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In this note all surfaces are regular parametrised surfaces, i.e., let f2 c R 2 be a 

domain and ( ul, u2) be coordinates of R 2 , then a surface is a smooth mapping X: f2 <-+ 

R 3 such that 
ax ax 

xl := aul and x2 := au2 

are linear indepnedent on D. The induced metric on D by X is given by the first 

fundamental form I = (gij), 

where • is the inner product in R 3 . The second fundamental form II= (hij) is given by 

where 
N = X1/\ Xz 

IX1/\ Xzl 
is the unit normal vector, 1\ is the cross product in R 3 , and of course 

a2X 
Xij = auiauj. 

Remember that the mean curvature is defined as 

1 [ 1] 1 .. H ·= -trace (II)I- = -h· ·g'1 . 2 2 ZJ l 

where we write r 1 = (gij). 
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Definition 1 The surface X: D <-t R 3 is a minimal surface if H =: 0. 

Let G = det I. Recall that the Laplacian on (D, I) is defined as 

1 a (··r;::,a) 6I := VG aui g'1yQ aui . 

We want to show that X is minimal if and only if 6 1X = 0, i.e., if and only if each 

component of X is a harmonic function in the metric I. 

Let us first recall that from the Gauss equation we have 

where 

We calculate 

r k - 1 kl (agil agjl agij) ··--g -+---'1 2 aui aui au1 • 

1 a . . r;::, 
6IX VG aui (g'1y GXj) 

.. agij 1 ave .. 
g'1 X·· +--.X.+ ---.-g'1 X· 

'1 au' 1 VG 8u' 1 

ag'1 1 aG .. i 1X;i +--Xi+ -G-:;:;---:g'1Xi. 
au' 2 uu' 

Now we have an identity 

1 aG ( _1 a I) klagkz 
G 8ui = trace I 8ui = g aui . 

Thus we have 

We claim that 6 1X is perpendicular to the tagent planes, i.e, planes generated by 

(X1 , X 2 ). In fact, since g;jgik = O;k, we have 

. . agij 1 . . kl 8gkl 
61X•Xm = g'1X··•X + --X·•X + -g'1g --X1·•Xm '1 m aui 1 m 2 aui 

i k agij 1 i klagkl 
g 1fij9km + aui 9jm + 2g 1g aui 9jm 
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Thus 6 1X is in the direction of N, and 

Since N # 0, we see that 6 1X = 0 if and only if H = 0. 

One important feature of 2-dimensional surfaces is the existence of isothermal coor­

dinates, i.e, coordinates ( u 1, u2 ) such that 

Under this coordinate system, X is called conformal. 

A classical theorem says that for any C2 X: f.! <-+ Rn, we can always (by changing 

coordinate) find a good coordinate system (isothermal coordinates) such that X is 

conformal. Interested readers can see [1] for an elementary proof. From now on, we will 

assume all surfaces are conformal. 

Under the isothermal coordinates, the metric I is very imp 

Let 

2 i. -2 4 g;j = A b;j, g 1 = A 8;j, and G = A . 

fj2 fj2 

6 =a2+fj2 
ul u2 

be the usual Laplacian, we can check that 

Thus we can also define that X: f.! <-+ R 3 is minimal if and only if X is conformal and 

6X=O. 
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This definition has an advantage that since each component of X is a harmonic 

function, and hence is locally the real part of some holomorphic function, we can use 

the rich theory of holomorphic functions. 

Let us take this advantage. We write z = u + i v = u1 + i u2 and 

a 1(a .a) --- --z-
az- 2 au av ' 

We can define a complex mapping 

. ax a ( 1 2 3) ¢:=X1 -zX2 =2--a;=2az X ,X ,X . 

We can calculate that 

Thus X is conformal if and only if 

(1) 

Recall that a complex valued function f is holomorphic if and only if a f j az = 0. If X 

is minimal, then 
a¢> a2 X 1 
&z = 2 &zaz = 2 6 X = o. 

On the other hand, if a conformal mapping X satisfies 

(2) 
a¢> 
Oz = 0, 

then we know that !:::.X = 0 and X is minimal. 

Moreover, we can recovery the mapping X from ¢>, that is 

X(z) = X(zo) + ~ 1z cf>(()d(, 
zo 

where ~ means the real part. The integral on the right hand side is independent of 

path, since X is well defined. 

We can further analyse the holomorphic mapping¢>. We can rewrite (1) as 
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If ¢3 = 0, then clearly X(D) is contained in a plane. After a rotation, we can assume 

that ¢3 =/= 0. Let 

Then 

A little calculation shows that 

(3) 

Note that f and g are both hoiomorphic functions. Thus we conclude that a minimal 

surface is given by a pair of holomorphic functions f and g by 

(4) rz (1 i ) X(z) = X(zo) + lzo 2!(1 -l), 2!(1 + l), fg (()d(. 

Equation ( 4) is called the Enneper- Weierstrass Representation of the minimal surface 

X : D '---+ R 3 , the functions g and f are called the Enneper- Weierstrass data of X. 

We will give the geometric data, such as the Gauss map, the first and second fun­

damental forms, the principal and Gauss curvatures, etc., of a minimal surface via its 

Enneper-Weierstrass representation. 

One important fact is that the meromorphic function g in the Enneper-Weierstrass 

representation corresponds to the Gauss map N. For this we first recall that the Gauss 

map N: M --+ S 2 of an immersion X: M '---+ R 3 is defined as 

Let r : S2 - {N} --+ C be stereographic projection, where N is the north pole. Then 

X+ iy 
r(x,y,z) = --, 

1- z 

where 3{ and 8' are the real and imaginary parts. We claim that 

g =roN : M--+ C. 
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In fact, 

-1 1 ( 
T 09 = 1 + 1912 23r9, 

By ¢ = X 1 - i Xz and (3) 

thus 

Xu 1\ Xv = 3t~f(1- 92)'25!9- 3tf9SS~f(1- 92 ) 
[ 

-3rU(1 + 92 )'25!9 + 3rf9S:Sif(1 + 92 ) l 
-3rf(1- 92)SSV(1 + 92) + 3r±f(1 + 92)SSf(1- 9z) 

SS[U(1 + 92)!9] [ ~lfl 23r(g + 19129) l 
. ssaj(1- 92 )!9] = ~1!1 2'25(9 -191 2:9) 

ss [ ~i !(1 + 92)f(1- 92)] ilfl23r(l914 -1- :q2 + 92) 

= 1!12(1 + 19!2)2 ( ~~~ ) = ~1!12(1 + I912)2T-l09. 
4(1 + 191 ) 1912 - 1 4 

Since X is conformal, the first fundamental form is given by 912 = 0 and 

(5) 

where the last equality comes from 1T-1o9l = 1. Thus 

as we claimed. 

Later we will also call the function 9 = ToN the Gauss map of the immersion 

X: M '-+ R 3 . We have seen that if X is a minimal surface then 9 is a meromorphic 

function. The converse is also true, i.e., X is minimal if and only if 9 = ToN is 

meromorphic. For a proof, the readers can confer [4], pages 107-110. 
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We can also calculate the second fundamental form of X via the Enneper-Weierstrass 

representation. Recall that 

are holomorphic functions of z = u + iv. Hence 

Xn- iX12 = Xuu- iXuv = (¢~, ¢~, ¢~). 

Because X is harmonic, the data of the second fundamental form then must be 

By (3), 

SR( ¢~, ¢;, ¢~) •N 

SR [ Gj'(1- g2 ), ~j'(1 + l), f'g) + (- fgg', ifgg', fg')] eN 

11 I? (SRJ'(1- g2 )SRg- SSJ'(1 + l)S:Sg + SRJ'g(lgl2 - 1) 
1 + g-

-2SRJ gg'SRg- 2S:Sf gg'S:Sg + SRJ g'(lgl2 - 1)) 

1 (SRJ'SRg- SRJ' g2SRg - SS f'S:Sg- SS f' lS:Sg 
1 + lgl2 

+SRJ'g(lgl2- 1)- 2SRfgg'g + SRfg'(lgl 2 - 1)) 

1 +
1lgl 2 (SRJ'g- SRJ'g2g + SRJ'g(lgl2 - 1)- 2lgi2SRfg' + SRfg'(lgl2 -1)) 

1 +1lgl 2 (-SRfg'(lgl 2 +1)) = -SRfg'. 

Similarly, we have h12 = SS f g'. From these we see that for a minimal surface, 

(7) hn- ih12 =- fg' 

is a holomorphic function. 

Again let dz = du+i dv and (dzjZ = (du) 2 -(dv) 2 +2i du dv. The second fundamental 

form of X can be written as 

hu ( du j2 + 2h12 du dv + h22 ( dv )2 = -SR(f g') ( ( du )2 - ( dv ?) + 2SS(f g') du dv 
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Let V E TpM be a unit tangent vector and write V = A-1(cosB,sinB) = A-1ei9 in 

complex form; then 

II(V, V) = -A - 21R(f g' e2i 9 ) 

by the previous formulae. Thus the two principal curvatures (eigenvalues of the second 

fundamental form II) are 

(8) 

(9) 

Then from K = fl:1 fl:2 we get 

(10) K-- [ 4\g'\ ] 2 

- !f\(1 + \g\2)2 

Now let r(t) = r1(t) +ir2 (t) be a curve on M and r'(t) = r~(t) +ir~(t); then 

II(r' (t), r' (t)) -1R{f(r(t)] g'[(r(t)] [r'(t)F}(dt) 2 

(11) -1R{ d[g(r(t)]f[r(t)]dr(t) }. 

Remember that a regular curve r is an asymptotic line on a surface M if II(r'(t), r'(t)) = 
0; a curve r is a curvature line if and only if r'(t) is in a principal direction, if and only 

if !r'(t)\-2 II(r'(t),r'(t)) takes either maximum or minimum value ofll(v,v) for all unit 

tangent vectors in Tr(t)M· We have the following criteria: 

1. A regular curve r is an asymptotic line if and only if f[r(t)] g'[r(t)] [r'(t)J2 E iR. 

2. A regular curve r is a curvature line if and only if f(r(t)] g'[r(t)] [r'(t)J2 E R. 

The last assertion comes from the fact that -1R{f(r(t)]g'([(t)][r'(t)J2} achieves its max­

imum or minimum for all directions v at r(t) only if f[r(t)]g'[r(t)][r'(t)J2 is real. 

Finally, ~e should mention that if n is a two-dimensional manifold instead of a plane 

domain, then the holomorphic mapping¢ is no longer well defined, but the 1-form 

w=cpdz 
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is. In this case we get 

a meromorphic function and 

W3 
g= ---=-­

wl- ZW2 

a meromorphic 1-form, the Enneper-Weierstrass of X is given by 

(12) X(p) = X(po) + ~1P w, 
PO 

where 

(13) 

On the other hand, if we have a meromorphic function g and a meromorphic 1-form 

r;, we can get a minimal surface by (12) if 

(14) 

for any loop C in 0. Thus although locally any pair of g and r; gives a minimal surface, 

if we want the surface is globally well defined, g and r; have to match each other well 

such that (14) is satisfied. 

We call g and r; as the Enneper-Weierstrass data of X and (12) the Enneper­

Weierstrass representation of X. 

Now let us give some examples of minimal surfaces. We only give the Enneper­

Weierstrass data. 

1. Catenoid: 

D = C- {0}, g(z) = z, r; = dzjz2 . 

2. Helicoid: 

3. Enneper's Surface: 

D = C, g(z) = z, r; = dz. 

4. Hoffman-Meeks' Surfaces: 
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Genus 2 Hoffman-Meeks Surface 
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These surfaces were discovered in 1985. Let 

Mk is a genus k Riemann surface, roughly speaking, a sphere with k handles and a 

special complex structure. Let 

Po= (0,0), P-1 = (-1,0), P1 = (1,0), Poo = (oo,oo) E Mk. 

The surfaces we will consider are defined on 

and 
Ck 

g=-, 
w 

17 = .:::_ dz = --dz. ( ~ )k w 

w z2 -1 

It has been proved in [3] that for each integer k > 0, there is a unique ck > 0 such 

that (14) is satisfied. The procedure of looking for ck to satisfy (14) is called "killing 

periods". 

For further readings in the theory of classical minimal surfaces in R 3 , we recommend 

[5], [2], and [4]. 
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