1,x2, ... ,xm of 

X each belonging to the linear span of the set of atoms of £ (which is dense in X) 

there exists a finite sum F =IRa of operators Ra E Alg £, each of rank at most one, 

such that xj = Fxj , for j = 1,2, ... ,m . 

In actual fact, in [2] J.A. Erdos proved a stronger result than the one mentioned at 

the beginning of this section. 
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THEOREM. (J.A. Erdos, 1968 [2]) For every nest )/ on H the unit ball of the 

subalgebra of Alg )/ generated by the rank one operators is dense in the unit ball of 

Alg )/ in the strong operator topology. 

DEFINITION. If C is a subspace lattice on X , say that C has the metric strong rank 

one density property, abbreviated metric SRO, if the unit ball of the subalgebra of Alg C 

generated by the rank one operators is dense in the unit ball of Alg C in the strong 

operator topology. 

Clearly, the subspace lattice C on X has metric SRO if and only if 

for every E > 0 and for every finite set of vectors x1 ,x2, ... ,xm of X , there 

exists a finite sum F = :Z , where each R is an operator of rank at most a 

one of Alg C, such that IIFII::;; 1 and llx.- Fx.ll < E, for j = 1,2, ... ,m. 
J J 

If some subspace lattice on X has metric SRO, then X obviously has the metric 

approximation property (in the sense of A. Grothendieck). 

PROBLEM Which (necessarily completely distributive) subspace lattices, on Banach 

spaces with the metric approximation property, have metric SRO? Which ABSL's on 

such spaces have it? 

On separable Hilbert space we have the following result. Note that, once again, the 

1-atom case presents little difficulty. (If H is separable, the Alg of the ABSL { H} 

is B(H) and the unit ball of the algebra of all finite rank operators on H is dense in the 

unit ball of B(H) in the strong operator topology.) 

THEOREM. (see [1]) Every ABSL with precisely two atoms on complex separable 

Hilbert space has metric SRO. 
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The proof of the above theorem given in [1] uses a result of K.J. Harrison and is 

surprisingly deep. An outline is as follows. If C is an ABSL on H it is not very 

difficult to show that the following are equivalent. 

(1) Alg C is self-adjoint, 

(2) C is commutative, 

(3) K n (K')L = K, for every atom K of C (where K' is the complement of 

K in C). 

Thus the condition 

(G) K n (K')L = (0), for every atom K of C, 

is extremely non-Commutative, and non-self-adjoint. It can be shown that on a complex 

separable Hilbert space every ABSL has metric SRO if and only if every ABSL satisfying 

condition (G) does. 

One way of obtaining an example of a 2-atom ABSL satisfying (G) on complex 

separable Hilbert space is as follows. Let H be separable and let T e B(H) be a 

positive contraction satisfying ker T = ker(I-T) = (0) (for example, T =~I). On H E!lH 

let 4r be the ABSL given by 4r = {(0), 9(T), 9(-T), H E!lH}, where for any operator 

A e B(H) , 9(A) = { (x, Ax) : x e H} denotes the graph of A. Verification of (G) is a 

routine exercise. For example, (g(T)')L = 9(-T)L = {(Tx,x): x e H} . Thus if 

(y,Ty) e 9(T) n (9(T)')L , 

then y = T2y, and (I-T)(l+T)y = 0 gives y = 0. 

In fact, P.R. Halmos [4] has shown that, up to unitary equivalence, the above way is 

the only way of obtaining such an example. By using the spectral theorem, applied to 

T , K.J. Harrison has proved that 4r has metric SRO. The n-atom case (n <:: 3) is still 

unsolved. 

PROBLEM. For ABSL's on separable Hilbert space, with precisely n-atoms (n <:: 3) and 
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satisfying condition (G), is there a representation theorem analogous to Halmos' for the 

case n = 2? 

Next we discuss some automatic continuity results for reflexive algebras. 

Before we come to these, we note the following result which characterizes ABSL's 

within the class of completely distributive subspace lattices. 

THEOREM. (M.S. Lambrou, 1977 [5, 6, 8]) Let C be a completely distributive 

subspace lattice on X and put J = {K e C: K * (0) and K_ ;t:. X} . The following are 

equivalent. 

(1) Alg£ is semi-simple, 

(2) Alg C is semi-prime, 

(3) C is an ABSL, 

(4) for every K e J , K n K_ = (0). 

Recall that a complex unital Banach algebra A is semi-simple if and only if it has 

no non-zero left ideals (or no non-zero right ideals) consisting entirely of quasinilpotent 

elements. Also, A is semi-prime if and only if it has no non-zero left ideal whose square 

is zero. Obviously, semi-simple Banach algebras are semi-prime. 

Incidentally, the reader may be interested in the following result which is in the same 

vein as its predecessor. 

THEOREM. (M.S. Lambrou and W.E. Longstaff, 1980 [9]) Let £ be a completely 

distributive subspace lattice on X . The following are equivalent. 

(1) Alg C is abelian, 

(2) £ is an ABSL with !-dimensional atoms. 

The proof given in [9] is for Hilbert spaces but, with minor modifications, it serves 
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for Banach spaces as well (another proof is given in [7]). 

THEOREM. (J.R. Ringrose, 1966 [14]) For j = 1,2 let )/. be a nest on the complex 
J 

Hilbert space Hj and let <p : Alg .¥1 ---j Alg .¥2 be an algebraic isomorphism. Then <p 

is spatial in the sense that there exists a bicontinuous linear bijection T : H1 ---j H2 such 

that <p(A) = TA11 , for every A E Alg .¥1 . In particular <p is continuous. 

Among nests only the trivial nest { (0), X} has semi-simple Alg . So the 

(automatic) continuity of the map <p in the statement of the above theorem seldom 

follows from B.E. Johnson's well-known theorem about epimorphisms onto semi-simple 

Banach algebras. Now nests are completely distributive and so are ABSL's; moreover, 

the Alg of an ABSL is always semi-simple. Thus any algebraic isomorphism 

<p : Alg £1 ---j Alg £2 , where £1 and £2 are ABSL's, will be automatically continuous 

by Johnson's theorem. Even more is true in these circumstances. 

THEOREM. (M.S. Lambrou, 1977 [5, 8]) For j = 1,2 let C. be an ABSL on the 
J 

complex Banach space X. and let A. be a closed subalgebra of Alg £. containing 
. J J J 

every rank one operator of Alg lj . If <p : A1 ---j ~ is an algebraic monomorphism 

whose range contains every rank one operator of Alg £2 , then <p is quasi-spatial. In 

particular <p is continuous. 

Here, by '<p is quasi-spatial' we mean the following. There exists a closed linear 

densely defined injective mapping T : Dom T(~ X1) ---j Ran T(~ X2) with dense range 

and with Dom T an invariant linear manifold of A1 such that <p(A)y = TA11y, for 

every A E A1 and every y E Ran T . Under these circumstances we say that T 

implements <p . In the preceding theorem 'quasi-spatial' cannot be replaced with 'spatial' 

(in the sense described in Ringrose's theorem). In fact, there are ABSL's £1 and £2 on 

complex Banach spaces X1 and x2 respectively, each with !-dimensional atoms (so 
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with abelian Alg's) and an algebraic isomorphism <p : Alg £1 ---l Alg £2 which is not 

implemented by any continuous T . 

Now nests, on Hilbert spaces, are also commutative subspace lattices. For 

commutative subspace lattices we have the following result 

1HEOREM. (F. Gilfeather and R.L Moore, 1986 [3]) For j = 1,2 let £. 
J 

be a 

commutative subspace lattice on a complex separable Hilbert space H and let 

<p : Alg £1 ---l Alg £2 be an algebraic isomorphism. Then q> is continuous. 

Such a map q> , as in the statement of the preceding theorem, can fail to be quasi­

spatial, even if both £1 and £2 are also completely distributive. 

Finally, we mention two problems related to von Neumann's celebrated double 

commutant theorem. 

PROBLEM. Which ABSL's t.. on X have the double commutant property: 

(Alg = Alg C? 

By von Neumann's theorem every commutative ABSL on H has the double 

commutant property (its Alg is a von Neumann algebra). Let C be an ABSL on X . 

By a result of M.S. Lambrou [7], (Alg C)"= Alg ){ for a unique ABSL ){ on X. 

Moreover, each atom of ){ is a closed linear span of atoms of C . Thus the atoms of C 

'coalesce' in a certain way to form the atoms of ){ on passing to the double commutant. 

PROBLEM Given two atoms K and L of £ what determines whether or not they 

will coalesce (that is, be or not be contained in the same atom of )( )? 
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This question has an algebraic answer, which we will describe briefly, but what is 

sought is a geometric one. The condition T E (Alg C)' is very strong. In particular, it 

implies that T acts like a scalar on each atom of C , that is, it implies that for every 

atom K E £ there exists a scalar A, such that T I K = lei . In [7] h is shown that the 

atoms K and L of £ coalesce if and only if, for every operator T E (Alg {J' , the 

equations TIK =AI and TIL= AI hold simultaneously. 

For example, if K+L is not closed then K and L coalesce. Indeed, in this case, 

let T E (Alg L)' and let T I K = AI and TIL = j!l for /c,j! scalars. Choose a vector 

z E (KVL)\(K+L) . Then there exist sequences (x ) and (y ) , of vectors of K and L 
n n 

respectively, such that xn + y n-+ z . Applying T gives Axn + !!Y n -+ Tz . But 

lcxn + Ay 11 ---) Az and j!Xn + !lY n ---) !!Z . Subtraction gives (Ar-!l)X -+ (T-IJ,l)z and 
n 

(!l-A)y -+ (T-AI)z . 
n 

From this, (T-Jli)z E K and (T-Al)z E L so 

(A-Jl)z = (T-!!I)z- (T-Ici)z E K+L. Since z ~ K+L, 'A= ll. Thus K and L coalesce. 

On the other hand, if K is an atom of C and K+K' is closed, then K does not 

coalesce with any other atom. For, let Q be the projection onto K along K' in this 

case. Then Q E (Alg £)' . If L is an atom of £ different from K , then L ~;; K' , so 

Q I K = I and Q I L = 0 . Thus K and L don't coalesce. 

It can happen that two atoms of C have a closed vector sum, yet nevertheless, they 

coalesce (an example is given in [1]). 

THEOREM. (see [1]) Let £ be an ABSL on X. If K+K' is a closed vector sum,for 

every atom K of £ , then £ has the double commutant property. 

Thus for example every ABSL with finite-dimensional atoms has the double 

commutant property. The converse of the above theorem holds for finite ABSL's but not 

in general. In fact, there exists an ABSL £ on separable Hilbert space with L+L' not 

closed, for every non-trivial L E C , yet nevertheless having the double commutant 

property (see [1]). 
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