Minimal Surfaces in \mathbf{R}^{3}

Yi Fang
Department of Mathematics
School of Mathematical Sciences, A.N.U.

February 6, 1995

In this note all surfaces are regular parametrised surfaces, i.e., let $\Omega \subset \mathbf{R}^{2}$ be a domain and $\left(u^{1}, u^{2}\right)$ be coordinates of \mathbf{R}^{2}, then a surface is a smooth mapping $X: \Omega \hookrightarrow$ \mathbf{R}^{3} such that

$$
X_{1}:=\frac{\partial X}{\partial u^{1}} \text { and } X_{2}:=\frac{\partial X}{\partial u^{2}}
$$

are linear indepnedent on Ω. The induced metric on Ω by X is given by the first fundamental form $\mathbf{I}=\left(g_{i j}\right)$,

$$
g_{i j}=X_{i} \bullet X_{j}, \quad i, j=1,2
$$

where \bullet is the inner product in \mathbf{R}^{3}. The second fundamental form $\mathbf{I I}=\left(h_{i j}\right)$ is given by

$$
h_{i j}=X_{i j} \bullet N, \quad i, j=1,2,
$$

where

$$
N=\frac{X_{1} \wedge X_{2}}{\left|X_{1} \wedge X_{2}\right|}
$$

is the unit normal vector, \wedge is the cross product in \mathbf{R}^{3}, and of course

$$
X_{i j}=\frac{\partial^{2} X}{\partial u^{i} \partial u^{j}}
$$

Remember that the mean curvature is defined as

$$
H:=\frac{1}{2} \operatorname{trace}\left[(\mathbf{I I}) \mathbf{I}^{-1}\right]=\frac{1}{2} h_{i j} g^{i j}
$$

where we write $\mathbf{I}^{-1}=\left(g^{i j}\right)$.

Definition 1 The surface $X: \Omega \hookrightarrow \mathbf{R}^{3}$ is a minimal surface if $H \equiv 0$.

Let $G=\operatorname{det} \mathbf{I}$. Recall that the Laplacian on (Ω, \mathbf{I}) is defined as

$$
\triangle_{\mathrm{I}}:=\frac{1}{\sqrt{G}} \frac{\partial}{\partial u^{i}}\left(g^{i j} \sqrt{G} \frac{\partial}{\partial u^{j}}\right) .
$$

We want to show that X is minimal if and only if $\triangle_{\mathbf{I}} X=\overrightarrow{0}$, i.e., if and only if each component of X is a harmonic function in the metric \mathbf{I}.

Let us first recall that from the Gauss equation we have

$$
X_{i j}=\Gamma_{i j}^{k} X_{k}+h_{i j} N
$$

where

$$
\Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\frac{\partial g_{i l}}{\partial u^{j}}+\frac{\partial g_{j l}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{l}}\right) .
$$

We calculate

$$
\begin{aligned}
\triangle_{\mathbf{I}} X & =\frac{1}{\sqrt{G}} \frac{\partial}{\partial u^{i}}\left(g^{i j} \sqrt{G} X_{j}\right) \\
& =g^{i j} X_{i j}+\frac{\partial g^{i j}}{\partial u^{i}} X_{j}+\frac{1}{\sqrt{G}} \frac{\partial \sqrt{G}}{\partial u^{i}} g^{i j} X_{j} \\
& =g^{i j} X_{i j}+\frac{\partial g^{i j}}{\partial u^{i}} X_{j}+\frac{1}{2 G} \frac{\partial G}{\partial u^{i}} g^{i j} X_{j} .
\end{aligned}
$$

Now we have an identity

$$
\frac{1}{G} \frac{\partial G}{\partial u^{i}}=\operatorname{trace}\left(\mathbf{I}^{-1} \frac{\partial \mathbb{I}}{\partial u^{i}}\right)=g^{k l} \frac{\partial g_{k l}}{\partial u^{i}} .
$$

Thus we have

$$
\triangle_{\mathbf{I}} X=g^{i j} X_{i j}+\frac{\partial g^{i j}}{\partial u^{i}} X_{j}+\frac{1}{2} g^{i j} g^{k l} \frac{\partial g_{k l}}{\partial u^{i}} X_{j}
$$

We claim that $\triangle_{\mathbf{I}} X$ is perpendicular to the tagent planes, i.e, planes generated by $\left(X_{1}, X_{2}\right)$. In fact, since $g_{i j} g^{j k}=\delta_{i k}$, we have

$$
\begin{aligned}
\triangle_{\mathbf{I}} X \bullet X_{m} & =g^{i j} X_{i j} \bullet X_{m}+\frac{\partial g^{i j}}{\partial u^{i}} X_{j} \bullet X_{m}+\frac{1}{2} g^{i j} g^{k l} \frac{\partial g_{k l}}{\partial u^{i}} X_{j} \bullet X_{m} \\
& =g^{i j} \Gamma_{i j}^{k} g_{k m}+\frac{\partial g^{i j}}{\partial u^{i}} g_{j m}+\frac{1}{2} g^{i j} g^{k l} \frac{\partial g_{k l}}{\partial u^{i}} g_{j m}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} g^{i j} g_{k m} g^{k l}\left(\frac{\partial g_{i l}}{\partial u^{j}}+\frac{\partial g_{j l}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{l}}\right)-g^{i j} \frac{\partial g_{j m}}{\partial u^{i}}+\frac{1}{2} g^{k l} \frac{\partial g_{k l}}{\partial u^{m}} \\
& =\frac{1}{2} g^{i j}\left(\frac{\partial g_{i m}}{\partial u^{j}}+\frac{\partial g_{j m}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{m}}\right)-g^{i j} \frac{\partial g_{j m}}{\partial u^{i}}+\frac{1}{2} g^{i j} \frac{\partial g_{i j}}{\partial u^{m}} \\
& =0 .
\end{aligned}
$$

Thus $\triangle_{\mathbf{I}} X$ is in the direction of N, and

$$
\triangle_{\mathbf{I}} X=\left(\triangle_{\mathbf{I}} X \bullet N\right) N=\left(g^{i j} X_{i j} \bullet N\right) N=\left(g^{i j} h_{i j}\right) N=2 H N .
$$

Since $N \neq \overrightarrow{0}$, we see that $\triangle_{\mathbf{I}} X \equiv \overrightarrow{0}$ if and only if $H \equiv 0$.
One important feature of 2-dimensional surfaces is the existence of isothermal coordinates, i.e, coordinates $\left(u^{1}, u^{2}\right)$ such that

$$
\left|X_{1}\right|=\left|X_{2}\right|=\Lambda>0, \quad \text { and } \quad X_{1} \bullet X_{2}=0
$$

Under this coordinate system, X is called conformal.
A classical theorem says that for any $C^{2} X: \Omega \hookrightarrow \mathbf{R}^{n}$, we can always (by changing coordinate) find a good coordinate system (isothermal coordinates) such that X is conformal. Interested readers can see [1] for an elementary proof. From now on, we will assume all surfaces are conformal.

Under the isothermal coordinates, the metric I is very imp

$$
g_{i j}=\Lambda^{2} \delta_{i j}, \quad g^{i j}=\Lambda^{-2} \delta_{i j}, \quad \text { and } G=\Lambda^{4}
$$

Let

$$
\triangle=\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}
$$

be the usual Laplacian, we can check that

$$
\triangle_{\mathbf{I}}=\Lambda^{-2} \triangle .
$$

Thus we can also define that $X: \Omega \hookrightarrow \mathbf{R}^{3}$ is minimal if and only if X is conformal and $\triangle X=0$.

This definition has an advantage that since each component of X is a harmonic function, and hence is locally the real part of some holomorphic function, we can use the rich theory of holomorphic functions.

Let us take this advantage. We write $z=u+i v=u_{1}+i u_{2}$ and

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial u}-i \frac{\partial}{\partial v}\right), \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right)
$$

We can define a complex mapping

$$
\phi:=X_{1}-i X_{2}=2 \frac{\partial X}{\partial z}=2 \frac{\partial}{\partial z}\left(X^{1}, X^{2}, X^{3}\right)
$$

We can calculate that

$$
\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=\left|X_{1}\right|^{2}-\left|X_{2}\right|^{2}-2 i X_{1} \bullet X_{2}
$$

Thus X is conformal if and only if

$$
\begin{equation*}
\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=0 . \tag{1}
\end{equation*}
$$

Recall that a complex valued function f is holomorphic if and only if $\partial f / \partial \bar{z}=0$. If X is minimal, then

$$
\frac{\partial \phi}{\partial \bar{z}}=2 \frac{\partial^{2} X}{\partial \bar{z} \partial z}=\frac{1}{2} \triangle X=0
$$

On the other hand, if a conformal mapping X satisfies

$$
\begin{equation*}
\frac{\partial \phi}{\partial \bar{z}}=0 \tag{2}
\end{equation*}
$$

then we know that $\triangle X=0$ and X is minimal.
Moreover, we can recovery the mapping X from ϕ, that is

$$
X(z)=X\left(z_{0}\right)+\Re \int_{z_{0}}^{z} \phi(\zeta) d \zeta
$$

where \Re means the real part. The integral on the right hand side is independent of path, since X is well defined.

We can further analyse the holomorphic mapping ϕ. We can rewrite (1) as

$$
\left(\phi_{1}+i \phi_{2}\right)\left(\phi_{1}-i \phi_{2}\right)=-\phi_{3}^{2}
$$

If $\phi_{3} \equiv 0$, then clearly $X(\Omega)$ is contained in a plane. After a rotation, we can assume that $\phi_{3} \not \equiv 0$. Let

$$
g=\frac{\phi_{3}}{\phi_{1}-i \phi_{2}} \not \equiv 0, \quad f=\phi_{1}-i \phi_{2}
$$

Then

$$
g^{2}=\frac{\phi_{3}^{2}}{\left(\phi_{1}-i \phi_{2}\right)^{2}}=-\frac{\phi_{1}+i \phi_{2}}{\phi_{1}-i \phi_{2}} .
$$

A little calculation shows that

$$
\begin{equation*}
\phi_{1}=\frac{1}{2} f\left(1-g^{2}\right), \quad \phi_{2}=\frac{i}{2} f\left(1+g^{2}\right), \quad \phi_{3}=f g . \tag{3}
\end{equation*}
$$

Note that f and g are both holomorphic functions. Thus we conclude that a minimal surface is given by a pair of holomorphic functions f and g by

$$
\begin{equation*}
X(z)=X\left(z_{0}\right)+\int_{z_{0}}^{z}\left(\frac{1}{2} f\left(1-g^{2}\right), \frac{i}{2} f\left(1+g^{2}\right), f g\right)(\zeta) d \zeta \tag{4}
\end{equation*}
$$

Equation (4) is called the Enneper-Weierstrass Representation of the minimal surface $X: \Omega \hookrightarrow \mathbf{R}^{3}$, the functions g and f are called the Enneper-Weierstrass data of X.

We will give the geometric data, such as the Gauss map, the first and second fundamental forms, the principal and Gauss curvatures, etc., of a minimal surface via its Enneper-Weierstrass representation.

One important fact is that the meromorphic function g in the Enneper-Weierstrass representation corresponds to the Gauss map N. For this we first recall that the Gauss $\operatorname{map} N: M \rightarrow S^{2}$ of an immersion $X: M \hookrightarrow \mathbf{R}^{3}$ is defined as

$$
N=\left|X_{u} \wedge X_{v}\right|^{-1}\left(X_{u} \wedge X_{v}\right): M \rightarrow S^{2}
$$

Let $\tau: S^{2}-\{\mathcal{N}\} \rightarrow \mathbf{C}$ be stereographic projection, where \mathcal{N} is the north pole. Then

$$
\tau(x, y, z)=\frac{x+i y}{1-z}, \quad \tau^{-1}(w)=\frac{1}{1+|w|^{2}}\left(2 \Re w, 2 \Im w,|w|^{2}-1\right)
$$

where \Re and \Im are the real and imaginary parts. We claim that

$$
g=\tau \circ N: M \rightarrow \mathbf{C}
$$

In fact,

$$
\tau^{-1} \circ g=\frac{1}{1+|g|^{2}}\left(2 \Re g, \quad 2 \Im g, \quad|g|^{2}-1\right)
$$

By $\phi=X_{1}-i X_{2}$ and (3)

$$
\begin{aligned}
& X_{u}=\Re\left(\frac{1}{2} f\left(1-g^{2}\right), \quad \frac{i}{2} f\left(1+g^{2}\right), \quad f g\right) \\
& X_{v}=-\Im\left(\frac{1}{2} f\left(1-g^{2}\right), \quad \frac{i}{2} f\left(1+g^{2}\right), \quad f g\right),
\end{aligned}
$$

thus

$$
\begin{gathered}
X_{u} \wedge X_{v}=\left(\begin{array}{c}
-\Re \frac{i}{2} f\left(1+g^{2}\right) \Im f g+\Re f g \Im \frac{i}{2} f\left(1+g^{2}\right) \\
\Re \frac{1}{2} f\left(1-g^{2}\right) \Im f g-\Re f g \Im \frac{1}{2} f\left(1-g^{2}\right) \\
-\Re f\left(1-g^{2}\right) \Im \frac{i}{4} f\left(1+g^{2}\right)+\Re \frac{i}{4} f\left(1+g^{2}\right) \Im f\left(1-g^{2}\right)
\end{array}\right) \\
=\left(\begin{array}{c}
\Im\left[\frac{i}{2} f\left(1+g^{2}\right) \overline{f g}\right] \\
\Im\left[\frac{1}{2} \overline{f\left(1-g^{2}\right)} f g\right] \\
\Im\left[\frac{-i}{4} \overline{f\left(1+g^{2}\right)} f\left(1-g^{2}\right)\right]
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2}|f|^{2} \Re\left(\bar{g}+|g|^{2} g\right) \\
\frac{1}{2}|f|^{2} \Im\left(g-|g|^{2} \bar{g}\right) \\
\frac{1}{4}|f|^{2} \Re\left(|g|^{4}-1-\bar{g}^{2}+g^{2}\right)
\end{array}\right) \\
=\frac{|f|^{2}\left(1+|g|^{2}\right)^{2}}{4\left(1+|g|^{2}\right)}\left(\begin{array}{c}
2 \Re g \\
2 \Im g \\
|g|^{2}-1
\end{array}\right)=\frac{1}{4}|f|^{2}\left(1+|g|^{2}\right)^{2} \tau^{-1} \circ g .
\end{gathered}
$$

Since X is conformal, the first fundamental form is given by $g_{12}=0$ and

$$
\begin{equation*}
g_{11}=g_{22}=\Lambda^{2}=\left|X_{u}\right|\left|X_{v}\right|=\left|X_{u} \wedge X_{v}\right|=\frac{1}{4}|f|^{2}\left(1+|g|^{2}\right)^{2} \tag{5}
\end{equation*}
$$

where the last equality comes from $\left|\tau^{-1} \circ g\right|=1$. Thus

$$
\begin{equation*}
N=\left|X_{u} \wedge X_{v}\right|^{-1}\left(X_{u} \wedge X_{v}\right)=\frac{1}{1+|g|^{2}}\left(2 \Re g, 2 \Im g,|g|^{2}-1\right)=\tau^{-1} \circ g \tag{6}
\end{equation*}
$$

as we claimed.
Later we will also call the function $g=\tau \circ N$ the Gauss map of the immersion $X: M \hookrightarrow \mathbf{R}^{3}$. We have seen that if X is a minimal surface then g is a meromorphic function. The converse is also true, i.e., X is minimal if and only if $g=\tau \circ N$ is meromorphic. For a proof, the readers can confer [4], pages 107-110.

We can also calculate the second fundamental form of X via the Enneper-Weierstrass representation. Recall that

$$
X_{1}-i X_{2}=X_{u}-i X_{v}=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)
$$

are holomorphic functions of $z=u+i v$. Hence

$$
X_{11}-i X_{12}=X_{u u}-i X_{u v}=\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right)
$$

Because X is harmonic, the data of the second fundamental form then must be

$$
\begin{gathered}
h_{11}=X_{11} \bullet N=\Re\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right) \bullet N, \quad h_{22}=-h_{11} \\
h_{12}=X_{12} \bullet N=-\Im\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right) \bullet N .
\end{gathered}
$$

By (3),

$$
\begin{aligned}
X_{11} \bullet N= & \Re\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}\right) \bullet N \\
= & \Re\left[\left(\frac{1}{2} f^{\prime}\left(1-g^{2}\right), \frac{i}{2} f^{\prime}\left(1+g^{2}\right), f^{\prime} g\right)+\left(-f g g^{\prime}, i f g g^{\prime}, f g^{\prime}\right)\right] \bullet N \\
= & \frac{1}{1+|g|^{2}}\left(\Re f^{\prime}\left(1-g^{2}\right) \Re g-\Im f^{\prime}\left(1+g^{2}\right) \Im g+\Re f^{\prime} g\left(|g|^{2}-1\right)\right. \\
& \left.-2 \Re f g g^{\prime} \Re g-2 \Im f g g^{\prime} \Im g+\Re f g^{\prime}\left(|g|^{2}-1\right)\right) \\
= & \frac{1}{1+|g|^{2}}\left(\Re f^{\prime} \Re g-\Re f^{\prime} g^{2} \Re g-\Im f^{\prime} \Im g-\Im f^{\prime} g^{2} \Im g\right. \\
& \left.+\Re f^{\prime} g\left(|g|^{2}-1\right)-2 \Re f g g^{\prime} \bar{g}+\Re f g^{\prime}\left(|g|^{2}-1\right)\right) \\
= & \frac{1}{1+|g|^{2}}\left(\Re f^{\prime} g-\Re f^{\prime} g^{2} \bar{g}+\Re f^{\prime} g\left(|g|^{2}-1\right)-2|g|^{2} \Re f g^{\prime}+\Re f g^{\prime}\left(|g|^{2}-1\right)\right) \\
= & \frac{1}{1+|g|^{2}}\left(-\Re f g^{\prime}\left(|g|^{2}+1\right)\right)=-\Re f g^{\prime} .
\end{aligned}
$$

Similarly, we have $h_{12}=\Im f g^{\prime}$. From these we see that for a minimal surface,

$$
\begin{equation*}
h_{11}-i h_{12}=-f g^{\prime} \tag{7}
\end{equation*}
$$

is a holomorphic function.
Again let $d z=d u+i d v$ and $(d z)^{2}=(d u)^{2}-(d v)^{2}+2 i d u d v$. The second fundamental form of X can be written as

$$
h_{11}(d u)^{2}+2 h_{12} d u d v+h_{22}(d v)^{2}=-\Re\left(f g^{\prime}\right)\left((d u)^{2}-(d v)^{2}\right)+2 \Im\left(f g^{\prime}\right) d u d v
$$

$$
=-\Re\left(f g^{\prime}\right) \Re(d z)^{2}+\Im\left(f g^{\prime}\right) \Im(d z)^{2}=-\Re\left(f g^{\prime}(d z)^{2}\right)=-\Re(f d g d z) .
$$

Let $V \in T_{p} M$ be a unit tangent vector and write $V=\Lambda^{-1}(\cos \theta, \sin \theta)=\Lambda^{-1} e^{i \theta}$ in complex form; then

$$
\mathbf{I I}(V, V)=-\Lambda^{-2} \Re\left(f g^{\prime} e^{2 i \theta}\right)
$$

by the previous formulae. Thus the two principal curvatures (eigenvalues of the second fundamental form II) are

$$
\begin{gather*}
\kappa_{1}=\max _{0 \leq \theta \leq 2 \pi}-\Lambda^{-2} \Re\left(f g^{\prime} e^{2 i \theta}\right)=\Lambda^{-2}\left|f g^{\prime}\right|=\frac{4\left|g^{\prime}\right|}{|f|\left(1+|g|^{2}\right)^{2}}, \tag{8}\\
\kappa_{2}=\min _{0 \leq \theta \leq 2 \pi}-\Lambda^{-2} \Re\left(f g^{\prime} e^{2 i \theta}\right)=-\Lambda^{-2}\left|f g^{\prime}\right|=-\frac{4\left|g^{\prime}\right|}{|f|\left(1+|g|^{2}\right)^{2}} . \tag{9}
\end{gather*}
$$

Then from $K=\kappa_{1} \kappa_{2}$ we get

$$
\begin{equation*}
K=-\left[\frac{4\left|g^{\prime}\right|}{|f|\left(1+|g|^{2}\right)^{2}}\right]^{2} \tag{10}
\end{equation*}
$$

Now let $r(t)=r_{1}(t)+i r_{2}(t)$ be a curve on M and $r^{\prime}(t)=r_{1}^{\prime}(t)+i r_{2}^{\prime}(t)$; then

$$
\begin{align*}
\mathbb{I I}\left(r^{\prime}(t), r^{\prime}(t)\right) & =-\Re\left\{f[r(t)] g^{\prime}\left[(r(t)]\left[r^{\prime}(t)\right]^{2}\right\}(d t)^{2}\right. \\
& =-\Re\{d[g(r(t)] f[r(t)] d r(t)\} \tag{11}
\end{align*}
$$

Remember that a regular curve r is an asymptotic line on a surface M if $\mathbf{I I}\left(r^{\prime}(t), r^{\prime}(t)\right) \equiv$ 0 ; a curve r is a curvature line if and only if $r^{\prime}(t)$ is in a principal direction, if and only if $\left|r^{\prime}(t)\right|^{-2} \mathbf{I I}\left(r^{\prime}(t), r^{\prime}(t)\right)$ takes either maximum or minimum value of $\mathbb{I}(v, v)$ for all unit tangent vectors in $T_{r(t)} M$. We have the following criteria:

1. A regular curve r is an asymptotic line if and only if $f[r(t)] g^{\prime}[r(t)]\left[r^{\prime}(t)\right]^{2} \in i \mathbf{R}$.
2. A regular curve r is a curvature line if and only if $f[r(t)] g^{\prime}[r(t)]\left[r^{\prime}(t)\right]^{2} \in \mathbb{R}$. The last assertion comes from the fact that $-\Re\left\{f[r(t)] g^{\prime}\left([(t)]\left[r^{\prime}(t)\right]^{2}\right\}\right.$ achieves its maximum or minimum for all directions v at $r(t)$ only if $f[r(t)] g^{\prime}[r(t)]\left[r^{\prime}(t)\right]^{2}$ is real.

Finally, we should mention that if Ω is a two-dimensional manifold instead of a plane domain, then the holomorphic mapping ϕ is no longer well defined, but the 1 -form

$$
\omega=\phi d z
$$

is. In this case we get

$$
g=\frac{\omega_{3}}{\omega_{1}-i \omega_{2}}
$$

a meromorphic function and

$$
\eta=\omega_{1}-i \omega_{2}
$$

a meromorphic 1-form, the Enneper-Weierstrass of X is given by

$$
\begin{equation*}
X(p)=X\left(p_{0}\right)+\Re \int_{p_{0}}^{p} \omega \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{1}=\frac{1}{2}\left(1-g^{2}\right) \eta, \quad \omega_{2}=\frac{i}{2}\left(1+g^{2}\right) \eta, \quad \omega_{3}=g \eta \tag{13}
\end{equation*}
$$

On the other hand, if we have a meromorphic function g and a meromorphic 1-form η, we can get a minimal surface by (12) if

$$
\begin{equation*}
\Re \int_{C} \omega=\overrightarrow{0} \tag{14}
\end{equation*}
$$

for any loop C in Ω. Thus although locally any pair of g and η gives a minimal surface, if we want the surface is globally well defined, g and η have to match each other well such that (14) is satisfied.

We call g and η as the Enneper-Weierstrass data of X and (12) the EnneperWeierstrass representation of X.

Now let us give some examples of minimal surfaces. We only give the EnneperWeierstrass data.

1. Catenoid:

$\Omega=\mathbf{C}-\{0\}, g(z)=z, \eta=d z / z^{2}$.
2. Helicoid:
$\Omega=\mathbf{C}, g(z)=e^{z}, \eta=e^{-z} d z$.
3. Enneper's Surface:
$\Omega=\mathbf{C}, g(z)=z, \eta=d z$.

4. Hoffman-Meeks' Surfaces:

Genus 2 Hoffman-Meeks Surface

These surfaces were discovered in 1985. Let

$$
\overline{M_{k}}:=\left\{(z, w) \in(\mathbf{C} \cup\{\infty\})^{2} \mid w^{k+1}=z^{k}\left(z^{2}-1\right)\right\} .
$$

$\overline{M_{k}}$ is a genus k Riemann surface, roughly speaking, a sphere with k handles and a special complex structure. Let

$$
p_{0}=(0,0), \quad p_{-1}=(-1,0), \quad p_{1}=(1,0), \quad p_{\infty}=(\infty, \infty) \in \overline{M_{k}} .
$$

The surfaces we will consider are defined on

$$
\Omega_{k}:=\overline{M_{k}}-\left\{p_{-1}, p_{1}, p_{\infty}\right\}
$$

and

$$
g=\frac{c_{k}}{w}, \quad \eta=\left(\frac{z}{w}\right)^{k} d z=\frac{w}{z^{2}-1} d z .
$$

It has been proved in [3] that for each integer $k>0$, there is a unique $c_{k}>0$ such that (14) is satisfied. The procedure of looking for c_{k} to satisfy (14) is called "killing periods".

For further readings in the theory of classical minimal surfaces in \mathbb{R}^{3}, we recommend [5], [2], and [4].

References

[1] S. S. Chern. An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771-82 (1955)
[2] U. Dierkes, S. Hildebrandt, A. Küster, and O. Wohlrab. Minimal Surfaces, Vol. I \& II. Grundlehren der mathematischen Wissenschaften 295, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest 1992
[3] D. Hoffman and W. Meeks III. Properly embedded minimal surfaces of finite topology. Ann. Math. (2)131, 1-34 (1990)
[4] H. B. Lawson, Jr. Lectures on Minimal Submanifolds. Publish or Perish Press, Berkeley 1971
[5] R. Osserman. A Survey of Minimal Surfaces. Dover Publications, Inc. New York 1986

