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INDEFINITE INTEGRALS OF FUNCTIONS FROM LP(JR) 

BOLIS BASIT AND ALAN J. PRYDE 

ABSTRACT. In this paper we seek conditions under which the indefinite integrals of a function 
If' from LP (IP?.) belong to LP (IP?.) + C We prove that if the spectrum sp( If') of If' is isolated from 
zero, then it is improperly integrable for (1 ::; p < oo) and its indefinite integrals belong to 
LP(JP?.) + C Also, we give applications to the differential equation u 1(:I!) + >.u(:I!) = 'f'(re). 

§1. Introduction. Let <p E LP(JR) for some 1::; p::; oo and define 

(Ll) Pcp(x) = J: cp(t)dt, x E JR. 

We seek conditions under which Pep E LP(JR) +C. Similar problems have been studied 

extensively when ep belongs instead to certain classes of functions of almost periodic type. 

(See [1], [3], [4], [5], [7], [8], [10], [13], [16].) In particular, let AP(R) denote the Banach 

space of complex-valued almost periodic functions defined on IR. Bohl-Bohr [5, p.58] proved 

that if cp E AP(IR) and Pep is bounded then Pep E AP(!R). More generally, let X be a 

Banach space and AP(!R, X) the Banach space of X-valued almost periodic functions on IR. 

If cp E AP(iR, X) and Pep is bounded then P<p does not necessarily belong to AP(R, X). 

However, Kadets [10] showed that if X does not contain a subspace isomorphic to the 

Banach space c0 then again Pep E AP(R, X). 

Now let Cu.b(R, X) denote the space of uniformly continuous bounded functions from R 

to X, and recall that a function rp E Cub(R, X) is called ergodic if there exists a E X such 

that lllimT-.oo sup.,EJiRII 2~ J,:T(ep(t + x)- a] dtll = 0. Also let A be a closed translation 

invariant subspace of Cub(IR:, X). Basit [1] recently proved that if cp E A and if Prp 1s 
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bounded and ergodic, then Pep E A. This result is not true for A = L 1 (JR) +C. Indeed, 

consider the function defined by 

(1.2) ep(x) = x for lxl::; 1 and ep(x) = sig;:,("') for lxi > 1. 

Then ep E L 1 (JR) and Pep E C0 (JR) +C. In particular Pep is bounded and ergodic, yet 

Pep 9!- L 1 (JR)+ C. 

In this paper we consider functions r.p E LP(JR) and assumptions concerning 

by conditions on the spectrum of r.p in order to conclude Pr.p E LP(JR) +C. Spectra are 

defined in section 2 and the main result appears in section 3. In section 4 we discuss 

derivatives in place of indefinite integrals, and in section 5 we provide an application to 

differential equations. 

§2. Spectra. Following Reiter[14,p.83] we call a function 111 E 

on JR if 

(2.1) w(x) 2 1 for all x E JR, and 

(2.2) w(x + ::; w(x)w(y) for all x,y E JR. 

A weight function is symmetric if 

(2.3) w(x) = w( -x) for all x E JR. 

a weight function 

An important additional condition satisfied by many weights is the Beu.rling condition 

(2.4) I::=l log.:'f:..(;""') < oo for all x E JR. 

Given a weight w on lR we define 

(2 .. 5) L~1 (1R) = {f E (JR): llfll1,w = fm dx < oo}. 

Then L~(JR) is a subalgebni. of L 1 (JR) which is a Banach 

The Banach space dual of L~(JR) is 

under the norm 11-lb,w· 

(2.6) L::(JR) = {ep E L~c(JR): lllfllloo,w = esssup ,Em 1:t:~l < oo}. 

If w satisfies the Beurling condition, then the space of Fourier transforms j of functions 
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f E L~(IE.) is a Wiener algebra. See Reiter [14, p.132 and p.19 remark]. In particular: 

Lemma 2.1. Let w be a weight function on IE. satisfying the Beurling condition. Given a 

neighbourhood "V of a compact set Win R, there exists f E L~(IE.) such that j = 1 on W 

and supp j C V. 

If w is a symmetric weight function on IE., then for f E L~(JR) and rp E L:(IE.), the 

convolution 

(2.7) f*cp(x) = f~oof(x -t)cp(t)dt 

is defined for almost every x E IE. and lf*cp(x)J::::; w(;r;)JJJJJl,wiJcpJJoo,w, a.e. For such wand 

cp we define a dosed ideal of L;,(IE.) by 

(2.8) Iw(cp) = {f E L~(R): f* cp = 0, (a.e.) } 

and the w-spectrum of cp by 

(2.9) spw('P) = {>. E IE.:/(>..)= 0 for all f E Iw(cp)}. 

Since j E C0 (R) for each f E P(R), the VJ-spectrum spw(lf') is closed. For a list offurther 

properties, see [2]. 

We also require a notion of spectrum for functions rp E LP(JE.), 1 ::::; p::::; oo. For such rp, 

f * rp E LP(R) for all f E L 1 (IE.) ( see [9, corollary 20.14]) and hence we can define 

(2.10) I(cp) = {! E L 1 (R): f * rp = 0} 

and the spectrum of cp by 

(2.11) sp(rp) = {>. E R: /(>..) = 0 for all f E I(cp)}. 

Once again sp( rp) is a closed subset of R. 

Proposition 2.2. Let cp E LP(R) where 1 ::::; p::::; oo. 

(a) Iff E L1(R) then f * cp E LP(R) and sp(f * cp) C suppj n sp(cp). 

(b) sp(cp) = 0 if and only ifcp = 0. 

Proof. (a) By [9, corollary 20.14] we have f * cp E LP(R). Clearly l(cp) C I(f * cp) and so 
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sp(f * cp) C sp(cp). Finally, suppose>. E JR \ supp j. By lemma 2.1, with w = 1, there 

exists g E L1 (JR) such that iJ = 0 on a neighbourhood of supp j and g(>.) = 1. As gj = 0, 

so f * g = 0 and therefore g E I(J * cp). But g(>.) =/:- 0 so>. rf. sp(f * cp). 

(b) If cp = 0 then I( cp) = L1 (JR) and sp( cp) = 0. Conversely, if sp( cp) = 0 then f * cp=O for 

all f E L1 (JR). If p = 1, f = cp gives rp 2 = 0 and hence cp = 0. If 1 < p:::::; oo then f * cp = 0 

for all f E Gc(JR), the space of continuous functions on lR with compact support. Since 

Gc(lR) is dense in Lq(R), where 1/p + 1/q = 1, and the mapping f--+ f * cp is continuous 

from P(JR) to Go(JR), we conclude f * cp = 0 for all f E Lq(JR). So f~oo f(x- t)cp(t) dt = 0 

for all x E JR and f E Lq(JR). Taking x = 0 and applying the Hahn-Banach theorem we 

conclude that cp ::=:::: 0. 

Let S(JR) be the Schwartz space of rapidly decreasing infinitely differentiable complex­

valued functions on JR. Let S'(JR) be the dual space of tempered distributions. If cp E 

LP(JR), then Tcp(f) = Jlll. f(t)cp(t) dt for f E S(JR), defines a distribution Tcp E S'(JR). So 

Tcp(g) = Tcp(g) forgE S(R), defines the Fourier transform Tcp of Tcp. (See [17, p.146-152]). 

Proposition 2.3. Let cp E LP(JR) where 1:::::; p:::::; oo. Then sp(cp) = supp T'P. 

The proof is essentially the same as for [2, proposition 4.1] 

§3. Indefinite integrals. Let Gu(JR) and Gu&(R) denote respectively the spaces of uni­

formly continuous and uniformly continuous bounded functions on JR. To study indefinite 

integrals, we use the weight 

(3.1) w(x) = 1 +!xi, x E JR. 

It is readily seen that w is a symmetric weight function satisfying condition (2.4). 

Proposition 3.1. If cp E LP(R) where 1 :::::; p :::::; oo and w is given by (3.1), then Pep E 

G ... (JR) n L:'(R). Moreover, 

(3.2) sp(cp) C spw(Pcp) C sp(cp) U {0}. 
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Proof. If p = 1, it is well-known that Pr.p is absolutely continuous and hence uniformly 

. . • . . . . . ·. h. . 
contmuous. For atb1trary p, and x,h E lR, IPr.p(x +h)- Pr.p(x)l = lforp(x +t)dti S 

lhll-l/pii'PIIP showing that Pr.p'E_ Cu(R). Moreover, IPr.p(x )I = I J0"' r.p(t) dti S lxll-l/p llepllp, 

showing that Pr.p E L~(JR). For p = oo, (3.2) is given in [2, proposition 4.4]. The proof of 

(3.2) for oth.er p is essentially the same. 

Proposition 3.2. If r.p E LP(JR.) where 1 S p S oo and 0 9'. sp(r.p ), then Pep E Cub(R). 

Proof. Since 0 9'. sp( rp) there exists a neighbourhood V = [ -8, 5] such that spw( r.p) n V = 0. 

Let w(x) = 1 + lxl. By lemma 2.1 there is a function hE L~(R.) such that h = 1 for 1>..1 S 

8/4 and h = 0 for 1>..1 2:: 8/3. By proposition 2.2, h * ep = 0. Similarly, by [2, proposition 

3.12] and (3.2) SPw(h * Prp) c supp h n SPw(Prp) c {0}. Since d(h;:'f') = h * r.p = 0 for all 

x E JR, we conclude that h * Pep=c, a constant. If Tf = Pr.p- c then 0 9'. spw('IJ). Indeed, 

h * 17 = h * Pr.p- h * c = c- c = 0. Thus hE Iw(TJ) and h(O) = 1, showing 0 9'. spw(Tf). By 

proposition 3.1, 1J E Cu(R) and so by [2, theorem 9.5], 17 is bounded and so is Pr.p. This 

proves that Pep E Cub(R.). 

Proposition 3.3. Ifcp E LP(R.)n Cu(R) where 1 S p S oo, then cp E C0 (JR). 

Proof. Assume on the contrary that lim supt->oo lrp(t)l 2:: 3c > 0. Choose a sequence 

{ tn} C lR such thai tn+l > 2 + tn and I'P( tn) I 2:: 2c for all n E N. Since r.p is uniformly 

continuous, there eyjsts 0 < 6 < 1 such that lrp(t)l 2:: c whenever itn - tl S 6 for some 

n EN. Hence J~oo lcp(t)IP dt 2:: limn-.oo 2ncPfJ = oo, a contradiction. 

Theorem 3.4. If cp E LP(JR) where 1 ::::; p ::; oo and 0 9'. sp(cp), then a+ Pr.p E 

LP(JR'.) for some a E C. If moreover p < oo then cp is improperly integrable and a = 

Proof. For p = oo the result is contained in proposition 3.2. So assume 1 S p < oo. Let 
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ah(x) = Pep(x +h)- Pcp(x) = foh cp(x + t) dt = X-h * cp(x ), where X-h is the characteristic 

function of the interval [-h,O] if h ;?.: 0, [0,-h] if h < 0. As each ah E LP(JR), we may 

define the function a(h) = llahllp, h E ~. It is easy to verify that a is a continuous 

function on ~ satisfying the property a(h1 + h2 ) :::; a( hi) + a(h2 ) for all h1, h2 E JR. 

Therefore w(h) = 1 +a( h)+ a( -h), hE~ defines a symmetric weight function satisfying 

the Beurling condition (2.4). Choose 6 > 0 such that [-6,6] n sp(cp) = 0. By lemma 2.1, 

there exists f E L~(lR) such that }(>.) = 1 for 1>-1 S 8/4 and }(>.) = 0 for j>.j ;?.: 5/3. 

By proposition 3.2, Pep E Cub(~) and so f * Pcp is defined and also belongs to C-..b(JR). 

Moreover, d(J;:"') = f * cp = 0, so f *Pep= ...:..a where a E C. 

Next consider a+ Pep(x) = J_:"00 [Pcp(x)- Pcp(x- t)]f(t)dt = - J_:"'00 a-t(x)f(t)dt. 

We have l!a-tl!p = a( -t) :::; w(t) and since f E L~(~), wlfl E L 1 (:JR). The function 

t --> 1/;(t) = a_tf(t) : lR --> LP(~) is weakly measurable and its range is separable, as 

1 S p < oo. Hence 'if; is strongly measurable ([17, p.131]). As the function t --> 111/J(t)IIP 

is integrable, Bochner's theorem [17, p.l33] yields that 'if; is Lebesgue-Bochner integrable 

and its integral is an element of LP(JR). So a+ Pep E LP(JR). Finally, by proposition 3.3, 

a+ Pcp E LP(JR) n Cub(JR) C Co(lR). Hence limiT!-->oo foT cp(t) dt =-a. 

Corollary 3.5. Let cp E LP(JR). Then f * Pcp E LP(:JR) + C for each f E L1 (~) with 

0 rf. supp j = sp(f). 

Proof. By theorem 3.4 the function K f defined by K f ( x) = J~ 00 f ( t) dt, belongs to V (JR). 

By [9, corollary 20.14], we conclude cp * Kf E D'(JR). Since (f * Pr.p)' =' (Kf * r.py, there 

exists a E C such that f *Pep= a+ Kf * cp E D'(JR) +C. 

Remark 3.6. Let X be a Banach space and L 1 (JR,X) the space of LebesguecBochner 

integrable X -valued functions on JR. Define LP(:JR, X) similarly for 1 < p::; oo. Then sp( cp) 

for cp E LP(X,~) is again defined by (2.10) and (2.11). Theorem 3.4 remains true in this 
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'·: .. : 

§4. Derivatives. In this section we briefly consider derivatives in place of indefinite 

integrals. 

Theorem 4.1. Let cp E L1(JR.). If cp' E L 00 (lR) thep cp1 is improperly integrable, and if 

cp' E Cu.b(JR.) th~n Cfl 1 ,E Co{R). 

Proof. Of course cp(:z:) = cp(O) + j 0" cp'(t)dt. ,If cp' E ,L00 (1R) then cp E C ... b(JR.) and by 

proposition 3.3, cp E Co(lR). Hence limlzl-+oo f0" cp'(t) dt. = -cp(O). If ce'" E G'u.b(JR.), then 

n[cp(:z: + 1/n)- cp(:z:)] = n J:/n cp'(t + :z:) dt = cp'(:z: + 8/n) for som~ (} = B(:z:,n}, 0 < 8 < 1. 

Hence limlzl-+oo lcp'(:z:)l = 0. 

Remark 4.2. It can happen that cp E L1(JR.) and cp' E Cu.b(JR.) yet cp' rt L1(JR.). For 

example, let cp(:z:) = :E:'=4 n[(:z:..: n)2 -1/n]2gn(:z:), where 9n is the characteristic function 

of the interval In= [n -1/n112,n + 1/n112]. Then cp,cp' E C0(JR.) with cp E£1(~) and 

cp' rt £1 (JR.) 

§5. Application to a differentiai equ~tion. Consider the following differential 

equation. 

(5.l) u'(:z:) + >.u(:z:) = cp(:z:),:Z: E JR. 

Given >. E C and cp E LP(JR.) where 1 ::; p::; oo, we seek solutions u E LP(JR.). The general 

solution of (5.1) is 

where cis a constant. When 'R.e(>.)-:/= O,it is easy-to s~e that (5.l) has a unique solution 

u E LP (JR.) given by 

(5.3) u( :z:) = J::.oo e->.(z-t)cp(t) dt ;: 9>.* cp( :z:) if 'R.e(>.) > 0, 

(5.4) u{:z:) =- J.,00 e->.{:t-t)cp(t)dt ~ h;>.. * cp(':z:) if 'R.e(>.) < 0. 
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Here, g>.(x) = e->."'X+(x) and h>.(x) = -e->."'(1- X+(x)) where X+ is the characteristic 

function of the interval [0, oo[. The case Re(>.) = 0 is more delicate. 

Theorem 5.1. Suppose Re(.\) = 0, r.p E LP(IR) and i.\ tJ_ sp(r.p ). If 1 :::;; p < oo then (5.1) 

has a unique solution u E LP(JR) given by 

(5.5) u(x) = limr_,oo J~T e->.(z-t)r.p(t) dt. 

If p = oo then (5.1) has infinitely many solutions u E L00(lR) given by (5 .. 2). 

Proof. Let ,P(x) = e.A"'r,p(a:) and v(x) = e>-"'u(x). Then u is a solution in LP(IR) of (5.1) if 

and only if vis a solution in LP(IR) of 

(5.6) v'(x)= ,P(x), x E JR.. 

Further, sp(,P) = -i>. + sp(r.p), so 0 tJ_ sp(,P). If 1 :::;; p < oo, then by theorem 3.4, the 

equation (5.6) has a unique solution v E LP(IR) given by v(x) = limr-+oo J~T ,P(t) dt. If 

p = oo, the same theorem shows v(x) = c + J0"' ,P(t) dt defines a bounded solution of (5.6) 

for each constant c. 

Remark 5.2. Ifr.p E LP(IR) where 1 ::S p:::;; oo then sp(r.p) C JR. Hence if'R.e(..\) =f. 0, 

then i.\ tJ_ sp(r,p). On the other hand ifRe(>.) = 0 and i>. E sp(r.p) then (5.1) may have no 

solution u E L1'(IR). For example, if..\= 0 and r.p is a non-zero constant, then (5.1) has no 

solution u E L 00 (IR). Again, if.\= 0 and r.p is defined by (1.2), then (5.1) has no solution 

u E J}(JR). 
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