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Abstract 

We prove existence of new complete embedded minimal surfaces in H 3 having the sym

metry of a regular tesselation by Coxeter orthoschemes. Each tetrahedron bounds a fun

damental piece along four convex symmetry arcs. Its existence is proved by a conjugate 

surface construction. 

1 Introduction. 

It is a basic problem in minimal surface theory getting new examples of minimal surfaces in 

Riemannian manifolds. The existence question of the Plateau problem for the hyperbolic space 

H 3 was solved in 1943 by A. Lonseth [5), and M.A. Anderson [1) proved existence for arbitrary 

boundary curves at infinity using geometric measure theory. But only in very special cases 

more explicit complete minimal surfaces are known: the hyperbolic helicoid has an explicit 

formula, and its conjugate surface, the rotational symmetric catenoid, was determined by M.P. 

Do Carma and M. Dajczer [2) solving the ODE for the meridian curve. As another special case 

we generalized in [7] the euclidean Enneper surfaces to H3 . They are a two parameter family 

of minimal surfaces with a rotational symmetric metric, thus reducing the Gaua equation to 

an ODE for the conformal factor of the metric. In contrast to the euclidean Enneper surfaces, 

some of the hyperbolic analoga are embedded. 

In this note we explain some ideas how we constructed new periodic minimal surfaces in 

H 3 . Fundamental pieces for the symmetry group of these surfaces are bounded by four planar 

symmetry lines, which lie on each of the four sides of a tetrahedron. Hyperbolic reflection 

in the totally geodesic hyperplane given by a tetrahedron's face will analytically continue the 

minimial surface piece across the symmetry line. If the tetrahedron is a Coxeter orthoscheme, 

then we obtain a complete embedded minimal surface via successive reflection in the sides of 

the tetrahedra. Inside each tetrahedron of the tesselation will lie a copy of the fundamental 

minimal surface piece. 
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The existence proof of the fundamental patch uses a conjugate surface construction which 

was first applied by B. Smyth [9] to construct patches in euclidean tetrahedra and later extended 

by H. Karcher, U. Pinkall and I. Sterling [3] to obtain new examples of compact embedded 

minimal surfaces in S3 . Compared to the euclidean case the construction procedure in S3 and 

in H 3 is much more involved, resulting from the fact that surface normals at corresponding 

points of a minimal surface and its conjugate surface are no longer parallel as it would be in 

m?. 
The surfaces we obtain in H 3 are analoga of the classical triply periodic minimal surfaces 

of H.A. Schwarz and E.R. Neovius in JR3 , see figure. 2. These two surfaces have fundamental 

cells in a regular cube and have all cubical symmetries. Therefore a fundamental piece of the 

surfaces lies in a Coxeter orthoscheme of the cube. We construct such pieces in H 3 in the 

Coxeter orthoschemes of all compact and noncompact regular polyhedra and additionally in 

many Coxeter orthoschemes which do not belong to tesselations with regular polyhedra, see 

Theorem. Thes additional tesselations have no analoga in lR 3 and S3 . 

All pictures of the hyperbolic space are conformal mappings of H 3 into the Poincare model, 

except of figure 4d where H 3 was mapped into the Klein model. 

2 Symmetry Properties. 

A curve on a surface in a space M 3 ( c) of constant curvature c is called a straight line, if it is 

a geodesic in M 3 (c), and it is called a planar line, if it lies in a 2-dimensional totally geodesic 

submanifold of M 3 (c). 

Minimal surfaces in spaces M 3 ( c) have a very exquisite symmetry property. If they contain 

a straight line, then the surface is invariant by a 180° rotation around this line, and if they 

contain a planar geodesic, then the minimal surface is symmetric corresponding to this 

These properties follow in from the Schwarz reflection principle of function theory and were 

generalized to minimal surfaces in M 3 (c) by H.B. Lawson [4]. 

According to Lawson there exists for every minimal immersion 

of a simply connected piece M 2 of a Riemann surface into M 3 ( c) a family of isometric minimal 

immersions 

(J E (0,271) 

with geometric data 

l g 
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= D8 ·S, 

where g (resp. gB) denotes the induced metric on M 2 by P (resp. F 8 ) and S (resp. S 8) denotes 

the Vifeingarten map of F ( resp. F 8 ). The existence of this familiy is proved by defining their 

geometric data with the equations above: for minimal surfaces S8 is symmetric with trace 

S8 = o, therefore the integrability conditions of Gaul3 and Codazzi are fulfilled for the pair 

(l, S 8 ). 

From this an important property follows for a, geodesic 1 on a minimal surface in Jl!f3 (c): 

F(J) is a straight line <==}- F"I2 (J) is a planar geodesic 

and the torsion ofF( 1) is equal to the curvature of prr/Z. This means that symmetry properties 

of a minimal surface F imply corresponding symmetry properties on the conjugate immersion 

prr/2. 

3 The Construction Procedure. 

vVe will now describe the conjugate surface construction. At first we start with a tesselation 

of M 3 ( c) with Coxeter orthoschemes. A Coxeter orthoscheme is a tetrahedron who~e vertices 

P1 ,P2 ,P3 ,P4 have the property that span(P1,P;)_l_span(P;,P4) fori E {2,3} and whose other 

three dihedral angles are of the form 1r fp, 1r / q, 1r jr, with p, q, r E lN. 

Every combination (p, q, r) with 

.1r .1r 1r 
szn- stn- < cos-

p r q 
(3.1) 

defines a Coxeter orthoscheme in H 3 • They all tesselate H 3 because they have natural dihedral 

angles of the form 1r / k. 

Some tesselations with Coxeter orthoschemes include as subgroups the tesselation of H 3 by 

regular polyhedra, namely the platonic solids, since each regular polyhedron with the Schlafli 

symbol {p, q, r} is divlded by its symmetry group in congruent Coxeter orthoschemes (p, q, r ). 

The other tesselations contain Coxeter orthoschemes with vertices lying in or beyond infinity. 

vVe now construct a minimal surface patch in a Coxeter orthoscheme meeting the faces by 

four planar symmetry lines as in figure 1. Then the symmetry group of the tetrahedron would 

build up a complete periodic minimal surface. The underlying method was first used by Smyth 

[9] to prove existence of three such patches in every euclidean tetrahedron. 

To every such patch in a tetrahedron exists its conjugate surface which is bounded by a 

quadrilateral of four straight lines, and vice versa to every patch in a quadrilateral exists a 
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patch in a tetrahedron. So once we know the quadrilateral we solve the Plateau problem in 

this contour, conjugate, and have existence of the required patch in the tetrahedron. 

To obtain the quadrilateral is straight forward in JR3 : both patches are isometric and th~re
fore the angles in corresponding vertices are the same. Additionally we have in that normals 

in corresponding points are parallel; especially the normals at all vertices of a quadrilateral are 

determined. In the case of four boundary arcs the angle condition and the normal parallelity, 

whose values can be read off the tetrahedron as dihedral angles and edge directions, uniquely 

determine the quadrilateral except of similiarity transformations. So the conjugate surface 

construction in JR3 works as follows: 

• given a tetrahedron 

• angles of quadrilateral = dihedral angles of tetrahedron 

• normals of quadrilateral = edge directions of tetrahedron 

• quadrilateral is determined 

• solve Plateau problem in the quadrilateral 

• conjugate the solution. 

This gives the solution to our free boundary value problem in the euclidean tetrahedron. 

The patch is usually unstable. 

Karcher, Pinkall and Sterling [3] extended this construction to S3 and proved existence of a 

minimal surface corresponding to each of the nine tesselations of S3 into regular polyhedrons. 

We now prove the corresponding result in H 3 • 

For the construction of the patch we proceed exactly as in the euclidean case with one 

major exception: in spaces of non zero curvature we have no longer global parallelity. That 

means we cannot speak any longer of parallel normals, and therefore we need other arguments 

to prove existence of a right quadrilateral. 

Let us fix a hyperbolic Coxeter orthoscheme (p, q, r) with characteristic angles ;31 := 1r / r, 

fJ2 := 7r fp, 7J := 1r fq. The patch we are looking. for has angles 1r /2, 7r /2, 1r /2 and 7J and therefore 

the quadrilateral too. Such quadrilaterals are uniquely determined for example by the angles 

a1, a2 as in figure 1, such that we have a 2-parameter family of candidates. 

Given one of these candidate quadrilaterals then its Plateau solution leads via conjugation 

to a patch in a tetrahedron, which differs at most in the two angles (31 and (32 • So we have a 

map 
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from the set of quadrilaterals to the set of tetrahedrons, see figure L Since 1) was fixed this 

map is equivalent to a function 

The task now is to proof that the pair of angles (;31, ;32) of the given Coxeter orthoscheme is in 

the image of Fw Having shown continuity of F71 we proceed with a homotopy argument. We 

construct a dosed contractible curve 7 in the domain of Fry, whose image (~1 h), P2(;)) runs 

around the given pair (;31,/32)· Then contracting the curve will prove that (f3I>fh) is in the 

image of r-;, and therefore prove the e::dstence of a quadrilateral. 

N 

Figure 1: Isometry between the minimal patch in the quadrilateral and the minimal patch 

inside the tetrahderon. 

The construction of the contractible curve uses further control over F~. This is obtained 

by estimates of the following type: 

- the torsion of a boundary line of the minimal surface in the quadrilateral is equal to 

the curvature of the corresponding planar conjugate arc. There is no direct control of the 

torsion or curvature, but we can estimate the turning angle of the normal compared to a 

parallel normal field along this straight boundary line of the quadrilateral using hyperbolic 

helicoids and bilinear interpolation surfaces as barriers. With this turning angles we control 

the corresponding planar curves in the tetrahedron and its dihedral angles, i.e. the image of 

Fry. 

- the situation for infinitesimal small patches is comparable with the euclidean case, where 

F11 is the identity. In practice we have for some quadrilaterals that the corresponding tetra

hedron has edges beyond infinity, such that the angles ~1 Jh are no longer defined, even if 

(f3h fh) are well defined (this is the case when faces of the tetrahedron do not meet). To 
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cover these situation we do not consider the angles /31, /3z but consider instead their cosine. 

The image of the resulting new function F11 can be continuously extended to handle vertices 

beyond infinity (infinity means (3 =·0 or cosf3 = 1) by defining F11 to be the hyperbolic cosine 

cosh of the distance h of two sides of the tetrahedron. For (3 = 0 we have h = 0 and there

fore cos (3 = 1 = cosh h. On the other side this enables us to prove existence of patches for 

tetrahedra with edges beyond infinity. 

The appearance of this situation distinguishes the hyperbolic case from the spherical case. 

Let (p, q, r) denote a hyperbolic Coxeter orthoscheme, i.e. p, q, r fulfill equation 3.1, then 

we have the following existence theorem: 

Theorem: There exist complete minimal surfaces in H 3 with the symmetry of tesselations 

given by 

a) all compact and non compact platonic polyhedra (see the list below) 

b) all Coxeter orthoschemes (p, q, r) with q E {3, 4, ... , 1000} and small p and r. 

c) all "selfdual" Coxeter orthoschemes (p, q, r) with p = r, and additionally all rotational 

symmetric Coxeter· orthoschemes with all four vertices in or beyond infinity (their Coxeter· 

graph is 0 · · · 0210 · · · 0, they have no (p, q, r) representation). 

The selfdual tesselations in c) lead to two different complete minimal surfaces of Schwarz 

and Neovius type which are both embedded. 

Proof: a) + b): The proof of a) and b) uses the conjugate surface construction in H 3 

introduced above. The numerical values in b) were obtained by numerical estimates of an 

explicitly given function and computed only for these values of q. 

c) These Coxeter orthoschemes have an axis of rotational symmetry. Neighbouring axis 

can be combined in two different ways to polygons such that their Plateau solution extend 

to complete minimal surfaces. Both surfaces are embedded since their Plateau patch is a 

hyperbolic graph. If the orthoschemes also generate a tesselation by regular polyhdra (selfdual 

examples of the list below) then the two minimal surfaces sit inside the polyhedron in the same 

way as the Schwarz and Neovius surface sit inside the cube. 

List of compact and non-compact regular polyhedra in H 3 

compact polyhedra 

{a,5,3} selfdual 

{5,3,5} selfdual 

{5,3,4} dual 

120° icosahedron fig. 4c 

72° dodecahedron fig. 2c,2d 

90° dodecahedron 
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{4,3,5} dual 72° cube fig. 3b-d 

polyhedra with all vertices at infinity with their duals 

{3,4,4} {4,4,3} 90° octahedron fig. 4a,4b 

{3,3,6} {6,3,3} 60° tetrahedron 

{4,3,6} {6,3,4} 60° cube fig. 3a 

{5,3,6} {6,3,5} 60° dodecahedron 

(the vertices of their duals lie on a horosphere, see figure 4b) 

"polyhedra" with vertices and centers at infinity 

{6,3,6} selfdual 

{ 4,4,4} selfdual 

{3,6,3} selfdual 
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(a) (b) 

... . ... 

(c) (d) 

Figure 2: The classical triply periodic minimal surfaces in of E.R Neovius (a) and H.A. 

Schwarz (b) with a building block in a cube, and corresponding minimal surfaces in H 3 : the 

selfdual hyperbolic 72° dodecahedron contains a cell of a Neovius type surface with holes to 

each edge, and a cell of a Schwarz type surface with holes to each face. Both cells extend via 

successive reflections in the faces of the dodecahedron to complete embedded minimal surfaces 

in H 3 • 
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L __ . 
(a) (b) 

(c) (d) 

Figure 3: Figures (a), (b) and (c) shov: different parts of complete minimal surface with 

the symmetry of a tesselation of H3 by 72° cubes. The minimal surfaces in (d) sits in a 60° 

cube with vertices in infinity. 
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Figure 4: Minimal surface in a 90° octahedron (a) and in its dual cell (b). The dual cell 

has its midpoint in infinity, and its vertices lie on a horosphere. (c) shows an icosahedron with 

a minimal surface, and (d) a Coxeter orthoscheme with two vertices beyond and two in infinity. 

It has an axis of rotational symmetry, dihedral angles rr /2, rr /2, rr /2, rr / q, and a Coxeter graph 

0· .. Q!lQ •• ·0 


