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ABSTRACT. We derive the existence oflocal minimizers ofthe functional _1:"0 (E) describ
ing the energy of a. liquid drop E C Ji3 , trapped between two parallel hyperplanes and 
rotating with constant a.ngula.r velocity v'20, for small 0 > 0. 

The study of rotating drops is motivated by problems in astrophysics and physical 
chemistry. Many physicists and mathematicians have worked on related problems, in
cluding Newton, MacLaurin [23], Jacobi [20], Plateau [25], Poincare [26], Darwin [12], 
Lord Rayleigh [27], Holder [19], Appell [2], Lichtenstein [21], Lyttleton [22], Chan
drasekhar [8,9], Auchmuty [5], Caffarelli and Friedman [7], Friedman and Turking
ton [17,18], Brown and Scriven [6]. 

The question investigated here will be the existence of rotating drops with free 
boundaries; precisely, of a drop situated between two parallel planes and rotating with 
constant angular velocity. Of particular interest is the stability of connected drops. 

The methods used in this paper will be those introduced by De Giorgi [14,15] for 
the treatment of variational problems (compare also [16,24]), related to the notion of 
sets of finite perimeter. 

A Lebesgue measurable set E C IR'", with characteristic function XE, is said to have 
finite perimeter in A, A C R" open, if the total variation of the vector valued measure 
DxE satisfies 

L IDxEi =sup {L XE div g(:z:) d:z:: g E C~(A,R"), jg(:z:)i::; 1 fori E E} 
< +oo. 

We denote by II1 = {:z: = (y,z) E JR2 x lR: z = 0}, II2 = {:z: = (y,z) E JR2 X lR: z = d}, 
two parallel planes of distanced> 0, and by G = {:z: = (y, z) E R 2 x R: 0 < z < d} 
the domain between them. The mathematical model of the rotating drop will be to 
minimize its energy, which is the sum of surface tension, capillarity and rotational 
energy, and is described by the functional 
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where v, n E IR, 0 :::; v < 1, 0 :::; n. By X~ we denote the trace of XE for X E IIi, 
i = 1,2, (compare [15,16,24]). The class of admissible sets is chosen to be 

C = { E C G Lebesgue measurable : fa1DXEI < oo, lEI= 1 

and L Yi dx = 0, i = 1, 2} , 

that is, the sets E with prescribed volume and barycenter lying on the axis (0, 0, z ). 
The functional Fn describes the energy of a liquid drop rotating at a constant angular 
velocity Jill around its own barycenter. 

As the energy functional is unbounded from below, we shall only treat the question 
of the existence of local minimizers for Fo. 

Let G(R) = {(y, z) E G : IYI < R} for any R E JR. We call E E C a local minimizer 
if there exists R > 0 such that 

(i) E cc G(R) 
(ii) Fo(E) :S Fn(F) for all FE C, F C G(R). 

We define CR = {E E C: E C G(R)}. 

The techniques are the same as those used by Albano and Gonzalez in [1]. In our 
case,. the special difficulty arises from the "free boundary" of E in IIi, due to the 
additional capillarity term in the functional. 

Related results for rotating drops with obstacles are a1so obtained by Congedo, 
Emmer and Gonzalez [11], and Congedo [10] -here the obstacle is assumed to be a 
graph with a certain growth at infinity. Sturzenhecker [28] treats the cases of pendent 
rotating drops. 

The main result we present is 

Main Theorem. There exists fh > 0 such that for 0 < n < !11 , the energy functional 
Fo. has a local minimizer. 

The complete proofs being given in [4], we summarise here the main ideas. 

1. General existence results. 
Using the standard compactness theorem for BV(G(R))-functions uniformly bound

ed in the BV(G(R))-norm (see [16]) and the lower semicontinuity of Fo with respect 
to L 1-convergence, we obtain the following two results: 

Theorem. Let R E JR., R > 0, be such that IG(R)I > 1. Then, for each n 2 0 there 
exists Eo E C R minimizing Fa 

Fo(Eo) = inf{Fo(F) :FE CR}. 

Theorem. For a sequence {Dj}jEN with ni ~ 0, as j ~ oo, we obtain 

where Eo is F 0 -minimizing. 

This allows the use of the author's results in [3], where a detailed discussion of the 
geometrical properties of Eo is given. 
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2. A stability result for E 0 • 

In the case f2 = 0 the minimizer Eo is known to be an analytic, rotationally sym
metric, periodic surface of constant mean curvature. Furthermore, it intersects lli at 
a constant angle"(, for which cos?= v, and consists of at most one period. In JR 3 the 
possible minimizers are classified: they are the Delaunay surfaces [13]. Using this, we 
know the possible shapes of drops to which Eo; would converge for ni ~ 0. We also 
prove that for "small" (related to the distance of the planes) volume lEo I, the mini
mizer cannot be connected and have non-empty intersections with both II1 and Ih. 
In this case, Eo is part of a ball satisfying the volume and boundary (contact angle) 
conditions. (For more details see [3,4].) 

3. Existence of local minimizers. 
The proof consists of two steps. First we have: 

Theorem. Choose R large enough that -¥ > max { ( ~7r) l , C:a) j}. Then there exists 

no > 0 such that, for 0 < n <no, there exists t, -¥ :::; t :::; 3I_'' with 

{ XEn d1i2 = 0 . 
lan{lyl=t} 

Intuitively, the drops En; concentrate more and more in a neighbourhood of E 0 , 

given the L 1-con.vergence for ni ~ 0. Eventually, there will he some cylinder {x E G: 
IYI = t}, which intersects En; in at most a set of lower-dimension, for 0 < n <flo. 

The final step is to show that Eo has no component outside this cylinder. 

Theorem" Choose R as large as above. Then there exists f2 1 > 0 such that, for 
0 < fl < fl1 there exists t, B: < t < -3R with 

2 - - 4' 

1 X En ( :r) dx = 0 . 
G(R)\G(t) 

The idea is to cut off any part outside G(t), rescale what is left axially so as to 
restore the prescribed volume, and translate so that the barycentre once again lies on 
the z-axis. The resulting set is then shown to have lower energy. This completes the 
proof of the main theorem. 
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