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In this note all surfaces are reqular parametrised surfaces, i.e., let @ C R? be a
domain and (u!,u?) be coordinates of R?, then a surface is a smooth mapping X :Q <
R3 such that

0X 0X

X1 = % and X2 = ﬁ

are linear indepnedent on 2. The induced metric on §2 by X is given by the first

fundamental form I = (gi;),
gij:Xi.Xja i,j=1,2,
where e is the inner product in R®. The second fundamental form II = (h;;) is given by

hij:Xij.N> iaj=132:

where
X1 N X
N = 21 2
| X1 A Xo|
is the unit normal vector, A is the cross product in R3, and of course
. 02X
97 guidui’

Remember that the mean curvature is defined as
1 1 1 Y
H .= —2—trace [(II)I ] = Ehijg I,

where we write I7! = (¢¥).
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Definition 1 The surface X :Q < R3 is a minimal surface if H = 0.

Let G = detI. Recall that the Laplacian on (£, I) is defined as

1 0 y 0
- /G- .
Br VG out <g Gauj)

We want to show that X is minimal if and only if A X =0, i.e., if and only if each

component of X is a harmonic function in the metric I.

Let us first recall that from the Gauss equation we have
Xij =5 Xi + hisN,

where
1 Oga |, 99  0gij
k1 i it 9955
T 29 (8uj+ out  oul )’

We calculate

NX = (”\/_X)

Ve
ij
— 'LJX” + =2 ag X \/1_88\1/”— 1-]X
Bg” 1 0G

g
2wt ogaad X

= g%+

Now we have an identity

g— trace (I—la—l.) = g“%‘

G ou’ ou?

Thus we have

ij 3 gk
— AU Y.. 1.] kl
VAND. ¢ gXZJ-I-azX+2 9" g N

We claim that A;X is perpendicular to the tagent planes, i.e, planes generated by

(X1, X2). In fact, since g;;g’% = 6;,, we have

. ij
AXe Xy = g”Xij.Xm—*"?g—X X, + = Hgklagle X

out 2 out
dg" i KOGkt
= 'LJF”gkm oui =5 9im + 2 J out - . 9im
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2 ouw  Ou  Ou out 2g oum

_ 1 89@ 391'@ _ 995\ _ ijagjjn +l ii 99ij
ou? out ou™ out 27 oum

= lgijgkm K (—8—@ 995t _ 3g,~j) _ ,i199im +1 xt Okl

29
= 0.

Thus A1 X is in the direction of N, and
ArX = (A1 XeN)N = (¢¥ X;je N)N = (g”h;;)N = 2HN.

Since N # 0, we see that A;X = 0 if and only if H = 0.
One important feature of 2-dimensional surfaces is the existence of isothermal coor-

dinates, i.e, coordinates (u!,u?) such that
!Xll = I.Xgl —_—A>O, and X10X2=0.

Under this coordinate system, X is called conformal.

A classical theorem says that for any C? X :Q < R™, we can always (by changing
coordinate) find a good coordinate system (isothermal coordinates) such that X is
conformal. Interested readers can see [1] for an elementary proof. From now on, we will
assume all surfaces are conformal.

Under the isothermal coordinates, the metric I is very imp
gi; = N85, 99 = A7%5;;, and G = A%

Let
9?2 9%
o2 T oul

be the usual Laplacian, we can check that

A =

AI=A—2A.

Thus we can also define that X :Q < R? is minimal if and only if X is conformal and

AX =0.
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This definition has an advantage that since each component of X is a harmonic
function, and hence is locally the real part of some holomorphic function, we can use
the rich theory of holomorphic functions.

Let us take this advantage. We write 2 = u+tv = u; + tus and

o _1(o6 ,0) 90 _1(0 .0
9z 2\ou ‘dv)’ oz 2\6u ‘ow)-

We can define a complex mapping

. o X0 1 o s
¢.:X1—2X2—2—8—;-2£(X,X,X).

We can calculate that

O+ 85+ 05 = | X1|* — | Xa|* — 20 X 0 X,
Thus X is conformal if and only if
(1) ' G2+ ¢2+ ¢ =0.

Recall that a complex valued function f is holomorphic if and only if 8f/0z = 0. If X

is minimal, then

10 02X 1
5~ 2m0, 20X =0
On the other hand, if a conformal mapping X satisfies
o

then we know that AX = 0 and X is minimal.

Moreover, we can recovery the mapping X from ¢, that is

X(2) = X(z) + % [ 6(0)dc,

where R means the real part. The integral on the right hand side is independent of
path, since X is well defined.

We can further analyse the holomorphic mapping ¢. We can rewrite (1) as

(61 + i) (1 — i) = —¢2.
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If ¢35 = 0, then clearly X () is contained in a plane. After a rotation, we can assume

that ¢3 # 0. Let
93

= ith #0, f=d1—ids

9=

Then
&= 3 __htig
(1 — i ¢a)? b1 —igs

A little calculation shows that

(3) =37 (1-0), =37 (1+5), o= "o

Note that f and g are both holomorphic functions. Thus we conclude that a minimal

surface is given by a pair of holomorphic functions f and g by

) X() = XGeo) + [ (370 - ) 350+, f9) (O)dc

Equation (4) is called the Enneper- Weierstrass Representation of the minimal surface
X :Q < R3, the functions g and f are called the Enneper- Weierstrass data of X.

We will give the geometric data, such as the Gauss map, the first and second fun-
damental forms, the principal and Gauss curvatures, etc., of a minimal surface via its
Enneper-Weierstrass representation.

One important fact is that the meromorphic function g in the Enneper-Weierstrass
representation corresponds to the Gauss map N. For this we first recall that the Gauss

map N:M — S? of an immersion X : M < R? is defined as
N =X A X' (XuAX,) : M — S2

Let 7 : S2—{N'} — C be stereographic projection, where A is the north pole. Then

T+ 1y “1(y) = 1

T(ﬂ%y,z) = 1— 2’ 1+| |2(2§RU) 2\3“11}, ‘wlz_l)v
where R and < are the real and imaginary parts. We claim that

g=T1oN: M — C.
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In fact,

1
“log = ———(2Rg, 299, [g[>—1).
T og 1+|g|2( 9, 239, |g*—1)

By ¢ = X; — 1 X5 and (3)

X, = ,9‘%( f1=4g%, %f(1+92), fg>,

X, = -S <%f(1—92), %f(1+92), fg>,

DO | =

thus ) )
—REF(L+gH)Sfg+RfgSEf(1+¢°)

“Rf(L =¢S5 f(1+0%) + REF(1+¢7)Sf(1 - 67)

S[3f(1+g°)fg] - SIFPR@+ 19lg)
=|  SE/AT-g)d = L£1PS(s — loP9)
S[FFA+ (- 07 HFPR(glt - 1=+ ¢?)
_Palg (2N 1 e
AR (|g|22f,1)*4|f| (1+1gl) g

Since X is conformal, the first fundamental form is given by ¢g12 = 0 and
1

() g = g2 = A = [X||X| = [ Xu A Xo| = ZIfP(1+ g%,

where the last equality comes from |77 'og| = 1. Thus

6) N=|X AX|[TH(XAX,)= (2Rg, 289,19/ = 1) = 7oy,

1
T+l
as we claimed.

Later we will also call the function ¢ = 70N the Gauss map of the immersion
X :M — R3 We have seen that if X is a minimal surface then g is a meromorphic
function. The conversé is also true, i.e., X is minimal if and only if ¢ = 7o N is

meromorphic. For a proof, the readers can confer [4], pages 107-110.
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We can also calculate the second fundamental form of X via the Enneper-Weierstrass

representation. Recall that
X1 —iXy = Xy —i1X, = (¢1, b2, ¢3)
are holomorphic functions of z = u + v. Hence
X — 1 Xy = Xyy — 1 Xy = (d’lp ¢12> ¢§,)
Because X is harmonic, the data of the second fundamental form then must be
hiy = Xi1oN = R(¢}, és, ¢3)eN,  hay = —hyy,

hiz = XipeN = "g(ﬁblp ¢’27 ¢§)°N-

Xll.N = §R((ﬁllv ¢l27 ¢.{3).N

= #»[(3r0-¢.3

; SI(L+ %), 1'g) + (~fag' ifad, 1)) eV
1

= TT1F (Rf'(1 - g*)Rg — SF'(1+ )9 + Rf'g(lgl* — 1)

~2Rfgg'Rg — 25f99'Sg + Rfg (|9l — 1))
. 1 ! 1.2 ! 1.2
= 1577 (RIR9—RFGRg — 3f'S9 - 3f'g°Yg

+Rf'g(lg* — 1) — 2Rfg9'5 + Rfg'(l9* - 1))

1

= 178 (Rf'g — Rf'gF+RFg(g? = 1) — 2lg"Rfg + Rfg(Ig]* — 1))

1 , /
= g (Rl + 1) = —Rsg

Similarly, we have hijs = fg’. From these we see that for a minimal surface,
(7) hiy —ihig = —fg'

is a holomorphic function.
Again let dz = du+idv and (dz)? = (du)?—(dv)?+2i du dv. The second fundamental

form of X can be written as

hai(du)? + 2hig dudv + hoo(dv)? = —R(fg") ((du)? — (dv)?) + 23(fg’) du dv
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= —R(fg"R(d2)* + 3(fg)S(d2)* = —R(fg'(d2)?) = —R(f dg dz).
Let V € T,M be a unit tangent vector and write V = A~!(cosf,sinf) = A~'e? in

complex form; then

1L(V, V) = —A~R(fg/e™)

by the previous formulae. Thus the two principal curvatures (eigenvalues of the second

fundamental form II) are

_ : _ 4lg'|
— _ 2 1_210 = A 2 N W
(8) K1 Ogégﬂ A §R(fgve ) lf9| 10+ |g|2)2’
‘ _ ; _ 4lg'|
_ _ 2 1 _2i0 — 2 ! (LA E—
©) = o, ARG = A= e gy
Then from K = k1Ko we get
4¢| ]
10 K=—-|7r—""53| -
(10) [m(l +1gP)?

Now let r(t) = ri(t) +ira(t) be a curve on M and r'(t) = r{(t) + irj(t); then

I(r'(t),r'(t) = —R{f[r@]gIr@)] [ ()]} (dt)®
—R{d[g(r@®))f Ir(®)]dr(?)}-

(1)

Remember that a regular curve r is an asymptotic line on a surface M if I1(r'(¢),r'(t)) =
0; a curve r is a curvature line if and only if 7'(¢) is in a principal direction, if and only
if |7(2)|72I1(r'(t), 7'(t)) takes either maximum or minimum value of II(v,v) for all unit

tangent vectors in T,.(;)M. We have the following criteria:
1. A regular curve r is an asymptotic line if and only if f[r(¢)] ¢'[r(¢)] [7'(¢)]? € iR.
2. A regular curve 7 is a curvature line if and only if f[r(¢)] ¢'[r(¢)] [’ (¢)]> € R.

The last assertion comes from the fact that —R{f[r(¢)]¢'([(t)][r'(t)]*} achieves its max-
imum or minimum for all directions v at r(t) only if f[r(¢)]¢'[r(¢)][r'(¢)]? is real.
Finally, we should mention that if € is a two-dimensional manifold instead of a plane

domain, then the holomorphic mapping ¢ is no longer well defined, but the 1-form

w=¢dz
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is. In this case we get
w3

w1 — 7;(4}2
a meromorphic function and

N =w; —iwy

a meromorphic 1-form, the Enneper-Weierstrass of X is given by

P
(12) X(p) =X(po) + R | w,
Po
where
1 )
(13) wi==(1-¢")n, we==(14+¢"n, ws=gn.

2 2

On the other hand, if we have a meromorphic function g and a meromorphic 1-form

n, we can get a minimal surface by (12) if

(14) %sz@

for any loop C' in 2. Thus although locally any pair of g and 7 gives a minimal surface,
if we want the surface is globally well defined, g and n have to match each other well
such that (14) is satisfied.

We call g and 1 as the Enneper-Weierstrass data of X and (12) the Enneper-
Weierstrass representation of X.

Now let us give some examples of minimal surfaces. We only give the Enneper-
Weierstrass data.
1. Catenoid:

Q=C-{0}, g(2) = 2z, n = dz/2%.
2. Helicoid:

Q=0C, g(z) =¢*, n=¢e""dz.
3. Enneper’s Surface:

Q=0C, g(z) =2 n=dz.
4. Hoffman-Meeks’ Surfaces:
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Genus 2 Hoffman-Meeks Surface
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These surfaces were discovered in 1985. Let
My :={(z,w) € (CU{oo})? |w"t! = 2*(22 — 1)}.

My, is a genus k Riemann surface, roughly speaking, a sphere with & handles and a

special complex structure. Let

Po = (070)? b1 = (_170), = (1, O)a Doo = (O0,00) € —M—];
The surfaces we will consider are defined on

Qk = M - {p—hplapoo}?

and

. k
g=c—k, n=<i> dz = -2 dz.
Cw w 22 -1

It has been proved in [3] that for each integer k& > 0, there is a unique ¢; > 0 such
that (14) is satisfied. The procedure of looking for ¢ to satisfy (14) is called “killing
periods”.

For further readings in the theory of classical minimal surfaces in R?, we recommend

[5], [2], and [4].
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