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PRACTICAl SOLUTION OF SOME FORWARD AND INVERSE PROBLEMS IN HYDROLOGY 

A J Jakeman1, c R Dietrich1· 2 , F Ghassemi1, I G Littlewood3, P G Whitehead3 

1. INTRODUCTION 

What is the need for solving inverse problems in hydrology? The basic 

answer to this question is that many laws in hydrology invoke parameters 

that are not easily measured or even observed. This means that modelling 

will require at the very least a calibration of parameters from observation 

of other variables, often termed indirect observations. For example the 

transmissivity or rate at which water is transmitted through an aquifer 

depends on the physical properties of the medium and these properties are 

reflected partly in the observations of aquifer water level. Often 

hydrologic models require additional knowledge of the specific functional 

forms of system dependent terms within the general model structure. For 

example, the functional approximation of hydraulic conductivity in Richards 

equation for transport in unsaturated soil depends on the soil properties. 

These model structure identification and parameter estimation problems from 

indirect observations and other prior knowledge represent fundamental 

inverse problems. 

Why in the title of the paper, qualify the solution of inverse 

problems with the word 'practical' and why include 'forward' with 'inverse' 

problems? Practical solution implies that the forward modelling task has a 

specific purpose, perhaps ranging through simple investigatory analysis, 

on-line operational or off-line management and planning to improved 

scientific understanding of natural processes. The inclusion of forward 

with inverse problems is necessary because solving an inverse problem 

requires awareness of the forward modelling aspects. In practice, the 

motivation for solving an inverse problem, and the formulation eventually 

selected, is dependent on the forward problem of interest. 
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An indicative but by no means comprehensive range of examples of 

forward modelling problems in hydrology, which require inversion treatment, 

can be given by a citation of some of the research carried out separately 

at the Centre for Resource and Environmental Studies and in collaboration 

with the Centre for Mathematical Analysis at the Australian National 

University and the Institute of Hydrology in the United Kingdom. The recent 

research output includes treatment of the following flow and transport 

problems. In the atmospheric component of the hydrological cycle, the 

research program includes prediction of the global distribution of trace 

gases in the troposphere [ 25] and simulation of weather variables such as 

rainfall [13] and cloud [3]. In humid catchments, attention has been given 

to simulation of streamflow from rainfall [ 16] and prediction of the 

distribution of surface soil water content in response to topography and 

other factors [22]. Within streams, Dietrich et al. [6, 8] have considered 

forecasting the downstream concentration of conservative pollutants from 

upstream concentration and discharge measurements and predicting the 

transport of salinity in streams subject to groundwater interaction. 

Another water quality problem being addressed is predicting the extremes of 

stream acidity variables [ 17]. Subsurface problems for which simulation 

models were constructed involve control of groundwater behaviour in 

aquifers by interception pumping and irrigation reductions [ 9, 10] and 

assessment of saline intrusion in coastal aquifers [11]. 

Partial differential equations (PDEs) are recognised as the basic 

model descriptions of flow and transport in hydrology and more generally 

for natural environmental processes. Steffen and Denmead [24] for example 

contains state-of-the- art surveys of the mathematical formulations 

associated with many of these processes. Despite increasing 

knowledge from experiments (often incorporated in the form of 

improved and more specialised physical theories and recognition 

process 

PDEs), 

of and 

attention to the stochastic nature of some of the associated variables, 

large uncertainty continues to surround the modelling of many hydrological 

systems. While our process-based knowledge can be very detailed and 

sophisticated, the amount of irreducible or inherent uncertainty can be and 

may remain quite large. 
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The reasons for having to accept a minimum amount of uncertainty as 

the norm are discussed in the next section. These include: the idealised 

nature of process-based models such as PDE equation formulations which are 

only applicable at scales where underlying assumptions about the system 

properties apply; the ill-posed character of certain aspects of the 

modelling exercise; the sampling and measurement errors associated with 

observations; and the amount of information in or representativeness of the 

available observations both in space and time. 

This said, the paper illustrates that in hydrology practically useful 

solution of forward and inverse problems associated with flow and transport 

is still often very possible despite high levels of uncertainties. With two 

representative examples, it is demonstrated how useful information was 

extracted from the modelling exercise. This extraction requires a 

systematic and contextual approach, addressing carefully and perhaps 

iteratively all steps in the model construction procedure in relation to 

the specific problem of interest and its setting. Emphasis is given to 

deciding what are achievable objectives and to specification of a 

comprehensive range of prior information that can be imposed and/or tested. 

It is also illustrated how it can be crucially important to select an 

estimation procedure and numerical algorithm with desirable mathematical 

and statistical properties. 

Section 2 attempts to explain the major features of problems 

requiring solution in hydrology and the mathematical implications. Section 

3 indicates the partial differential equation nature of flow and other mass 

transport problems in hydrology. In particular, it deals with problems of 

advection- diffusion type, characterises associated ill-posed problems and 

the ensuing difficulties created in a hydrological problem context where 

indirect observations and prior knowledge of solution values are limited 

and models contain their own errors. 

Section 4 introduces the major considerations in practice for 

obtaining (inverse) solutions to such problems. The next two sections 

discuss the first two of these with section 5 emphasising that what can be 

accomplished by modelling is very much a function of the level of prior 
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knowledge and the objective. Section 6 categorises the form that prior 

knowledge can take. 

Sections 7 - 8 illustrate the application of these considerations to 

two problems. The first, presented in section 7, involves rainfall-runoff 

modelling at catchment scale. Here the objectives and prior information 

allow simplification of the formulation to one which remains dynamic but 

dispenses with the added dimensionality required by use of spatially 

distributed parameters. The second problem, presented in section 8, 

involves use of the groundwater flow equation in a confined aquifer so that 

the standard PDE is retained as the formulation for which an inverse 

solution is required. In this case, most attention is paid to the 

imposition of prior assumptions and constraints on model simulation 

performance to obtain the range and covariation of parameter values which 

sield acceptable performance. For the inverse problems in sections 7 - 8, 

the numerical techniques used are important contributors to the success of 

both modelling exercises, although for different reasons. 

2. FEATURES Of HYDROlOGIC SYSTEMS 

2.1 Coupled subsystems of storages and pathways 

Figure 1 from Chapman [ 2] is a typical conceptual framework used to 

represent the hydrologic system of a catchment. Such a system consists of a 

set of storages (subsystems) linked by flow pathways (inputs and outputs) 

and the precise detail and configuration of the subsystems depend on the 

problem of interest. Conservation of mass, known as the water or material 

balance, can be applied to each of the storages or over a group of 

storages. 

2.2 Time and space scales 

There is no single common time or space scale for modelling 

hydrologic systems. The time taken to turnover mass within a storage can 

vary from a few minutes for overland flow to years for groundwater systems 

while travel distances of interest can range from metres to hundreds of 

kilometres [2]. Therefore, it very often occurs that a modelling problem in 

hydrology involves interconnected systems of different scales. 
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PERMANENT GROUNDWATER 

liquid/solid flow 
essentially vertical movement 

within storage 

~ - - vapour flow essentially horizontal movement 
within storage 

Figure 1: Hydrological system for a catchment [2] 

2.3 Processes - multidimensional and dynamic 

The phenomena (inputs, outputs and internal states) in hydrology 

evolve in three-dimensional space, although sometimes vertical or 

horizontal flows dominate. Generally, the processes need to be modelled 

dynamically but some components may be modelled in steady state. In other 

words, hydrologic phenomena can be non-steady and driven by 

multi-dimensional velocity fields. 
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2.4 Processes - physical, chemical and biological 

Many processes such as the flow of water in an aquifer are merely 

physical. Other processes such as the transport of reactive pollutants are 

chemical or biological as well. One of the most difficult problems in 

hydrology is manifested in the current inability to incorporate biochemical 

processes in descriptions of flow and transport in soils. Plants and their 

associated soil flora and fauna often critically control mass transport in 

surface soil [5]. 

2.5 Phenomena essentially episodic and uncontrollable 

There can be long periods of quiescence between some of the storages, 

particularly in semi-arid to arid environments. Chapman [2] points out that 

most of the transport of surface and near-surface water occurs during 

hydrological events. The range of excitations over which a subsystem is 

perturbed is dictated mainly by climatic events so that planned experiments 

cannot be performed to improve the information content in indirect 

observations from which models 

implications for the design of 

observational data. 

are constructed. These features have 

monitoring schemes to obtain indirect 

2.6 Heterogeneity of transport media 

The storages or media which provide transport of mass are 

heterogeneous at many scales. This causes problems for the characterisation 

of effectively homogeneous scales for modelling and for measurement of 

parameters. Some of the more acute problems in flow variability relate to 

preferential transport pathways such as is caused by macropores and 

fissures. 

2.7 Expense and sampling and measurement errors of monitoring 

It is often too impractical and costly to obtain a good spatial and 

temporal coverage of indirect observations and especially of point 

parameters. To compound this sampling error problem, much instrumentation 

is not precise and associated data are therefore prone to measurement 

error. 

2.8 Implications for mathematical modelling 

The foregoing characterisation of the features of modelling 

hydrologic systems can be summarised from a mathematical modelling point of 
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view in the following way. First, the basic formulations, which include 

PDEs, tend to be highly idealised. Typical among these PDEs are 

advection-diffusion descriptions. It is now recognised that even in 

homogeneous media diffusion approximations are 'only asymptotically true, 

being valid only if the time and length scales of the transport process are 

large enough for a typical tracer particle to have experienced the full 

range of variations in the velocity field' [20]. Stochastic process 

descriptions can be helpful, but these do not obviate the need for 

measurements and determining relationships between major forcing functions 

and behavioural outputs. Second, some aspects of modelling represent ill­

posed problems and these need to be translated into well-posed formulations 

by the imposition of sufficient prior information. Third, the information 

content associated with indirect observations and direct parameter values 

is rarely adequate on its own to counteract the ill-posedness. Observations 

contain measurement and sampling error and the observation period may not 

span all conditions under which the model is intended to be used. In the 

next section, these points are given an expanded treatment. 

3. SOME ASPECTS OF MASS TRANSPORT IN THE ENVIRONMENT 

Mass transport phenomena represent an important class of problems 

associated with understanding and managing the natural environment. Indeed, 

from the small scale movement of pollutant in underground porous media to 

large scale atmospheric circulation of gases, the environment offers a 

variety of challenges to modellers keen to use PDEs to describe transport 

phenomena. However, as indicated in the previous section, the physics of 

the environment deals with interconnected and complex processes that may 

take place at vastly different spatial and time scales. This means that the 

associated mathematics can be expected to be tricky if not intractable. To 

illustrate some of the difficulties that environmental modellers may face, 

we shall consider here solute transport in a groundwater system. 

At a sufficiently small scale, solute transport depends on the 

microscopic properties of the supporting porous medium and the flow 

equations usually invoke mass, momentum and energy conservation principles. 
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To simplify the exposition, we shall assume that some suitable averaging 

has taken place so that essentially transport will be the result of a mass 

balance between the time and spatial rate of changes of relevant solute 

attributes. Such a simplification yields an equation of the form 

(1) -s 

where c is the solute concentration; j is the solute mass flux; and s is a 

source term. We shall assume that j is caused by the presence of an 

advective velocity field and a concentration gradient. In other words j = 

cu + KVc where u is the advective velocity and K is a diffusivity tensor. 

If the fluid is incompressible, u is divergence free, and (1) becomes the 

classical advection-diffusion equation 

(2) ~~ + u · Vc + V · J(i/c = -s 

Associated with the solute transport equation ( 2) is the transport 

equation for the fluid, here water. In its simplest form it is given by 

(3) S Bh + V · T'ilh at -q 

where h is the water potential; S is the storativity; T the transmissivity; 

and q a source term. The link between (3) and (2) is provided by Darcy's 

law, i.e. 

(4) u T'ilh 
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With this, equations (2) to (4) yield an uncoupled system of partial 

differential equations that can be used to model, for example, the movement 

of a pollutant plume in a groundwater system. 

A first point to note is that the advective velocity u required in 

( 2) is going to be obtained from ( 3) and ( 4) via differentiation of the 

water potential h. This means that the forward problem (3) will need to be 

solved with sufficient accuracy to avoid large error magnification 

associated with numerical differentiation. 

An additional point is that in most practical cases, only partial 

information will be available on the physical parameters, sinks, boundary 

and initial conditions appearing in the transport equations. In the 

particular example of a groundwater system, it is very likely that 

essentially the available data will be point measurements of the solute 

concentration c and the water pressure potential h since such data are 

relatively easy and inexpensive to gather. On the other hand, data on the 

physical parameters will be scarce, comprising only few scattered and noisy 

measurements. 

This indicates that prior to solving the forward problems (2) and 

(3), some (possibly non-linear) inverse procedures are to be used so as to 

recover information on parameters from measurements of the dependent 

variables. For example, consider (3) with the potential h being the 

dependent variable. Use of the PDE with measurements of the potential h to 

recover information of the sink term q is going to involve two 

differentiations of data and thus be quite ill- posed. The situation is 

even worse for transmissivity T. In this case, the inverse problem is 

non-linear while its degree of ill-posedness can be expected to be 

equivalent to two differentiations of the measurements of h. This can be 

seen by noting that transmissivity values in the neighbourhood of a point P 

with t7h(P) = 0 will depend on t7h(P) [7]. 

The well-known difficulties associated with such inversions are 

compounded when available data are likely to be noisy and made on a scale 

that is not truly that of the hypothesised mathematical model. Under those 

circumstances, one may wonder if it is practically feasible to model such a 

poorly defined system. The answer is a cautious and qualified 'yes'. As 
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discussed in the next section, environmental modelling is an iterative 

procedure through which a balance among the modelling objectives, the 

degree of resolution in the available prior knowledge, and the complexity 

of the hypothesised mathematical model needs to be found. Thus given some 

modelling objectives, lack of prior knowledge at a degree of resolution 

commensurate with the mathematical model hypothesised requires that 

additional prior information be sought and/or some form of aggregation be 

imposed on the model. Alternatively, or in addition, the modeller may have 

to pursue a less demanding objective. 

4. MAJOR CONSIDERATIONS FOR PRACTICAl MODELliNG 

A quantitative model construction exercise in 

consideration of the forward problem with associated 

While the major steps in such an exercise tend to 

hydrology involves 

inverse problems. 

be iterative and 

interconnected, they bear explicit recognition here. They can be of crucial 

importance tvhen dealing with the solution of practical problems where: the 

underlying representations are idealised and (with respect to the inverse 

component of the exercise) are ill-posed; and indirect observations are of 

limited availability and contain errors. These steps are: 

L Define ·the range of useful objectives for ·the forward modelling 

component (including general purposes and model response properties 

and scales of interest). 

ii. Specify and obtain prior knowledge for the forward and inverse 

components (including basic physical laws, observational data, 

parameter values, errors); assume more if necessary and test validity 

as far as possible for the inverse component. 

iii. Incorporate (i) and (ii) in selection of a model family (level of 

determinism and stochasticity, spatial dimensionality, static or 

dynamic formulation). 

iv. Discriminate among alternative parameterisations, identify order of 

parameterisation, estimate parameters and uncertainty, 

diagnostic checks on models. 

perform 
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The examples in sections 7 and 8 of the paper are used to indicate 

the importance of all these steps, although there is no attention given to 

discrimination among alternative parameterisations. Suffice it to say here 

that one should be eclectic with respect to the breadth of models tested 

and discrimination should involve evaluation of as wide a range of criteria 

as is necessary. 

5. DEFINITION OF OBJECTIVES 

In this and the following section, it is worth some attempt at 

qualitative elucidation of the sorts of decisions that need to be made in 

steps (i) and (ii) of a model construction exercise for problems associated 

with mass transport in the natural environment. The main emphasis is given 

to step (i). The importance of and considerations in this step are seldom 

stressed. The considerations developed will also be helpful in presenting 

the examples. Jakeman [14] contains more detail on the other steps. 

Figure 2 aims to convey the degree of difficulty with respect to 

objectives in solving the class of inverse problems which relates to model 

calibration of mass transport phenomena. While the focus here is on the 

three axes shown, other factors may influence the degree of difficulty. 

These other factors include the level of discretisation sought, the spatial 

dimensionality and the transport medium or storage zone(s) of interest. In 

the latter case, for example, the unsaturated zone tends to be more 

difficult to model than the saturated, while root zone processes are even 

more complex. 

In the following discussion, it is simpler to restrict attention to 

one medium. Each axis in Figure 2 represents an element of the 

specification to be made in step (i). Each annotation on an axis represents 

the marginal degree of difficulty imposed by that element. A coordinate in 

3-space can be plotted for a given modelling problem which has a 

characteristic value or position on each of the three axes. The joint 

degree of difficulty is notionally some function of distance of the 

coordinate from the origin. However, it must be appreciated that the degree 

of difficulty is conditional on the level of prior knowledge. If two 
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P-AXIS 

Detailed 
understanding 

Optimal 
control 

Simulation 

Adaptive 
control 

Prediction/ 
forecasting 

Summarising 
data 

"'---,.------,----~-------...~ R-AXIS 
Integrated 

flux 
Mean Probability Time/spatial 

distribution senes 

Response property of modelling interest at a 
fixed spatial and temporal discretisation 

Figure 2: Degree of difficulty with respect to objectives in calibration 
of a model is some (increasing) non-linear function of distance 
from the origin. 
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modelling problems occupy the same point in the space, the one with a 

superior level of indirect observations, prior parameter estimates and 

representative observation period will generally yield a more certain 

solution. Thus the degree of difficulty can be considered as a marginal or 

inherent uncertainty. 

The axes have been labelled A-, P- and R- axes, with axes for D 

(dimensionality), I (interval of discretisation) and M (medium) not shown. 

The A- or Attribute-axis can be used to locate the attribute or variable of 

modelling interest, the one the model is being constructed to summarise, 

simulate, forecast or control. Thus for a specific medium, the forward 

modelling of a flow attribute is easier than that of concentration of a 

conservative solute and this in turn is less difficult than modelling the 

concentration of a reactive fluid in that medium. In addition to knowledge 

of the physics of conservative fluids, the modelling of reactive fluids 

requires some description of the chemical processes, while for the 

modelling of any solute concentration, knowledge of the flow field is 

required. 

The D- or Dimensionality-axis (not shown in Figure 2) indicates the 

most obvious point that a higher dimensional problem is usually more 

difficult to model than a lower dimensional one. However, a point to note 

is that if the problem in hand is difficult only because it requires 

solution of an inverse problem, then the degree of ill-posedness and the 

degree of difficulty associated with it, may be less in higher dimensions. 

For example, under appropriate assumptions the eigenvalues of the inverse 

of the Laplace operator V decay essentially like k-Z!d where d is the 

dimension of the problem. Inversion of V in two or higher dimensions is 

therefore less ill-posed than in one dimension. This said, in practical 

environmental problems data are more scarce in higher dimensions, and this 

may be the feature that eventually dominates the degree of difficulty in 

the modelling exercise. 

The P- or Purpose-axis says that it is easier to construct a model 

for summarising data, where many abstract formalisms may suffice for the 

model representation than it is to forecast a few time steps ahead or to 

extrapolate spatially. Like adaptive control the latter requires at least 
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constructing some stochastic formalism which holds the recent memory of the 

historical observations of the attribute of interest or relates the 

attribute to other causal variables. Simulation and optimal control are 

even more difficult since these objectives require the model to be able to 

reproduce the system behaviour in response to changes in model inputs and 

boundary conditions, perhaps beyond those experienced in the observation 

period used to calibrate the model. 

The R-axis represents the response property of forward modelling 

interest. Thus, at a fixed spatial and temporal discretisation, an 

integrated flux of some mass transport phenomena, a zeroth moment, tends to 

be less demanding a response property than the mean, the first moment. The 

probability distribution of a response variable requires further 

information[ usually at least the second moment. Finally, reproduction of 

the individual time series and/or spatial series realisations of the 

response variable may require still more demanding model construction. 

In order to obtain a modelling result with an acceptable level of 

uncertainty, a balance has to be struck among the modelling objectives and 

the level of prior knowledge. The further the objectives place the 

modelling problem from our origin (in the context of our experience or 

literature appreciation), the more prior knowledge that must be sought or 

imposed as an assumption. An alternative or additional approach to reduce 

the uncertainty is to seek a less demanding objective and hence degree of 

difficulty. This .can be achieved by locating one or more of the 

characteristics on the axes of our conceptual diagram closer to the origin. 

6. PRIOR KNOWLEDGE 

The term 'prior' knowledge is used in this paper to. denote knowledge 

or information about ·the model structure, parameter values, direct and 

indirect observational data. This knowledge may be derived from theory, 

empirical analysis, or it may be assumed and only partly tested. 

Knowledge about parameter values may come in one of several forms, 

for example, point estimates (as obtained from measurements), constraints 
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such as bounds (from literature values or physical arguments), or 

probability distributions. 

Knowledge about the data may also come in the form of constraints or 

probability distributions. Other knowledge about the properties of the 

measurement and sampling errors in the data may also be available and can 

be helpful in selecting discretisation intervals, parameter estimation 

technique and model performance evaluation. 

Knowledge about model structure can be determined in different ways. 

Take the two examples to follow. For the groundwater flow example, a 

bottom-up approach is taken in the sense that the well known idealised PDE 

is invoked as the basic formulation. The classical PDE for flow in a 

confined aquifer is used and the ill-posedness of its inversion is 

controlled by imposing a wealth of prior information on unknown parameters. 

For the rainfall-streamflow example, a top-down approach is used in the 

sense that few physically-based assumptions are invoked. A spatially lumped 

representation of the convolution integral is proposed. It is found to be 

an adequate basic model structure provided a low parameterisation is used 

to approximate the solution of the inverse problem. 

7. RAINFAll-STREAMFlOW MODELliNG 

One of the most considered problems in the hydrological literature 

continues to be the estimation of streamflow or discharge at some point in 

a catchment. Such a discharge represents the final output of a myriad of 

flow processes following the fall of precipitation on the surface of a 

catchment. Models of streamflow are constructed in practice to satisfy one 

or more of a number of purposes including: 

Pl: Interpolation or real-time forecasting of streamflow levels at a 

particular location (e.g. to fill in missing records or for 

operational decisions). 

P2: Simulation of streamflow in response to weather inputs such as 

rainfall and temperature (e;g. for water quality modelling). 

P3: Understanding of catchment-scale dynamics of streamflow response in 

response to rainfall events and in particular baseflow component 
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separation (e.g. to assess the effect of future climatic scenarios on 

streamflow or the effect of past and present land use on hydrology). 

P4: Understanding of hydrological response in different parts of a 

catchment (e.g. to simulate streamflow in response to land use and 

catchment management options and weather inputs). 

There is certain general prior knowledge which is available for 

tackling these forward problems. This knowledge is critical in the design 

of the inverse procedure to construct a model of streamflow. Model types 

used and their information requirements are considered below. 

Differential equations discretised in time and space have been 

employed to represent subsystems of a catchment. These express 

conservation of mass and momentum for each subsystem. The subsystems 

are linked by matching mutual boundary conditions at each time step 

[26]. Large amounts of observational data and prior parameter 

estimates are required to calibrate and run these models. The few 

well-documented accounts of the performance of these models reveal 

large uncertainties. 

Aggregated conceptual models of catchment behaviour predict runoff by 

accounting for the processing of moisture through the soil column and 

channel system. They tend to be distributed in time but may be lumped 

in space. Several storage zones are hypothesised to account for the 

various storage mechanisms on an aggregated basis. The functions 

describing exchange of storage contents can be highly nonlinear [21]. 

Observational data and prior parameter values associated with storage 

zones in the above conceptual models are usually scant. Optimisation 

of parameters is required leading generally to dependence of the 

calibration on only a few key parameters, most others being 

insensitive. 

The unit hydrograph concept assumes ·there is a linear convolution 

integral relating rainfall excess u(t) and streamflow x(t) (e.g. 

[4]). The kernel or impulse response function k(t-s) in the integrand 

is known as the instantaneous unit hydrograph and is the function 

sought in the model calibration exercise. Rainfall excess is that 
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rainfall not lost to evapotranspiration and able to contribute to 

streamflow. Thus 

x(t) = L: k(t-s) u(s)ds 

Identification and calibration of the convolution integral requires 

rainfall and streamflow time series data. Finite representations of 

the kernel use approximations and/or smoothness constraints on the 

unit hydrograph. Modelling efforts using a rational polynomial 

approximation of the unit hydrograph, at least on humid catchments, 

appear very promising [16]. The non-linear relationship between 

rainfall and rainfall excess can also be modelled in a lumped 

fashion. While this problem can itse.lf be very difficult, simple 

parameterisations can work very well (e.g. [27], [16]). 

Purely stochastic time series models, for example of 

autoregressive-moving average type, have been used to characterise 

streamflow (e.g. [18]). The only prior knowledge needed for these 

models, which do not postulate a causal relationship, is streamflow 

measurements. However, stationarity of the latter is required. 

Which modelling approach is taken to estimate streamflow depends on 

the objective and prior knowledge. It may also depend on the input data 

available in practice to run a model forward as well as a good numerical 

algorithm. If the purpose is real-time forecasting or streamflow 

interpolation (Pl), then little prior knowledge may be needed. If the 

attribute of interest is just a mean prediction over a long enough time 

step, an assumption of stationarity in the historical streamflow data may 

be sufficiently valid. A stochastic model may then be capable of 

identifying predictably regular statistical patterns in the observations. 

However, if simulation under changing rainfall conditions is the 

purpose (P2) or forecasting is required in a situation where stationarity 

does not apply, additional prior knowledge must be injected to deal with 

the relationship between key variables, such as rainfall and streamflow. 
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This is where the unit hydrograph concept can be useful. Note that, like 

the purely stochastic approach, it also keeps the degree of difficulty low 

by not using a spatial distribution of parameter values. Most unit 

hydrograph approaches simplify the problem further by intuitively removing 

the base flow component of streamflow observations so that the convolution 

integral represents only the short term dynamic relationship between 

rainfall excess and streamflow. 

If the purpose is more demanding, such as understanding hydrological 

response to land use or climate change (P3 or P4), then more prior 

knowledge must be injected. If only aggregate catchment scale understanding 

is required, then the dimensionality can be kept down. An approach that has 

proven successful is to hypothesise a configuration of linear reservoirs, 

usually in parallel, in order to parameterise the unit hydrograph 

efficiently, and to allow part of the configuration to represent the slower 

baseflow processes. In mathematical terms, this configuration is equivalent 

to postulating approximation of the unit hydrograph by a sum of exponential 

decays. Associated tools are then required to identify the number of terms 

in the summation and to estimate the parameters. 

Jakeman et al. [ 16] stress the importance of selecting a numerical 

algorithm which is robust to even very small model and data errors. This 

was demonstrated for rainfall-streamflow data from a catchment in Wales. 

The model identified between rainfall rk, at hour k, rainfall excess, uk 

and streamflow xk for this particular catchment is 

sk sk-l + (Ik - sk-1)/86, So 0 

(5) uk = const. rk sk 

xk = 18.8796 
uk + 

1.5521 
uk 

1-0.7947 z-1 1-0. 989oz-1 

where z-1 is the backward shift operator. Note that the term const. is 

estimated independently but its value is not required. It can be 

incorporated in estimation of the parameters in the numerator of ( 5) . The 
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two transfer functions in (5) are the identifiable components of a rational 

polynomial approximation of a discretised version of the convolution 

integral. 

The need for careful selection of an estimation algorithm may be 

appreciated from recognising the possibility that one of the transfer 

functions may possess a polynomial denominator with a root near the unit 

circle, as is the value of 0.9890 in (5). Values close to unity occur when 

streamflow has a slowly decaying baseflow component following the cessation 

of rainfall. Another factor influencing selection of the estimation 

algorithm is the closeness of baseflow to zero. The closer baseflow is to 

zero the more difficult the estimation of the associated polynomial root. 

To minimise both estimation problems, a simple refined instrumental 

variable (SRIV) algorithm was applied in Jakeman et al. [16]. It has the 

properties of being consistent and relatively efficient statistically. It 

also applies a linear filter to the rainfall excess and streamflow series, 

which has the effect of increasing low baseflow (and rainfall excess) 

values. Such a linear transformation does not affect the relationship 

between rainfall excess and streamflow. SRIV estimation is also optimal in 

that it minimises the sum of squared errors between xk and the model 

estimate of xk. 

These points are stressed because the usual algorithms prove 

inadequate for this problem. Both a so-called least squares (LS), used for 

example by Rao and Mao [23], and a basic instrumental variable (BIV) 

algorithm, usually adequate for most engineering modelling purposes, fail 

to extract the second component from the transfer function representation. 

Figures 3 and 4 illustrate the performance of the BIV and SRIV algorithms 

on 400 hours of data from the catchment in Wales. The LS performance is 

visually similar to that of BIV. Table 1 gives the parameter values 

estimated by the three algorithms when a second order approximation is 

assumed. Notice that LS and BIV estimate that the denominator parameter of 

the second order component is close to zero. 

When the purpose of the modelling exercise is to simulate streamflow 

in relation to postulated land use and land cover characteristics (P4), 
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Fit of model using BIV estimation to 400 hours of streamflow 
from a catchment in Wales. 

Table 1: Estimation results using LS, BIV and SRIV. 

Denominator parameters Numerator parameters R2 fit 

LS -0.8804 0.0424 15.3466 6.9673 0.7916 

BIV -0.7733 -0.0381 15.2651 8.7720 0.7947 

SRIV -0.7947 -0.9890 18.8796 1.5521 0.9455 
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Fit of model (5) obtained using SRIV estimation to same 
streamflow data as in Figure 3. 

different in various parts of the catchment, so-called 

physically-based models have been promoted. The argument is that only by 

discretising the catchment into effectively homogeneous elements and using 

the appropriate conservation equations, with separate parameter values for 

each element, can such simulation be successful Unfortunately, progress in 

this area is slow. Satisfactory results will require model structure 

simplifications which are consistent with the level of observational 

information available to calibrate parameters. 

It can be argued that the previous desire of hydrologists to make 

point measurements of 'physical' parameters (such as infiltration, 
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transmissivity) and insert them in finely discretised physically-based 

models for simulation purposes was always ill-fated. This is now recognised 

in many quarters so that the basic paradigm has shifted from one based 

almost entirely upon physical determinism to recognition of uncertainty and 

the need for model calibration of parameters (e.g. [21]). However, it has 

not shifted far enough. Calls continue to be made for validation of models 

and characterisation of uncertainty [ 19] and this will eventually become 

the next operational paradigm. More revolutionary is the call, for example, 

by Beven [1], for a new paradigm involving "a macroscale theory that deals 

explicitly with the problems posed by spatial integration of heterogeneous, 

non- linear interacting processes Such a theory will be inherently 

stochastic and will deal with the value of observations and qualitative 

knowledge in reducing predictive uncertainty; the interactions between 

parameterisations and uncertainty; and the changes in hydrological response 

to be expected as spatial scale increases". 

8. GROUNDWATER EXAMPLE 

The problem here relates to groundwater flow in an area near Mildura 

in Australia. The area of interest is shown in Figure 5. It is subject to 

different forms of land use as indicated. In particular, commercial crops 

are irrigated in part of the area and over several decades this has 

resulted in a rise in the underlying water table which is saline. 

Consequently, the increased gradient of groundwater has caused larger 

fluxes of salt to the river on the northern boundary. An interception 

scheme was installed to pump groundwater away from the river to evaporation 

basins. The scheme lowers this gradient and reduces the accessions of salt 

to the river in order to afford protection to downstream uses. The location 

of present pump sites is also shown in Figure 5. 

The purpose of the associated modelling exercise [9, 10] was: 

Pl: Simulate salt load to the river boundary to assess the efficiency of 

the interception scheme and to recommend improvements. 

P2: Quantify the contribution of irrigation to groundwater levels. 

The prior knowledge available for these purposes was the following: 
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Basic model structures available are the relevant PDEs of soil 

infiltration, groundwater flow and conservative solute transport. 

Point estimates of aquifer parameters, adjacent to the river only. 

Monthly irrigation in relation to land use and rainfall data. 

Daily aquifer pumping rate data for the interception bores. 

Point estimates of monthly groundwater levels. 

River height measured daily as a boundary condition along a portion 

of the aquifer. 
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Figure 5: Land use map of Mildura study area, 
interception pumps, discretisation 
conditions adopted. 
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Other assumptions were also necessary to simplify the task. These 

were: 

The aquifer is isotropic, confined and two-dimensional. 

Aquifer salinity is temporally constant at river nodes (point 

estimates in space are available at two points in time three years 

apart). 

Groundwater level (piezometric) contours were hand-drawn by reference 

to the hydrogeologic data. 

Simple no-flow boundary conditions were adopted. 

There were insufficient prior parameter estimates and observational 

data to warrant calibration of a model of soil infiltration. In its place a 

simple assumption was made that: 

Monthly accessions to the aquifer from rainfall and irrigation were a 

proportion of rainfall and irrigation applied. 

Only two constants of proportionality, one for rainfall and one for 

irrigation, were calibrated for each land use zone. 

The assumption that aquifer salinity is temporally constant at river 

nodes also allowed us to dispense with modelling solute transport 

throughout the aquifer. Since one major purpose was to simulate salt load 

to the river boundary, a (two- dimensional) model of groundwater flow (in a 

confined aquifer) with attendant assumptions about aquifer salinities at 

the river boundary was considered a useful simplification. The model used 

is therefore 

(6) v. T'Vh q + 8 ah 
at 

where T represents transmissivity, s storativity, h the groundwater levels 

and q source terms. 

Since the purposes of our modelling (Pl and P2) are fixed, they 

cannot be narrowed further to obviate the need for a distributed parameter 

model. The A-axis characteristic value has been reduced to flow while the 

D-axis characteristic has been lowered to a value associated with 
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two-dimensional modelling. The P-axis is fixed for simulation. Likewise, 

the R-axis characteristic value is demanding, requiring a time series, 

although the annotation on the characteristic M-axis, the media modelled, 

has been reduced considerably by lumping the model of infiltration through 

the root and unsaturated zones as one of simple proportionality of rainfall 

or irrigation applied. In addition, the I-axis, the intervals of spatial 

and temporal discretisation were aggregated. A monthly time step was 

considered necessary as it was almost the maximum desirable for testing the 

simulation performance of the model on historical data and the minimum 

interval at which much of the input data was available. Discretisation of 

the problem was by finite difference. A square mesh interval of 200 m was 

chosen because it was judged a compromise between being able to evaluate 

pump site options sensitively and the minimum distance that could be 

tolerated for interpolating hand drawn piezometric contours. Seven zones of 

constant transmissivity were assumed for the aquifer. 

Clearly, there are many assumptions needed to achieve the above 

simplification of the modelling problem when it is not desirable to refine 

the modelling purpose further. The uncertainty or sensitivity of the model 

parameters and hence simulation results 

evaluated to assess the credibility of 

to 

the 

these assumptions must be 

results. To calibrate the 

parameters and to obtain a feel for this uncertainty, a technique known as 

generalised sensitivity analysis (GSA) was used. The technique was 

originally derived by Hornberger and Spear [12] to identify in a 

preliminary or exploratory manner, important parameters and processes in 

models of environmental flow and transport phenomena. We adopted GSA for 

the example here as a conceptually simple and flexible approach to the 

calibration of parameters and their uncertainty in a traditional model of 

the process of groundwater flow. 

For a given mathematical model of a system, the essential steps in 

GSA are the following: 

(a) Specify probability distributions for the parameters of the model. 

(b) Impose acceptable model behaviour or performance in terms of 

constraints on objective functions. 
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(c) Perform Monte Carlo simulation runs, each run taking a random sample 

from the parameter distributions and driving the model to yield model 

behaviours. 

(d) Classify each simulation run in terms of acceptable or unacceptable 

behaviour. 

(e) Analyse statistical relationships between the parameters in both 

acceptable and unacceptable classes to obtain a sensitivity ranking 

and the covariation of parameters responsible for the acceptable 

model behaviour. 

The application of this procedure was demonstrated for a steady state model 

of the system (S 0 in equation 6) in Jakeman et al. [15]. The uncertainty 

of the model in terms of mean error of groundwater levels throughout the 

aquifer and salt load to the river was calculated. The variability in both 

quantities suggests the model is a useful tool to investigate the effects 

of groundwater interception options. For example, almost all the 

variability in salt load is contained within bounds about 10 per cent 

either side of the simulated mean. Ghassemi et al. [9] have demonstrated 

that this variability is about one-fifth the deterministic reduction in 

salt load simulated from improvements to practicable pump placements and 

rates. 

Whether or not the model needs improvement requires further analysis 

since the variability above was assessed for the aquifer transmissivity 

parameters only. All boundary conditions, including accession parameters 

from rainfall and irrigation, were kept at fixed values. Sensitivity of 

simulations to these conditions is also required. On the one hand, this 

means that the salt load variability calculated already is the minimum that 

could be expected. On the other hand, it is quite probable that 

uncertainties in parameter estimates could be reduced further by performing 

generalised sensitivity analysis on a transient form of the model for which 

appropriate indirect observational data (i.e. groundwater levels) are 

available. In this way, the parameter space of acceptable solutions could 

be further constrained (by imposing that model behaviour conform to 

observations over the transient period) to reduce uncertainty. 
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This example illustrates that there are several potential advantages 

of using GSA for general model calibration. As indicated and referred to 

above, uncertainty estimates are a byproduct of the analysis. In addition, 

there is no need to use mathematical methods of calculus and algebra to 

derive an optimisation algorithm as the power of the computer is used to 

sample the parameter space for optima. Traditional algebraic approaches 

minimise an objective function, such as a least squares criterion, perhaps 

subject to bounds or smoothing constraints on parameter values. The GSA 

technique allows straightforward incorporation of prior knowledge and 

hypothesis testing in almost any form without significant addition to the 

level of computational complexity. The procedure is robust in the sense 

that numerical problems such as stability and convergence that are 

associated with the algebraic optimisation approach to the solution of 

inverse problems are avoided. In summary, the approach seems well suited to 

the practitioner without a strong mathematical or computational background. 

Assumptions can be tested in a direct way by specifying diffuse probability 

distributions for model parameters and fine-tuning these by imposing any 

behaviour criteria deemed important and calculating the parameter 

covariation which yields this behaviour. The approach can be built around 

forward simulation models of model behaviour, which are available as 

computer packages for many physical modelling problems. The main constraint 

to its use is that sufficient computer time and resources can be obtained 

to generate a large number of forward model runs. 
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