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Travelling Wave Solutions for a Drying Problem 
Milos Ilic, School of Mathematics, QUT 

Abstract: A simple model for drying consisting of an infiltration type of partial 
differential equation is considered. Whereas the infiltration problem admits plane 
wave solutions with uniquely determined wave speed, the drying problem exhibits a 
much more complicated behaviour involving breaking up observed in the pendular 
state of drying. 

1. Introduction and Formulation: 
A simple model governing the drying of a porous material at a constant 
wet-bulb temperature is formulated by Ilic & Turner (1] in nondimensional 
form (with slight modification) as follows: 

as a { as } 
7ft= ax I<s(S) ax - I<g(S) ' 

I<s(S) = { aS3{f(S) + ; 2 }, 

o, 
I<g(S) = { _f3S3 ,. S > 0, 

0, s ~ 0, 

s > 0, 
s ~ 0, 

(1) 

where S is the moisture content (volume saturation: 0 ~ S ~ S0 < 1) 
and a and f3 are nondimensional constants which are determined by the 
properties of the porous material and the drying conditions [1]; f(S) = 
const.+const.e-40(l-S), these constants being positive. Here xis the vertical 
axis with positive direction downward and t is time. 

Equation ( 1) has the appearance of other convection-diffusion problems 
and in particular resembles the infiltration equation. A brief discussion of 
such equations and th(!ir nonnegative solutions with compact support can 
be found in Taylor [2]. Taylor discusses both the weak solution and the 
classical similarity solution. 

In this study we ask whether equation (1) admits travelling plane wave 
solutions on -oo < x < oo i.e. we seek solutions of the form 

S(x,t) = S(~), ~ = x- >.t, ).. > 0, (2) 
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which represents a plane wave travelling from left to right i.e. vertically 
downwards or 

S(x, t) = S(e), e =X+ >.t, ). > 0, (3) 

which represents a plane wave travelling from right to left i.e. vertically 
upwards. 
The boundary conditions appropriate to a drying problem are 

S( -oo) = 0, S(oo) = S0 , (4) 

and for the infiltration problem 

S( -oo) =So, S(oo) = 0, (5) 

where 0 < So < 1. In particular we are interested in the initial profiles of 
the form 

S(x, 0) = { 9~;), 
for the drying problem and 

S(x, 0) = { g(x ), 
0, 

-oo < x ~ 0, 
X> 0, 

-oo < x ~ 0, 
X> 0, 

(6) 

(7) 

for the infiltration problem. Naturally g(x) in (6) and (7) cannot be arbi
trarily specified but becomes a part of the solution. 
Note that these conditions and the equation are satisfied by the discontin
uous constant solution g( x) = 50 • 

2. Plane Waves Downwards: 
Consider the solution of (1) ofthe form (2). With a prime denoting differ
entiation with respect to C", equation (1) becomes 

->.S' = (KsS'- Kg)' 

which integrates to 
->.S = KsS'- Kg+ c1. 

The zero boundary condition at e = -oo (for drying) or e = oo (for infil
tration) gives c1 = 0. Thus 

dS Kg(S)- >.S 
= de Ks(S) 

This is a first order separable differential equation whose solution is 

i s Ks(s) ds
Kg(s)->.s =e+c2. (8) 
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If we take the initial profile in (6) or (7) we have 

[ 8 I<s(s)ds =e. 
lo I<9 (s)->.s 

Define 

F(S) 
[ 8 Ks(s)ds 

Jo K9 (s)- >.s 

-~ rs s 2{-! + f(s)}ds 
>. lo 1- ~s2 · 

>. 

(9) 

The numerator of the integrand is positive. The denominator vanishes 
when s = ~· Thvs the integrand is positive for 0 ::; s < ~and hence 

F(S) is monotone decreasing such that F(S) --+ -oo as s --+ ~· To 
fit the boundary condition (4) we must have lims_.s0 F(S) = oo which is 
impossible i.e. the drying problem does not admit plane wave solutions of 
the form (2). The boundary condition (5) is satisfied if we set So = ~i.e. 

>. = {3S~, 

which is the plane wave speed. F has an inverse p-l and the plane wave 
solution for the infiltration problem is 

S = { p-l(e) = p-l(x- At), e =X- At < 0 
o, e = x - >.t > o. (10) 

This solution is differentiable everywhere except e = 0 i.e. S = 0 which is 
a singular point and hence a possible branching point. 

To see the behaviour of these solutions, consider the case when f( s) = 0. 
In this case the explicit solution for S is 

which gives 

[I .jY:f1 
S= y~tanh{~e} 

S = { Sotanh{~:0(>.t- x)}, x- >.t < 0 
0, X - At 2:: 0. 

These profiles are shown in the following figure. 

(11) 



t =-0 

3. Plane Waves Upwards: 

s 
s. 
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t=:j 

Now consider the solution of (1) of the form (3). The only difference to the 
previous analysis is that (9) becomes 

Define 
G(S) =::: [s s 2 {~ + j(s)} ds. 

A lo 1 + f1.s2 
.\ 

G(S) is monotone increasing but finite for S finite being infinite only when 
S --7 oo. The inverse c-1 exists so that 

Since the physical range of S is 0 :::; S :::; So < 1, there exists ~o such that 

G(So) = ~o 

and the solution is 

e = x + ),.t so, 
0 :'S: e = X + At :'S: eo 
e = X + At > eo. 

(12) 

To see the behaviour of these solutions, consider the case when f( s) = 0. 
In this case the explicit solution for S is 

which gives 

M VAP 
S= V73tan{~e} 

S= f v1tan{\?(x+)lt)}, O:'S:x+At:'S:eo 
l So, X + ),.t > eo. 

The initial profile is plotted in the following diagram: 

s 

(13) 

A distinguishing feature of the solution (12) is that it is more fragile than 
the solution (10) in the following sense. The solution (12) is differentiable 
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everywhere with a singular point e = 0 i.e. s = 0 same as (10) but has 
an additional singular point when e = eo corresponding to S = So = local 
maximum of S. As the drying proceeds the maximum value decreases i.e. 
the singular point is not isolated but varies continuously. As is well known 
singularities act as points for branching i.e. jumping from one solution to 
a different one. For example at e = eo we have three possible solutions: 

S = a-1 (e) from (12), S =So, S = p-t(e) from (10) 

as shown in the following diagram 

5 

4. Combined Effect: 
The constant c2 in equation (8) was determined by the condition S(O) = 0. 
Suppose there is another point a such that S( a) = 0. We can imagine the 
region e < a as experiencing infiltration and e > a. as experiencing drying. 
A solution consistent with (11) and (13) is: 

{ 
.pjtan{'<§PO, 

S= So, 

fitanh{\?(a- en, 
where 

0 ::; e ::; eo, 
eo ::; e ::; 6, 
6 ::; e ::; a, 

In particular 6 = eo determines a. This solution can be extended periodi
cally by defining S(e +a)= S(e) which has the graph 

Of course there are many other possibilities; for example, one can have the 
above solution plus a finite interval containing a on which S = 0. 
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Both eo and 6 are singular points and therefore possible branching points. 
Sooner or later the combined effect of the upward and downward wave 
motion will break the moisture pocket 0 < e < a into two disconnected 
parts. This bizzare behaviour may seem physically unacceptable, existing 
only in the mathematician's imagination until one realizes that in the drying 
stage known as the pendular state, the moisture breaks up into disconnected 
regions. 

5. Conclusion: 
The simple model formulated in this study fits well our physical intuition for 
an infiltration problem. If the wetting front is defined as that point where 
S(x-, t) > 0 but S(x+, t) = 0, the speed of the front is uniquely as 
,\ = f3S5. Corresponding to this speed there is a unique initial profile which 
moves as a plane waye downwards. It was shown that such solutions do not 
exist for the drying problem. 

For the drying problem it seems that the plane wave is up
wards. For such problems the present simple model provides no relation to 
determine the wave speed A uniquely. This is to be expected as the 
motion of moisture comes from the temperature and pressure gradients. (In 
actual situation drying is accomplished heating the face x = One 
needs to consider the full drying a of 
parabolic partial differential equations for the moisture 5', the temperature 
T and pressure P. 

The main characteristic of these upward plane wave solutions is that they 
introduce a singular point where can occur continuously, allow
ing the combined upward and downward motions to break up the continu
ous moisture distribution into disconnected parts observed in the pendular 
state. 
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