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This lecture introduces some of the basic properties of hyperbolic 

equations, illustrated by the specific example of the wave equation 

in R 3 . Emphasis is placed on the geometric nature of many of 

the constructions, and on describing different approaches to the 

existence problem. 
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1 The Wave Equation 

The prototypical hyperbolic equation, and the object of study in this lecture, is the 

wave equation 

Du := uu - flu = f. (1) 

We shall consider mainly the case where u and f are defined on R 3 x R+, as this 

simple case suffices to illustrate most of the basic properties of general linear hyperbolic 

equations. 

Solutions of (1) satisfy the energy estimate, 

where 

dd E(t) = { fut dx 
t laa 

E(t) = ~ { (u; + 1Dul2) dx, 
2 laa 

(2) 

(Du = (D1u, D2u, D3u)). In particular, iff = 0 then E(t) == E(O) (energy conserva

tion) and in general, we may estimate 

and thereby control E(t). 
From (2) we immediately deduce uniqueness for the Cauchy problem 

uu- flu f 

u(O) 

Ut(O) 

Uo E H 1(·R3) 

u1 E L 2 (R3 ) 

(3) 

since if u,v E C 1(R+,H1(R3)) satisfy (3) then w = u- v satisfies (3) with f = 0 and 

uo = u1 = 0, and hence Ew(O) = 0 and by (2), Ew(t) = 0 'it 2 0. 
More detailed information about (1) may be obtained by exploiting the geometry 

underlying the energy estimate. Multiplying (1) by Ut leads to the divergence identity 

(4) 

(ut = DtU =au/at, Ui =Diu= aujaxi), which we may rewrite as 

(5) 

where f..l = dt 1\ dx1 1\ dx2 1\ dx3 and X is the vector field 

(6) 
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Integrating ( 4) over a lens-shaped region 

V = {(x, t): ¢(x) ~ t ~ 'lj;(x), xED C R 3 } 

where ¢ = 'ljJ on 8D and D is bounded, leads by Stokes' theorem to 

( cxJ.L- ( txf-L= { UtDudtdx 
lscwJ ls(¢) lv 

(7) 

where S('lf;) = {(x,t),t = ¢(x),x ED}= graph('lf;) and both S(¢),S('lf;) are oriented 

by dx1 1\ dx2 1\ dx3 . Since the tangent 3-plane to S ( ¢) is 

v (81 + ¢I8t) 1\ (82 + ¢z8t) 1\ (83 + ¢38t), 

81 1\ 82 1\ 83 + 8t 1\ ( ¢1 82 1\ 83 + ¢z 83 1\ 81 + ¢3 81 1\ 82), 

where ¢; = 8;¢, it follows that 

(cxJ.L)(v) xo- X;¢; 

!(u~ + 1Dul2) +utu;¢; (8) 

and hence 

( txf-L = ( (!(u; + 1Dul2) + Utc/J;u;)l dx. J S(¢) Jo t=¢(x) 
(9) 

Now setting v1 = ID¢1-1 D¢ if D¢ i= 0 we have 

and this is positive semidefinite for any function u whenever ID¢1 ~ 1. A surface 

S = S(¢) satisfying ID¢1 < 1 is said to be (strictly) spacelike; if ID¢1 ~ 1 then S(¢) is 

weakly spacelike. From (7) and (10) we may derive the fundamental uniqueness result. 

Proposition 1 Suppose u, v satisfy Du = Dv in R 3 x R+ and 

u(x, 0) 

Ut(X, 0) 
v(x,O) } \/xED c R 3 , 

Vt(X, 0) 
(11) 

then u(x, t) = v(x, t) for all (x, t) E D+(D), where D+(Q) is the future domain of 

dependence of n, 

D+(Q) = {(x, t) : 0 ~ t ~ dist(x, 8D), xED}. (12) 
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Proof: Suppose (x0 , t0 ) E D+(st) and evaluate the energy integrals for the function 

w = u - v over the region bounded by the past light cone c;o,to = {(x, t) : t = 
to- lx- xol} and the initial surface t = 0. Since Bt0 (xo) = {x: lx- xol ~to} C s-2, 
(7) gives 

r ( wz + IDwn dx = r (IDowl 2 + 1Dpwl2) dx (13) J B,0 (x0 ) Jc;0 ,,0 n{t;:::o} 

where 

is the radial null derivative along the light-like lines generating C~,to and Dow denotes 

the remaining non-radial spatial derivatives. The integral over Bt0 (x0 ) vanishes by 

(10), thus Dpw = 0 and w = 0 on S1 x {0} and it follows that w(xo, to) = 0. • 

This says the initial values of u outside S1 do not affect the solution inside D+(n), 

or equivalently, the solution propagates at speed 1. 

Corollary 2 Suppose u satisfies (3) in R 3 x R+ with f = 0. If spt(uo) Uspt(u1) C s-2, 
then u(x,t) = 0 for (x,t) fl. J+(st), where J+(st) is the domain of influence ofs-2, 

J+(st) = {(x, t): dist(x, st) < t}. (14) 

The argument of Proposition 1 extends readily to show the uniqueness of the initial 

value problem (IVP) posed on a strictly spacelike surfaceS(¢), 

Utt- .6.u f 
u(x, ¢>(x)) 

Ut(X, cj>(x)) 
uo(x) 
u1(x), Vx E R3, 

(15) 

since the energy integral overS(¢>) given by (9), (10) vanishes if u = 0. A similar result 

holds then for the uniqueness in the domain of dependence over a subset of S(¢>). 

Note that it is essential here that S(¢>) be strictly spacelike, ID¢1 < 1, since if 

ID¢1 = 1 on an open set I;, then there are nontrivial data (u, Ut) along S(¢) for which 

the density (10) vanishes, and then the above argument would fail. If ID¢1 = 1, 

then the vanishing of (10) constrains only the derivatives of u tangential to S(¢), and 

does not otherwise restrict the transverse derivative u_t. This is very different from 

the strictly spacelike case ID¢>1 < 1. The set I; C S(¢) where ID¢1 = 1 is called a 

characteristic surface, and this remark indicates that the initial value problem posed on 

a characteristic surface will have a significantly different nature from the usual Cauchy 

IVP. 
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The energy identity also implies stability in the energy norm: if Du = Dv and u 

and v are initially close in energy norm, then they remain close in the energy norm. 

Again this argument applies not only to (3), but also to the Cauchy problem with 

initial data posed on any strictly spacelike surface S. A precise formulation of the 

stability property is left as an exercise; suffice only to note that this stability justifies 

the emphasis placed on the Cauchy problem, and on spacelike surfaces. 

The stress-energy tensor of a solution of Du = 0 is 

(16) 

where Ua = Dau, ex = 0, · · ·, 3, (Do = Ot), and rJaf3 is the Lorentz metric, rJo:(3 

diag(-1, 1, 1, 1). It follows from Du = 0 that Tap satisfies the conservation law 

(17) 

and the energy identity ( 4) corresponds to the special case ex= 0. Comparing with the 

vector field X of (6) we find that 

and the energy density (8) may be rewritten as 

U(u; + 1Dul2 ) + UtUirPi) dx = Toan"' Vl -ID¢1 2 dx, 

where n = (n"') = (1- ID¢12)-112 (8t + ¢/Ji) is the future timelike unit normal vector 

to S(¢) and (1- ID¢1 2 ) 112dx is the metric volume measure on S(¢) induced by the 

spacetime metric rJaf3· 

It is clear that the energy identities above are associated with the vector field 

fA = 80 . More general energy identities may be obtained by replacing Ot by K, where 

K = Kcx8a is any conformal Killing vector in Minkowski space R 3•1 i.e. 

(18) 

where Ka = ?7o:f3Kf3. The conformal Killing equation (18) in Minkowski space is satisfied 

by the following vector fields: 

(a) translations 

Oa, 0:=0,···,3 (19) 

(b) rotations 

(20) 
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(c) boosts (Lorentz rotations) 

(21) 

(d) dilation 

(22) 

(e) conformal translations 

C(a) = ( ( 'f/1&X1 x8)8~ - Xax.B) 8,a, a = 0, · · ·, 3. (23) 

The rotations and boosts may be grouped into the Lorentz rotations La,a = xa8,a -

x,a8a, 0 ~ a < (3 ~ 3 (where Xa = 'T!a,x'), which generate the Lorentz group 80(3, 1); 

the 15 vector fields (8a, La,a, S, C(a)) generate the Lorentz conformal group C(3, 1). 

Since rya.8Ta,a = -uau"', by combining (17) and (18) we have 

D.B(Ta,aK"') = -iD"'Kau,au.B 

for any conformal Killing vector K. Equivalently 

d(K"'Ta,a8,8taf3J.L) = -"iD"'Kau,auf3 

and we may apply Stokes' theorem to obtain generalised energy estimates. The usual 

energy identity ( 4) follows from K = 8t; if we choose K = C(o) = (r2 - t2 ) Ot + 2t(t8t + 
xi8;) = (r2 + t2) Ot + 2rt8r, r = Jxl = (I:~(xi)2) 112 , then we obtain the Morawetz 

identity 

! JR3 (~(r2 + t 2) ( u; + JDuJ 2) + 2txiutDiu) dx = JR3 2t( -u; + JDuJ 2) dx, (24) 

which is valid for any solution of Du = 0 with sufficiently rapid decay. This may 

be used to obtain more detailed information about decay of a solution; another more 

useful trick is to exploit the commutation relations 

[D,8a] 0 

[D,Laf3] 0 

[D,S] 20 

(25) 

to derive energy estimates for derivatives of solutions. For example, if u is a (smooth) 

solution of (3) with f = 0 then D(8~u) = 0 and it follows that the higher order energies 

Ek(t) = 1 L IDAul 2 dx (26) 
R3IAI=k 
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where A= (a1 , · · ·, ak) is a multi-index of length k, are all conserved, 

(27) 

This gives 

Proposition 3 Suppose u satisfies {3), with f = 0, u0 E Hk+l(R3) and u1 E Hk(R3), 

k 2: 0, then u(t) E Hk+1(R3 ). 

More detailed information (about the t-differentiability of u(t)) may also be deter

mined from the higher order energies (26), and further energy-type estimates for the 

angular and dilation derivatives ( Laf3 )ku, Sku are possible. If Ek ( u) < oo for suffi

ciently large k, then the Sobolev embedding may be used to infer continuity of u and 

its derivatives. 

We now turn briefly to the problem of establishing existence of solutions to the 

Cauchy IVP. 

First, we observe that it suffices to treat the case where f = 0, for if we let ¢(x, t; T) 
denote the solution of 

then 

D¢(x, t; T) 

¢J(x,T;T) 

¢1(x,T;T) 

0, t 2: T 

0 

f(x, T), 

u(x, t) = l ¢(x, t; T) dT 

satisfies Du = j, u(O) = Ut(O) = 0. This trick is known as Duhamel's principle, and 

reduces the existence question to the homogeneous equation Du = 0. 

One method of showing existence is to exhibit an explicit formula. This technique is 

however limiting, in that it will not extend simply to more general hyperbolic equations. 

For example, taking the Fourier transform in the spatial variables only and solving the 

resulting ordinary differential equations gives the expression 

(28) 

If u0 , u 1 are sufficiently smooth (for example, in the Schwartz class S) then this formula 

may be inverted to give a formula for u(x, t) satisfying the wave equation. Using the 

energy estimates and the fact that the Schwartz class is dense in Hk(R3 ), k 2: 0, we 
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may then use an approximating sequence to construct solutions with less smooth initial 

data. 

Another interesting explicit formula is based on the method of spherical means. If 
we denote the average over spheres by 

M,p(x, r) = 2._ f 'lf;(x + rw) dw 
41f ls2 (29) 

where w E 5 2 and dw denotes the usual surface measure over 5 2 , then it is straightfor

ward to show that v(x, r) = M,p(x, r) satisfies the Darboux equation 

2 
Vrr + -Vr - Ll.v = 0 

r 

with initial conditions v(x, 0) = '1/J(x), vr(x, 0) = 0. It follows that 

d 
u(x, t) = tMu1 (x, t) + dt (tMu0 (x, t)) 

(30) 

(31) 

satisfies the Cauchy problem (3) with f = 0. Huygen's Principle follows directly from 

(31), since the right _hand side depends only on the values of u0 , u1 on the sphere 

IY - xl = t. Thus, for example, initial data with support concentrated near x = 

0 will give a solution with support concentrated near the outgoing light cone Ci/:0 • 

This phenomenon persists in all odd spatial dimensions; however solutions of the wave 

equation in even spatial dimension exhibit "tails" to the outgoing radiation. This effect 

is easily observed, in ripples on a pond for example. 

The operator-theoretic approach to existence starts by setting v = Ut and rewriting 

the wave equation as the first order system 

:t[~] [~ ~].[~], 
[ ~ l (0) = [ ~: l E HJ(R3) x L2(R3). (32) 

Let B denote the right hand operator and let U = [u, v]t; we may then view the equation 

Ut = BU as an evolution equation on the Hilbert space F = HJ(R3) x L2 (R3). Note 

that HJ(R3) is the completion of C~(R3) by the norm 

(33) 

and is thus not equal to H 1(R3), since it contains functions which are not in L2 

because they do not decay fast enough near infinity. However by the Sobolev inequality, 

192 



f E HJ(R3 ) implies f E L6 (R3). The advantage in using HJ is that then the operator 

B becomes skew-symmetric under the norm on F, (W = [w, z]t) 

(W,BU)F f (Dw. Dv + zllu) 
}Ra 

f ( Dw . Dv - D z · Du) 
}Ra 
-(BW,U)p. (34) 

Since B is densely defined in F, and since B is closed (this follows from elliptic regu

larity, for example), it follows from the general theory of abstract evolution equations, 

as described in Derek Robinson's lectures, that B generates a unitary group exp(tB) 

on F. Then U(t) = exp(tB)U0 satisfies the evolution equation Ut = BU, and thus 

solves the Cauchy problem for the wave equation. This approach has the advantage 

that it automatically gives existence for solutions with initial data satisfying only the 

regularity required to have bounded energy norm. 
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